File size: 7,247 Bytes
cbda9b7 1f55a56 cbda9b7 2955790 cbda9b7 56f9050 cbda9b7 56f9050 cbda9b7 56f9050 cbda9b7 56f9050 cbda9b7 56f9050 cbda9b7 56f9050 cbda9b7 56f9050 cbda9b7 56f9050 cbda9b7 a2fbb2f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
import math
import torch
from torch.nn.attention.flex_attention import flex_attention, create_block_mask
import torch.nn as nn
import torch.nn.functional as F
from .rotary_emb import apply_rotary_emb
from .utils import nearest_power_of_two
try:
from flash_attn import flash_attn_func as fa2
except ImportError as e:
print(
f"Unable to import Triton-based flash attention: {e}. No alternative currently available."
)
# TODO: Add FlexAttention + local attention mask when it's in stable release
class Attention(nn.Module):
def __init__(self, config):
super(Attention, self).__init__()
if isinstance(config.torch_dtype, str):
torch_dtype = getattr(torch, config.torch_dtype)
else:
torch_dtype = config.torch_dtype
assert torch.cuda.is_available(), "CUDA is required."
assert config.n_embd % config.n_heads == 0
self.n_heads = config.n_heads
self.device = torch.device("cuda")
self.bsz = config.bsz
self.attn = nn.Linear(
config.n_embd, 3 * config.n_embd, bias=config.bias, dtype=torch_dtype
)
self.o_proj = nn.Linear(
config.n_embd, config.n_embd, bias=config.bias, dtype=torch_dtype
)
self.o_proj.SCALE_INIT = 1
self.dropout = config.dropout
self.resid_dropout = nn.Dropout(self.dropout)
self.alibi_slopes = self._get_alibi_slopes(self.n_heads)
self.window_size = config.window_size
self.softcap = config.softcap
def _generate_slopes(self, n: int):
start = 2 ** (-(2 ** -(math.log2(n) - 3)))
return [start * (start**i) for i in range(n)]
def _get_alibi_slopes(self, n_heads: int, interpolation_factor: float = 0.25):
# If n_heads is a power of 2, generate slopes directly
if math.log2(n_heads).is_integer():
slopes = self._generate_slopes(n_heads)
else:
# Get slopes for the nearest power of two
n = nearest_power_of_two(n_heads, round_up=False)
slopes_power_of_two = self._generate_slopes(n)
# Generate extra slopes
extra_slopes = self._generate_slopes(2 * n)
extra_slopes_trunc = extra_slopes[0::2][: n_heads - n]
slopes = slopes_power_of_two + extra_slopes_trunc
slopes = torch.tensor(slopes, device=self.device)
slopes = slopes * interpolation_factor # https://arxiv.org/pdf/2310.13017
return slopes.to(torch.float32) # Ensure slopes are in float32
def forward(self, x):
bsz, seq_len, d_in = x.size()
qkv = self.attn(x)
q, k, v = torch.chunk(qkv, 3, dim=2)
q = q.view(bsz, seq_len, self.n_heads, d_in // self.n_heads)
k = k.view(bsz, seq_len, self.n_heads, d_in // self.n_heads)
v = v.view(bsz, seq_len, self.n_heads, d_in // self.n_heads)
y = fa2( # https://arxiv.org/pdf/2307.08691
q,
k,
v,
dropout_p=self.dropout if self.training else 0.0,
causal=True,
window_size=(self.window_size, 0),
alibi_slopes=self.alibi_slopes, # https://arxiv.org/pdf/2108.12409
softcap=self.softcap, # https://arxiv.org/pdf/2408.00118
)
y = y.contiguous().view(bsz, seq_len, d_in)
y = self.resid_dropout(self.o_proj(y))
return y
class AttentionSDPA(nn.Module):
def __init__(self, config):
super(Attention, self).__init__()
if isinstance(config.torch_dtype, str):
torch_dtype = getattr(torch, config.torch_dtype)
else:
torch_dtype = config.torch_dtype
assert torch.cuda.is_available(), "CUDA is required."
assert config.n_embd % config.n_heads == 0
self.n_heads = config.n_heads
self.device = torch.device("cuda") # Technically don't need CUDA for SDPA
self.bsz = config.bsz
self.attn = nn.Linear(config.n_embd, 3 * config.n_embd, bias=config.bias, dtype=torch_dtype)
self.o_proj = nn.Linear(config.n_embd, config.n_embd, bias=config.bias, dtype=torch_dtype)
self.dropout = config.dropout
self.resid_dropout = nn.Dropout(self.dropout)
def forward(self, x):
bsz, seq_len, d_in = x.size()
qkv = self.attn(x)
q, k, v = torch.chunk(qkv, 3, dim=2)
q = q.view(bsz, seq_len, self.n_heads, d_in // self.n_heads).transpose(1, 2)
k = k.view(bsz, seq_len, self.n_heads, d_in // self.n_heads).transpose(1, 2)
v = v.view(bsz, seq_len, self.n_heads, d_in // self.n_heads).transpose(1, 2)
y = F.scaled_dot_product_attention(
q, k, v,
is_causal=True,
dropout_p=self.dropout if self.training else 0.0
)
y = y.transpose(1, 2).contiguous().view(bsz, seq_len, d_in)
y = self.resid_dropout(self.o_proj(y))
return y
class FlexAttention(nn.Module):
"""
Generalized Multihead Attention and supports various attention masks.
Supports Rotary Positional Embeddings.
"""
def __init__(self, config, mask_mod, score_mod=None):
"""
Initializes the Attention class.
Args:
dim (int): Embedding size.
num_heads (int): Number of heads.
mask_mod (Callable): Mask to modify attention scores, e.g. causal.
"""
super().__init__()
self.dim, self.num_heads = config.dim, config.num_heads
assert config.dim % config.num_heads == 0, f"dim ({self.dim}) must be divisible num_heads ({self.num_heads})"
self.head_dim = config.dim // config.num_heads
self.wq = nn.Linear(config.dim, config.dim)
self.wk = nn.Linear(config.dim, config.dim)
self.wv = nn.Linear(config.dim, config.dim)
self.mask_mod = mask_mod
self.score_mod = score_mod
self.block_mask = create_block_mask(
mask_mod=self.mask_mod,
B=None, # Broadcast
H=None, # Broadcast
Q_LEN=config.seq_len,
KV_LEN=config.seq_len,
device=config.device,
)
self.o_proj = nn.Linear(config.dim, config.dim)
self.o_proj.SCALE_INIT = 1
def forward(
self,
x: torch.Tensor = None,
q: torch.Tensor = None,
k: torch.Tensor = None,
v: torch.Tensor = None,
freqs_cis: torch.Tensor = None,
) -> torch.Tensor:
if x is not None:
q = k = v = x
if any(t is None for t in [q, k, v]):
raise ValueError("Must provide either x for self-attention or q/k/v for cross-attention.")
bsz, q_len, _ = q.shape
_, k_len, _ = k.shape
_, v_len, _ = v.shape
Q = self.wq(q).reshape(bsz, self.num_heads, q_len, self.head_dim)
K = self.wk(k).reshape(bsz, self.num_heads, k_len, self.head_dim)
V = self.wv(v).reshape(bsz, self.num_heads, v_len, self.head_dim)
Q, K = apply_rotary_emb(Q, K, freqs_cis=freqs_cis)
output = flex_attention(Q, K, V, block_mask=self.block_mask, score_mod=self.score_mod)
output = output.reshape(bsz, q_len, self.dim)
output = self.o_proj(output)
return output |