Hedayat-Abrishami commited on
Commit
90689bf
1 Parent(s): cc828df

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1723.82 +/- 66.74
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5dce86b7caec3c84f9ee6506b5db4af455d2bf1a9f2d2df4cb214fcf20e25d53
3
+ size 129531
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,111 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7982ecfbc8b0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7982ecfbc940>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7982ecfbc9d0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7982ecfbca60>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7982ecfbcaf0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7982ecfbcb80>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7982ecfbcc10>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7982ecfbcca0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7982ecfbcd30>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7982ecfbcdc0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7982ecfbce50>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7982ecfbcee0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7982ecfc02c0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "num_timesteps": 2000000,
36
+ "_total_timesteps": 2000000,
37
+ "_num_timesteps_at_start": 0,
38
+ "seed": null,
39
+ "action_noise": null,
40
+ "start_time": 1689444776274684859,
41
+ "learning_rate": 0.00096,
42
+ "tensorboard_log": null,
43
+ "_last_obs": {
44
+ ":type:": "<class 'numpy.ndarray'>",
45
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAMiMiL5h3fu/j11LPzBUO8C/zjG/zCDmvn1Z1L/5l78+0Aayv4ubZL/1mfG+lM6svkzW872fegXAIrmlP/A1PL5hLOk+uOCLPxFL1L+CENa9B3WYP/NQuz/e/f47FyYfwFckpD8V7c2/9rKkPk7Tyr/DLLs+Gy19P61OSr9vCGs+am4XP+KVXj/1jhY+1bcqvzO0Iz4TvR0+sIeyP9BNI78yMMG/zdhivmf8gL+3oTm+6CoiP8sL778doOQ+gUtavFdn0z7TNN+/4ZKCP89UrT7QoUe/AyAfP/aypD7DjiE/nypLP1kvUj9Vpem+HqtuP7gZyz8MRhE/9H1iP4+3Mr96D52/yJzlvtCUvr7DLiy+EQj3PhvkkD8Rd3q/KqMZP8GBk79w5Dg/XSHiPrRkbjzY25O/Ax0Cv197kb4cHV6/0KFHvwMgHz/2sqQ+w44hP2ChUD9ayHa/YRxoP6LEM76tqrk/tB+/vrl3BT4UEIW/EiCVv4P/gb8LjaK/3ECbPlMGpD8prRVAt2pNP0v39j+8V2e/HfctQKmO4D5gNeA7Gymzv+F3KT5s7P8+xVvnvtChR78DIB8/9rKkPsOOIT+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
46
+ },
47
+ "_last_episode_starts": {
48
+ ":type:": "<class 'numpy.ndarray'>",
49
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
50
+ },
51
+ "_last_original_obs": {
52
+ ":type:": "<class 'numpy.ndarray'>",
53
