ppo-LunarLander-v2 / config.json
Helloyunho's picture
feat: upload current model
75c5bcd verified
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x782a5d484180>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x782a5d484220>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x782a5d4842c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x782a5d484360>", "_build": "<function ActorCriticPolicy._build at 0x782a5d484400>", "forward": "<function ActorCriticPolicy.forward at 0x782a5d4844a0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x782a5d484540>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x782a5d4845e0>", "_predict": "<function ActorCriticPolicy._predict at 0x782a5d484680>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x782a5d484720>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x782a5d4847c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x782a5d484860>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x782a5d5ed140>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1741159392763173811, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAACyyj4FRCk/hnPwvZ5kTL50f14+Yvu7vQAAAAAAAAAAmscTPZMUgj4Fl+w8cLt+vr/1Kz1mkEA9AAAAAAAAAAD9p3S+Y/YyP8mRJD5Ux4a+uXCtPFJcqL0AAAAAAAAAAOZwnL0we4M/VslovcJchb5+wNC9Dk5/PAAAAAAAAAAAZhgLvGcCsD9zpN47I6uhviFcyby9IkO9AAAAAAAAAABN1m49e1KlumkSAbnv3vSzWOqquQRMFDgAAIA/AACAP+YSgj0fYIu7K7tGPcRHNr4lVpS8UTVDvwAAgD8AAIA/phQCPgG7ZD9vyBK9lUuVvmDvhbxizPO6AAAAAAAAAAAzI1W78pUJP8yduD1Uf3a++uQAvR4agD0AAAAAAAAAAIASUj1Iu4+6XslIu6kkcDk07KK6gLq/OQAAgD8AAIA/A2yRPqTsDz+aTgy+npxpvr+fjj0GM3s8AAAAAAAAAADN5BU9PCOoPqHVyTzv9U2+tR54PYNnuDsAAAAAAAAAAACrEj1QvY0/vsA0PR2sr7594qI8bmdQvQAAAAAAAAAAALhOvt2Vhz+6R7q+yReVvtt2h76aFuC9AAAAAAAAAABa9J09HIYjvD6FA70JnI69hx6MvQ1TvL4AAIA/AACAPxqPOj3J3mw96qiYPH3Udb48Jqg8WDHNPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHECvf4yoGaMAWyUTT4BjAF0lEdAkST4r8R+SnV9lChoBkdAcWFb5M10kmgHTWoBaAhHQJEmsj9n9Nx1fZQoaAZHQGuyjt5UtI1oB007AWgIR0CRJr8A7xNJdX2UKGgGR0BwyXobGWD6aAdNSAFoCEdAkSdnxFy7w3V9lChoBkdAcVRl7tzCDWgHTSwBaAhHQJEnwhvBJqZ1fZQoaAZHQG+MMIVuaWpoB01mAWgIR0CROuc5Ke05dX2UKGgGR0Bun4qiGnGbaAdNPAFoCEdAkTv2i5/b03V9lChoBkdAcbn5C4SYgWgHTVgBaAhHQJE8SEcsDnx1fZQoaAZHQG7b4ptrKvFoB01dAWgIR0CRPTdkrf+CdX2UKGgGR0BxNT6FdszmaAdNQgFoCEdAkT1qhUR3/3V9lChoBkdARB9clgMMJGgHTQ0BaAhHQJE+BePaL4x1fZQoaAZHQGxX+tCAtnRoB007AWgIR0CRPkMOf/WEdX2UKGgGR0BwZvsniNsFaAdNNQFoCEdAkT63DFZPmHV9lChoBkdAcO+uB+Wnj2gHTUQBaAhHQJE/GFh5Pdl1fZQoaAZHQHDQ1zySV4ZoB009AWgIR0CRPyZIxxkvdX2UKGgGR0BxffWPLgXNaAdNPwFoCEdAkUHxLf1pTXV9lChoBkdAbGz63RXwLGgHTVsBaAhHQJFC2UPhAGB1fZQoaAZHQHHCiLl3hXNoB01EAWgIR0CRQ3bobGWEdX2UKGgGR0Bvzq4QSSNgaAdNSQFoCEdAkUQ61G9YfXV9lChoBkdAcQDsE7nxKGgHTWsBaAhHQJFE3HMlkYp1fZQoaAZHQED6MCtA9mpoB0v9aAhHQJFFElhPTG51fZQoaAZHQHDouPBBRhtoB01hAWgIR0CRRgxNqQA/dX2UKGgGR0BuGFfgJkXlaAdNQQFoCEdAkUZzpTuOTHV9lChoBkdAcCM7o0Q9R2gHTVABaAhHQJFGoOH31z11fZQoaAZHQG2tq4pc5bRoB00vAWgIR0CRRvivxH5KdX2UKGgGR0ByfYkfLcKxaAdNFwFoCEdAkUckxyn1nXV9lChoBkdAIm08eS0SiGgHTS8BaAhHQJFIakAPuoh1fZQoaAZHQHC3LBsQ/X5oB01UAWgIR0CRSj/Yao/BdX2UKGgGR0Bw5LX6InBtaAdNhwFoCEdAkUv4TTOPenV9lChoBkdAcYo79Q40dmgHTUMBaAhHQJFM+K/Efkp1fZQoaAZHQDTHJ/5LytpoB00oAWgIR0CRTaFLnLaFdX2UKGgGR0Bt18pTdcjaaAdNWAJoCEdAkU3SiqQzUXV9lChoBkdAatBvR7Z392gHTXMBaAhHQJFPu/oJRfp1fZQoaAZHQHHs8KPXCj1oB00lAmgIR0CRUFF4s3AEdX2UKGgGR0BySBrSE12raAdNRQFoCEdAkVBkgW8AaXV9lChoBkdAa6hqL0jC52gHTVsBaAhHQJFQ+Ik7fYV1fZQoaAZHQHDjcqaw2VFoB01vAWgIR0CRUQsvZh8ZdX2UKGgGR0ByKlTMqz7eaAdNWgFoCEdAkVINTYNAknV9lChoBkdAcg3JXQtz0mgHTUMBaAhHQJFSY+zMRpV1fZQoaAZHQG/TMmfGuLdoB01VAWgIR0CRUvDqW1MNdX2UKGgGR0BvM20Re1KHaAdNZwFoCEdAkVMGwV0tAnV9lChoBkdAcUPSCOFQEmgHTWgBaAhHQJFTQYFaB7N1fZQoaAZHQEGD9PUKArhoB0vzaAhHQJFV1RzijtZ1fZQoaAZHQHE5/omois5oB02HAWgIR0CRVo11GLDRdX2UKGgGR0BsimBz3h4uaAdNUgFoCEdAkVaYkRjBmHV9lChoBkfAKqHWSU1Q7GgHS/poCEdAkVbx6a9bo3V9lChoBkdAcTK8L8aXKWgHTUoBaAhHQJFYAoBq9Gt1fZQoaAZHQEr+XF98Z1poB0voaAhHQJFYIcsDnvF1fZQoaAZHQG0m/0mMOwxoB00zAWgIR0CRWNaVlf7adX2UKGgGR0BtMm/N7jT8aAdNKgFoCEdAkVt9nGsFMnV9lChoBkdAcFOmW+oLomgHTTwBaAhHQJFcMbPyCnR1fZQoaAZHQHFDA7o0Q9RoB008AWgIR0CRXLxjawljdX2UKGgGR0Bw5Zi1AqusaAdNIwFoCEdAkVzq2OQyRHV9lChoBkdAclYBvJiiI2gHTUsBaAhHQJFdLCFbmlt1fZQoaAZHQG4AwKKHfuVoB00zAWgIR0CRb6TK1XvIdX2UKGgGR0BxRFvLowEhaAdNQwFoCEdAkW/EO3DvVnV9lChoBkdAcFgbFS88LmgHTUwBaAhHQJFwa8Djin51fZQoaAZHQG3AdilSCOFoB01LAWgIR0CRcI2r4nF6dX2UKGgGR0Bx8F7IDHOsaAdNaAFoCEdAkXOPn0TURXV9lChoBkdAcLCek56t1mgHTS0BaAhHQJFzs8KXv6V1fZQoaAZHQGxzM9r433poB01jAWgIR0CRdAAYHgP3dX2UKGgGR0BxSbl0YCQtaAdNWQFoCEdAkXQG5DqnnHV9lChoBkdAccbgBcRlH2gHTWkBaAhHQJF0NI9TxXp1fZQoaAZHQG6Jy9du5z5oB01rAWgIR0CRdXx0+1SgdX2UKGgGR0Bw17XwsoUjaAdNWQFoCEdAkXWUAHVwxXV9lChoBkdAb9ZYzSCvo2gHTToBaAhHQJF2jzz3AVR1fZQoaAZHQGxv/bTMJQdoB00jAWgIR0CRdyirksBidX2UKGgGR0Bx2p4/u9eyaAdNNQFoCEdAkXeAGW2PUHV9lChoBkdAcD4xkupS8GgHTVEBaAhHQJF3wwWWQfZ1fZQoaAZHQHCyKi48U21oB00lAWgIR0CReRP4mCyydX2UKGgGR0Bu6kIzFdcCaAdNMgFoCEdAkXlMsQNCq3V9lChoBkdAQouI/JNj9WgHTQQBaAhHQJF7jEJjUd91fZQoaAZHQHHgXtWuHN5oB00yAWgIR0CRfWdfb9IgdX2UKGgGR0BxlORlpXZHaAdNQwFoCEdAkX1ytvGZNXV9lChoBkdAccCEPlMh5mgHTdIBaAhHQJF912W6bvx1fZQoaAZHQGw21/+bVjJoB01pAWgIR0CRfrGgzxgBdX2UKGgGR0Bu9DfvWpZPaAdNjQFoCEdAkYCQwfyPMnV9lChoBkdAcLxK4x1xKmgHTVkBaAhHQJGAnHim2st1fZQoaAZHQHHt1NQCSzRoB01/AWgIR0CRgdY0EX+EdX2UKGgGR0BvN2IuXeFdaAdNYwFoCEdAkYIdjkMkQnV9lChoBkdAbVe6o2n89GgHTUcBaAhHQJGCmhRIjGF1fZQoaAZHQHBhK3qiXY1oB01xAWgIR0CRg28Gs3hodX2UKGgGR0Bwevt6X0GvaAdNTgFoCEdAkYUswUQCjnV9lChoBkdAak7oNd7fHmgHTZYBaAhHQJGFrbfxc3V1fZQoaAZHQHFtm2oegctoB01WAWgIR0CRhd7OmixndX2UKGgGR0BxLbgIhQnAaAdNugJoCEdAkYa50fYBeXV9lChoBkdAaqU9LYf4h2gHTUUBaAhHQJGIBic5Ke11fZQoaAZHQG3cPYe1a4doB00rAWgIR0CRiQiOearndX2UKGgGR0Bu4KmQ8wHraAdNMAFoCEdAkYmtWU8mr3V9lChoBkdAcNqC/oJRfmgHTTMBaAhHQJGKsDIRywR1fZQoaAZHQHH0nv2GqPxoB010AWgIR0CRi90Fr2xqdX2UKGgGR0BvV5pWV/tqaAdNOAFoCEdAkYySmygPE3V9lChoBkdAcjgUGVzIWGgHTQgBaAhHQJGNe0rsjVx1fZQoaAZHQHKTPbO/tY1oB01fAWgIR0CRjbvgm7aqdX2UKGgGR0Bvd/eSB9ThaAdNTwFoCEdAkY5SYG+sYHV9lChoBkdAcoO+kgwGnmgHTUoBaAhHQJGOacjJMg51fZQoaAZHQHDz3YYixFBoB00qAWgIR0CRj60oScsldX2UKGgGR0BvdH0btJFtaAdNKQFoCEdAkY/8BEKE4HV9lChoBkdAZMJB/I8yOGgHTegDaAhHQJGQBDNQj2V1fZQoaAZHQG6E7fHggoxoB01xAWgIR0CRkBUzbeuWdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.11.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu124", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}