File size: 2,028 Bytes
a749f80 0d90bff a749f80 33d7d24 a749f80 33d7d24 0d90bff a749f80 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
---
library_name: transformers
license: apache-2.0
base_model: dslim/distilbert-NER
tags:
- generated_from_trainer
model-index:
- name: distilbert-NER-Math-finetuned
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-NER-Math-finetuned
This model is a fine-tuned version of [dslim/distilbert-NER](https://huggingface.co/dslim/distilbert-NER) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0483
- F1 Score: 0.9453
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 5
- eval_batch_size: 5
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 Score |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.1069 | 1.0 | 1534 | 0.0825 | 0.8414 |
| 0.0553 | 2.0 | 3068 | 0.0587 | 0.8826 |
| 0.0369 | 3.0 | 4602 | 0.0472 | 0.9125 |
| 0.018 | 4.0 | 6136 | 0.0465 | 0.9206 |
| 0.0127 | 5.0 | 7670 | 0.0447 | 0.9351 |
| 0.0057 | 6.0 | 9204 | 0.0473 | 0.9377 |
| 0.0045 | 7.0 | 10738 | 0.0465 | 0.9427 |
| 0.0019 | 8.0 | 12272 | 0.0500 | 0.9409 |
| 0.0026 | 9.0 | 13806 | 0.0486 | 0.9446 |
| 0.0015 | 10.0 | 15340 | 0.0483 | 0.9453 |
### Framework versions
- Transformers 4.47.1
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
|