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACblBE3AACAPwAAAAAAAAAAAAAAAAAAAAAAAACARyy/vQAAAAB8x/a/AAAAAJZBcT0AAAAAclDaPwAAAADkrQs+AAAAALd29D8AAAAA3pa1vQAAAAABE+C/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5fIGtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgD/fmL0AAAAAFJLpvwAAAACZQ1g9AAAAAGWd2j8AAAAAjAT4vQAAAACaFvA/AAAAAHNstz0AAAAAM5rwvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI/mZzUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBTPpo9AAAAAHVJ7L8AAAAAD23hPQAAAACxx+U/AAAAAOx6m70AAAAAYn7kPwAAAACH4p+9AAAAAFgdAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABif7C1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAH62VugAAAAAaqNy/AAAAAEzFVz0AAAAAQEX3PwAAAAD0/9W9AAAAAK6CAEAAAAAA69BEOwAAAADDvfS/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
54
+ },
55
+ "_episode_num": 0,
56
+ "use_sde": true,
57
+ "sde_sample_freq": -1,
58
+ "_current_progress_remaining": 0.0,
59
+ "_stats_window_size": 100,
60
+ "ep_info_buffer": {
61
+ ":type:": "<class 'collections.deque'>",
62
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJSzz7VJ+UiMAWyUTegDjAF0lEdAqmYpuTA31nV9lChoBkdAkCfkmUnogWgHTegDaAhHQKpmYlN1yNp1fZQoaAZHQJNcDOxB3RpoB03oA2gIR0CqZq0XgtOEdX2UKGgGR0CSfjI7eVLSaAdN6ANoCEdAqmq98ohIOHV9lChoBkdAkltFejVQRGgHTegDaAhHQKp2NInSfDl1fZQoaAZHQJHCGRW912doB03oA2gIR0CqdnFg2IfsdX2UKGgGR0CRx2+s5n14aAdN6ANoCEdAqna+lImPYHV9lChoBkdAk5StSQ5my2gHTegDaAhHQKp60pe/pMZ1fZQoaAZHQJZD6PvKEFpoB03oA2gIR0Cqgngssg+ydX2UKGgGR0CXFk3V09yMaAdN6ANoCEdAqoKydz4k/3V9lChoBkdAlhe6cd5prWgHTegDaAhHQKqDAa8YhuB1fZQoaAZHQJWG6ynk1dhoB03oA2gIR0Cqhyj6Fds0dX2UKGgGR0CcQNGx2SuAaAdN6ANoCEdAqpEuIqLCN3V9lChoBkdAnXjnWBjFymgHTegDaAhHQKqRhRyfcvd1fZQoaAZHQJ0ibojfNzNoB03oA2gIR0CqkgQ6ySmqdX2UKGgGR0CdFJjawljWaAdN6ANoCEdAqpdoF1SwW3V9lChoBkdAnlZ+m78Nx2gHTegDaAhHQKqfGBSUC7t1fZQoaAZHQJ7W/qMWGh5oB03oA2gIR0Cqn05Gax5cdX2UKGgGR0CgFGlsxfv4aAdN6ANoCEdAqp+cw8GLUHV9lChoBkdAn44NELH+62gHTegDaAhHQKqjn8b70nR1fZQoaAZHQKBEbacqe9VoB03oA2gIR0CqrEoIOYpldX2UKGgGR0Ce6LypJf6XaAdN6ANoCEdAqqyWgi/wiXV9lChoBkdAndwPCdjG1mgHTegDaAhHQKqtCM6RyOt1fZQoaAZHQKBhqQxN7BxoB03oA2gIR0CqszCh37k5dX2UKGgGR0CiFRJTMqz7aAdN6ANoCEdAqrsoYaYNRXV9lChoBkdAoceRRAKOUGgHTegDaAhHQKq7XlCCz1N1fZQoaAZHQKGwt9jPOY9oB03oA2gIR0Cqu6238XN1dX2UKGgGR0CilYNv4ubraAdN6ANoCEdAqr+oQvpQlHV9lChoBkdAohje+sYEXGgHTegDaAhHQKrHh9iMHbB1fZQoaAZHQKHvf0rbxmVoB03oA2gIR0Cqx73lr/KhdX2UKGgGR0Cix/Oe8PFvaAdN6ANoCEdAqsgRJyyUtHV9lChoBkdAom/XDk2gnWgHTegDaAhHQKrOEVE/jbV1fZQoaAZHQKBzRz6JqItoB03oA2gIR0Cq17LpaA4GdX2UKGgGR0ChAc9xp+MIaAdN6ANoCEdAqtfoNXo1UHV9lChoBkdAoOzBdjXnQ2gHTegDaAhHQKrYOLa24NJ1fZQoaAZHQKApW+L3sX1oB03oA2gIR0Cq3EkEC/47dX2UKGgGR0Cg7pOU2UB5aAdN6ANoCEdAquQQwsXiznV9lChoBkdAn8dLnTy8SWgHTegDaAhHQKrkSNVBD5V1fZQoaAZHQJ+viBg/keZoB03oA2gIR0Cq5JQ97ngYdX2UKGgGR0Cf/pgf2bobaAdN6ANoCEdAqulGYQarFXV9lChoBkdAoPmxKzzErGgHTegDaAhHQKrz8raM72d1fZQoaAZHQKDRH2pQ1rJoB03oA2gIR0Cq9CmXPZ7HdX2UKGgGR0ChXBlyzXz2aAdN6ANoCEdAqvR1fE4vOHV9lChoBkdAoJmToQnQY2gHTegDaAhHQKr4eaTfR/p1fZQoaAZHQKAlQ6K+BYpoB03oA2gIR0CrAGHf2saLdX2UKGgGR0CgYiSZjQRgaAdN6ANoCEdAqwCaXIEKV3V9lChoBkdAoPLyU9pyqGgHTegDaAhHQKsA61R+BpZ1fZQoaAZHQKBdBv7WNFVoB03oA2gIR0CrBQpp35erdX2UKGgGR0CiaGfQrtmdaAdN6ANoCEdAqxBE5XEIgXV9lChoBkdAoVf9d1MdtGgHTegDaAhHQKsQnQb+98J1fZQoaAZHQKHploGpuMxoB03oA2gIR0CrEQK1gH/tdX2UKGgGR0Ch7o/YraufaAdN6ANoCEdAqxUJDPWxyHV9lChoBkdAoGMm8/UvwmgHTegDaAhHQKsctDv3JxN1fZQoaAZHQJ/PQjjaPCFoB03oA2gIR0CrHOxhMJyAdX2UKGgGR0CeGCmpEQXiaAdN6ANoCEdAqx05f6XSjXV9lChoBkdAnMnhKpT/AGgHTegDaAhHQKshRLU1AJN1fZQoaAZHQJx5WglF+d9oB03oA2gIR0CrKuwTM7lrdX2UKGgGR0CX6yDhLoOhaAdN6ANoCEdAqytDv1DjR3V9lChoBkdAncKeJk5IYmgHTegDaAhHQKsru0zj3mF1fZQoaAZHQJyTvz06HTJoB03oA2gIR0CrMRiWNWELdX2UKGgGR0Ce6QeUY8+zaAdN6ANoCEdAqzjLtZ3cHnV9lChoBkdAns93dj5KvmgHTegDaAhHQKs5CRGMGX51fZQoaAZHQJ2CZK+SKWNoB03oA2gIR0CrOVcgQpWndX2UKGgGR0CbmU4hEBsAaAdN6ANoCEdAqz13PszEaXV9lChoBkdAmV5j4Hoou2gHTegDaAhHQKtF8BV+7UZ1fZQoaAZHQJpzN+H8CPpoB03oA2gIR0CrRkbzkIX1dX2UKGgGR0CYR3dKdxyXaAdN6ANoCEdAq0a3K0UoKHV9lChoBkdAmzhkU9IPLGgHTegDaAhHQKtNFFCLMs91fZQoaAZHQJiO03CKrJdoB03oA2gIR0CrVU9zGPxQdX2UKGgGR0CY2aPcBU70aAdN6ANoCEdAq1WFytFKCnV9lChoBkdAlUQw8OkLyGgHTegDaAhHQKtV1hvR7Z51fZQoaAZHQJno0xrSE15oB03oA2gIR0CrWdPsqrimdX2UKGgGR0CbyNBomG/OaAdN6ANoCEdAq2GmgBcRlHV9lChoBkdAmaib5mAbymgHTegDaAhHQKth3v+fh/B1fZQoaAZHQJzJbQE6kqNoB03oA2gIR0CrYjQy6+WXdX2UKGgGR0CYSmidrftQaAdN6ANoCEdAq2gKkqMFU3V9lChoBkdAmSonsTnJT2gHTegDaAhHQKtxr6LwWnF1fZQoaAZHQJqLEis4ku9oB03oA2gIR0CrcejXe3x4dX2UKGgGR0CbbdgR9PUKaAdN6ANoCEdAq3I4K8cuJ3V9lChoBkdAm4rrR0EHMWgHTegDaAhHQKt2SfV7QcB1fZQoaAZHQJl2xa1TisJoB03oA2gIR0CrfhBK15SndX2UKGgGR0CX9aIXTEzgaAdN6ANoCEdAq35FWU8mr3V9lChoBkdAme/wGfPHDWgHTegDaAhHQKt+k9i+cpd1fZQoaAZHQJ1hwF0PpY9oB03oA2gIR0Crg0Ny5qdpdX2UKGgGR0CfbRJpWV/uaAdN6ANoCEdAq44WhmGucXV9lChoBkdAnAqyTUy57WgHTegDaAhHQKuOT5WRzRx1fZQoaAZHQJzpIHAymANoB03oA2gIR0CrjpyteUpvdX2UKGgGR0CcXFO4XoC/aAdN6ANoCEdAq5KT5RCQcXV9lChoBkdAl1T/MfRu0mgHTegDaAhHQKuaQR7qptJ1fZQoaAZHQJpkLgflp49oB03oA2gIR0CrmncRtgrpdX2UKGgGR0CX7MP8hs68aAdN6ANoCEdAq5rDTKDCg3V9lChoBkdAlh/WNzbN8mgHTegDaAhHQKuey7tiQT51fZQoaAZHQJhjEBltj1BoB03oA2gIR0CrqbwRGtp3dX2UKGgGR0CZHakyULUkaAdN6ANoCEdAq6oThm5DqnV9lChoBkdAlpE7jHXEqGgHTegDaAhHQKuqixmkFfR1fZQoaAZHQJs+ujafzz5oB03oA2gIR0Crrqa7mMfjdX2UKGgGR0Cc0FLVnVXnaAdN6ANoCEdAq7ZpZyMkyHV9lChoBkdAnAkWKZUkwGgHTegDaAhHQKu2om9g4Ot1fZQoaAZHQJ1S6CCjDbdoB03oA2gIR0CrtvCtq59WdX2UKGgGR0CcZH1dgOSXaAdN6ANoCEdAq7r4qur6tXVlLg=="
63
+ },
64
+ "ep_success_buffer": {
65
+ ":type:": "<class 'collections.deque'>",
66
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
67
+ },
68
+ "_n_updates": 62500,
69
+ "n_steps": 8,
70
+ "gamma": 0.99,
71
+ "gae_lambda": 0.9,
72
+ "ent_coef": 0.0,
73
+ "vf_coef": 0.4,
74
+ "max_grad_norm": 0.5,
75
+ "normalize_advantage": false,
76
+ "observation_space": {
77
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
78
+ ":serialized:": "gAWVlwIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxyFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaBVLHIWUaBl0lFKUjAZfc2hhcGWUSxyFlIwDbG93lGgRKJZwAAAAAAAAAAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UaAtLHIWUaBl0lFKUjARoaWdolGgRKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBl0lFKUjAhsb3dfcmVwcpSMBC1pbmaUjAloaWdoX3JlcHKUjANpbmaUjApfbnBfcmFuZG9tlE51Yi4=",
79
+ "dtype": "float32",
80
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
81
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
82
+ "_shape": [
83
+ 28
84
+ ],
85
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
86
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
87
+ "low_repr": "-inf",
88
+ "high_repr": "inf",
89
+ "_np_random": null
90
+ },
91
+ "action_space": {
92
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
93
+ ":serialized:": "gAWVzwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL+UaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjAQtMS4wlIwJaGlnaF9yZXBylIwDMS4wlIwKX25wX3JhbmRvbZROdWIu",
94
+ "dtype": "float32",
95
+ "bounded_below": "[ True True True True True True True True]",
96
+ "bounded_above": "[ True True True True True True True True]",
97
+ "_shape": [
98
+ 8
99
+ ],
100
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
101
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
102
+ "low_repr": "-1.0",
103
+ "high_repr": "1.0",
104
+ "_np_random": null
105
+ },
106
+ "n_envs": 4,
107
+ "lr_schedule": {
108
+ ":type:": "<class 'function'>",
109
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
110
+ }
111
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d1567bcee27099b6eed6e393fc79a6bcf8f49d1d6388d6810301f0b9167bf606
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5e23c2b8b3539c48d6125f3b9eaa71b08af34751fa4e9feeab7144daf2af5ac7
3
+ size 56894
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.109+-x86_64-with-glibc2.31 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7982ecfbc8b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7982ecfbc940>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7982ecfbc9d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7982ecfbca60>", "_build": "<function ActorCriticPolicy._build at 0x7982ecfbcaf0>", "forward": "<function ActorCriticPolicy.forward at 0x7982ecfbcb80>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7982ecfbcc10>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7982ecfbcca0>", "_predict": "<function ActorCriticPolicy._predict at 0x7982ecfbcd30>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7982ecfbcdc0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7982ecfbce50>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7982ecfbcee0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7982ecfc02c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1689444776274684859, "learning_rate": 0.00096, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAMiMiL5h3fu/j11LPzBUO8C/zjG/zCDmvn1Z1L/5l78+0Aayv4ubZL/1mfG+lM6svkzW872fegXAIrmlP/A1PL5hLOk+uOCLPxFL1L+CENa9B3WYP/NQuz/e/f47FyYfwFckpD8V7c2/9rKkPk7Tyr/DLLs+Gy19P61OSr9vCGs+am4XP+KVXj/1jhY+1bcqvzO0Iz4TvR0+sIeyP9BNI78yMMG/zdhivmf8gL+3oTm+6CoiP8sL778doOQ+gUtavFdn0z7TNN+/4ZKCP89UrT7QoUe/AyAfP/aypD7DjiE/nypLP1kvUj9Vpem+HqtuP7gZyz8MRhE/9H1iP4+3Mr96D52/yJzlvtCUvr7DLiy+EQj3PhvkkD8Rd3q/KqMZP8GBk79w5Dg/XSHiPrRkbjzY25O/Ax0Cv197kb4cHV6/0KFHvwMgHz/2sqQ+w44hP2ChUD9ayHa/YRxoP6LEM76tqrk/tB+/vrl3BT4UEIW/EiCVv4P/gb8LjaK/3ECbPlMGpD8prRVAt2pNP0v39j+8V2e/HfctQKmO4D5gNeA7Gymzv+F3KT5s7P8+xVvnvtChR78DIB8/9rKkPsOOIT+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACblBE3AACAPwAAAAAAAAAAAAAAAAAAAAAAAACARyy/vQAAAAB8x/a/AAAAAJZBcT0AAAAAclDaPwAAAADkrQs+AAAAALd29D8AAAAA3pa1vQAAAAABE+C/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5fIGtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgD/fmL0AAAAAFJLpvwAAAACZQ1g9AAAAAGWd2j8AAAAAjAT4vQAAAACaFvA/AAAAAHNstz0AAAAAM5rwvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI/mZzUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBTPpo9AAAAAHVJ7L8AAAAAD23hPQAAAACxx+U/AAAAAOx6m70AAAAAYn7kPwAAAACH4p+9AAAAAFgdAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABif7C1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAH62VugAAAAAaqNy/AAAAAEzFVz0AAAAAQEX3PwAAAAD0/9W9AAAAAK6CAEAAAAAA69BEOwAAAADDvfS/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJSzz7VJ+UiMAWyUTegDjAF0lEdAqmYpuTA31nV9lChoBkdAkCfkmUnogWgHTegDaAhHQKpmYlN1yNp1fZQoaAZHQJNcDOxB3RpoB03oA2gIR0CqZq0XgtOEdX2UKGgGR0CSfjI7eVLSaAdN6ANoCEdAqmq98ohIOHV9lChoBkdAkltFejVQRGgHTegDaAhHQKp2NInSfDl1fZQoaAZHQJHCGRW912doB03oA2gIR0CqdnFg2IfsdX2UKGgGR0CRx2+s5n14aAdN6ANoCEdAqna+lImPYHV9lChoBkdAk5StSQ5my2gHTegDaAhHQKp60pe/pMZ1fZQoaAZHQJZD6PvKEFpoB03oA2gIR0Cqgngssg+ydX2UKGgGR0CXFk3V09yMaAdN6ANoCEdAqoKydz4k/3V9lChoBkdAlhe6cd5prWgHTegDaAhHQKqDAa8YhuB1fZQoaAZHQJWG6ynk1dhoB03oA2gIR0Cqhyj6Fds0dX2UKGgGR0CcQNGx2SuAaAdN6ANoCEdAqpEuIqLCN3V9lChoBkdAnXjnWBjFymgHTegDaAhHQKqRhRyfcvd1fZQoaAZHQJ0ibojfNzNoB03oA2gIR0CqkgQ6ySmqdX2UKGgGR0CdFJjawljWaAdN6ANoCEdAqpdoF1SwW3V9lChoBkdAnlZ+m78Nx2gHTegDaAhHQKqfGBSUC7t1fZQoaAZHQJ7W/qMWGh5oB03oA2gIR0Cqn05Gax5cdX2UKGgGR0CgFGlsxfv4aAdN6ANoCEdAqp+cw8GLUHV9lChoBkdAn44NELH+62gHTegDaAhHQKqjn8b70nR1fZQoaAZHQKBEbacqe9VoB03oA2gIR0CqrEoIOYpldX2UKGgGR0Ce6LypJf6XaAdN6ANoCEdAqqyWgi/wiXV9lChoBkdAndwPCdjG1mgHTegDaAhHQKqtCM6RyOt1fZQoaAZHQKBhqQxN7BxoB03oA2gIR0CqszCh37k5dX2UKGgGR0CiFRJTMqz7aAdN6ANoCEdAqrsoYaYNRXV9lChoBkdAoceRRAKOUGgHTegDaAhHQKq7XlCCz1N1fZQoaAZHQKGwt9jPOY9oB03oA2gIR0Cqu6238XN1dX2UKGgGR0CilYNv4ubraAdN6ANoCEdAqr+oQvpQlHV9lChoBkdAohje+sYEXGgHTegDaAhHQKrHh9iMHbB1fZQoaAZHQKHvf0rbxmVoB03oA2gIR0Cqx73lr/KhdX2UKGgGR0Cix/Oe8PFvaAdN6ANoCEdAqsgRJyyUtHV9lChoBkdAom/XDk2gnWgHTegDaAhHQKrOEVE/jbV1fZQoaAZHQKBzRz6JqItoB03oA2gIR0Cq17LpaA4GdX2UKGgGR0ChAc9xp+MIaAdN6ANoCEdAqtfoNXo1UHV9lChoBkdAoOzBdjXnQ2gHTegDaAhHQKrYOLa24NJ1fZQoaAZHQKApW+L3sX1oB03oA2gIR0Cq3EkEC/47dX2UKGgGR0Cg7pOU2UB5aAdN6ANoCEdAquQQwsXiznV9lChoBkdAn8dLnTy8SWgHTegDaAhHQKrkSNVBD5V1fZQoaAZHQJ+viBg/keZoB03oA2gIR0Cq5JQ97ngYdX2UKGgGR0Cf/pgf2bobaAdN6ANoCEdAqulGYQarFXV9lChoBkdAoPmxKzzErGgHTegDaAhHQKrz8raM72d1fZQoaAZHQKDRH2pQ1rJoB03oA2gIR0Cq9CmXPZ7HdX2UKGgGR0ChXBlyzXz2aAdN6ANoCEdAqvR1fE4vOHV9lChoBkdAoJmToQnQY2gHTegDaAhHQKr4eaTfR/p1fZQoaAZHQKAlQ6K+BYpoB03oA2gIR0CrAGHf2saLdX2UKGgGR0CgYiSZjQRgaAdN6ANoCEdAqwCaXIEKV3V9lChoBkdAoPLyU9pyqGgHTegDaAhHQKsA61R+BpZ1fZQoaAZHQKBdBv7WNFVoB03oA2gIR0CrBQpp35erdX2UKGgGR0CiaGfQrtmdaAdN6ANoCEdAqxBE5XEIgXV9lChoBkdAoVf9d1MdtGgHTegDaAhHQKsQnQb+98J1fZQoaAZHQKHploGpuMxoB03oA2gIR0CrEQK1gH/tdX2UKGgGR0Ch7o/YraufaAdN6ANoCEdAqxUJDPWxyHV9lChoBkdAoGMm8/UvwmgHTegDaAhHQKsctDv3JxN1fZQoaAZHQJ/PQjjaPCFoB03oA2gIR0CrHOxhMJyAdX2UKGgGR0CeGCmpEQXiaAdN6ANoCEdAqx05f6XSjXV9lChoBkdAnMnhKpT/AGgHTegDaAhHQKshRLU1AJN1fZQoaAZHQJx5WglF+d9oB03oA2gIR0CrKuwTM7lrdX2UKGgGR0CX6yDhLoOhaAdN6ANoCEdAqytDv1DjR3V9lChoBkdAncKeJk5IYmgHTegDaAhHQKsru0zj3mF1fZQoaAZHQJyTvz06HTJoB03oA2gIR0CrMRiWNWELdX2UKGgGR0Ce6QeUY8+zaAdN6ANoCEdAqzjLtZ3cHnV9lChoBkdAns93dj5KvmgHTegDaAhHQKs5CRGMGX51fZQoaAZHQJ2CZK+SKWNoB03oA2gIR0CrOVcgQpWndX2UKGgGR0CbmU4hEBsAaAdN6ANoCEdAqz13PszEaXV9lChoBkdAmV5j4Hoou2gHTegDaAhHQKtF8BV+7UZ1fZQoaAZHQJpzN+H8CPpoB03oA2gIR0CrRkbzkIX1dX2UKGgGR0CYR3dKdxyXaAdN6ANoCEdAq0a3K0UoKHV9lChoBkdAmzhkU9IPLGgHTegDaAhHQKtNFFCLMs91fZQoaAZHQJiO03CKrJdoB03oA2gIR0CrVU9zGPxQdX2UKGgGR0CY2aPcBU70aAdN6ANoCEdAq1WFytFKCnV9lChoBkdAlUQw8OkLyGgHTegDaAhHQKtV1hvR7Z51fZQoaAZHQJno0xrSE15oB03oA2gIR0CrWdPsqrimdX2UKGgGR0CbyNBomG/OaAdN6ANoCEdAq2GmgBcRlHV9lChoBkdAmaib5mAbymgHTegDaAhHQKth3v+fh/B1fZQoaAZHQJzJbQE6kqNoB03oA2gIR0CrYjQy6+WXdX2UKGgGR0CYSmidrftQaAdN6ANoCEdAq2gKkqMFU3V9lChoBkdAmSonsTnJT2gHTegDaAhHQKtxr6LwWnF1fZQoaAZHQJqLEis4ku9oB03oA2gIR0CrcejXe3x4dX2UKGgGR0CbbdgR9PUKaAdN6ANoCEdAq3I4K8cuJ3V9lChoBkdAm4rrR0EHMWgHTegDaAhHQKt2SfV7QcB1fZQoaAZHQJl2xa1TisJoB03oA2gIR0CrfhBK15SndX2UKGgGR0CX9aIXTEzgaAdN6ANoCEdAq35FWU8mr3V9lChoBkdAme/wGfPHDWgHTegDaAhHQKt+k9i+cpd1fZQoaAZHQJ1hwF0PpY9oB03oA2gIR0Crg0Ny5qdpdX2UKGgGR0CfbRJpWV/uaAdN6ANoCEdAq44WhmGucXV9lChoBkdAnAqyTUy57WgHTegDaAhHQKuOT5WRzRx1fZQoaAZHQJzpIHAymANoB03oA2gIR0CrjpyteUpvdX2UKGgGR0CcXFO4XoC/aAdN6ANoCEdAq5KT5RCQcXV9lChoBkdAl1T/MfRu0mgHTegDaAhHQKuaQR7qptJ1fZQoaAZHQJpkLgflp49oB03oA2gIR0CrmncRtgrpdX2UKGgGR0CX7MP8hs68aAdN6ANoCEdAq5rDTKDCg3V9lChoBkdAlh/WNzbN8mgHTegDaAhHQKuey7tiQT51fZQoaAZHQJhjEBltj1BoB03oA2gIR0CrqbwRGtp3dX2UKGgGR0CZHakyULUkaAdN6ANoCEdAq6oThm5DqnV9lChoBkdAlpE7jHXEqGgHTegDaAhHQKuqixmkFfR1fZQoaAZHQJs+ujafzz5oB03oA2gIR0Crrqa7mMfjdX2UKGgGR0Cc0FLVnVXnaAdN6ANoCEdAq7ZpZyMkyHV9lChoBkdAnAkWKZUkwGgHTegDaAhHQKu2om9g4Ot1fZQoaAZHQJ1S6CCjDbdoB03oA2gIR0CrtvCtq59WdX2UKGgGR0CcZH1dgOSXaAdN6ANoCEdAq7r4qur6tXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVlwIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxyFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaBVLHIWUaBl0lFKUjAZfc2hhcGWUSxyFlIwDbG93lGgRKJZwAAAAAAAAAAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UaAtLHIWUaBl0lFKUjARoaWdolGgRKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBl0lFKUjAhsb3dfcmVwcpSMBC1pbmaUjAloaWdoX3JlcHKUjANpbmaUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "low_repr": "-inf", "high_repr": "inf", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVzwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL+UaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjAQtMS4wlIwJaGlnaF9yZXBylIwDMS4wlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.31 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1723.8236529222631, "std_reward": 66.74037420531565, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-15T19:19:06.739442"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d1130c1da3c98f0acd04ef6e672b95bed0eece972ee92f4162744d3321426498
3
+ size 2335