STU_500M / convolve.py
yagizdevre's picture
fix
1177ff0
import torch
import torch.nn.functional as F
from .utils import nearest_power_of_two
from flashfftconv import FlashFFTConv
def convolve(u: torch.Tensor, v: torch.Tensor, n: int, use_approx: bool = True) -> tuple[torch.Tensor, torch.Tensor]:
bsz, seq_len, d_in = u.shape
sgn = torch.full((1, seq_len, 1), 1, device=u.device, dtype=torch.float32)
sgn[:, 1::2] *= -1
# Cast u and v to float32 for FFT
u = u.to(torch.float32)
v = v.to(torch.float32)
if use_approx:
_, d_out = v.shape
v = v.view(1, -1, d_out, 1)
else:
_, K = v.shape
sgn = sgn.unsqueeze(-1)
v = v.view(1, -1, K, 1, 1)
u = u.view(bsz, -1, 1, d_in).expand(bsz, -1, K, d_in)
v = torch.fft.rfft(v, n=n, dim=1)
U = torch.stack([u, u * sgn], dim=-1)
U = torch.fft.rfft(U, n=n, dim=1)
U_conv = torch.fft.irfft(v * U, n=n, dim=1)[:, :seq_len]
U_plus, U_minus = torch.unbind(U_conv, dim=-1)
U_minus = U_minus * sgn
# Convert back to original dtype
U_plus = U_plus.to(u.dtype)
U_minus = U_minus.to(u.dtype)
return U_plus, U_minus
def flash_convolve(
u: torch.Tensor, v: torch.Tensor, flash_fft: FlashFFTConv, use_approx: bool = True,
) -> tuple[torch.Tensor, torch.Tensor]:
dtype = u.dtype # Store the original dtype
bsz, seq_len, d_in = u.shape
_, K = v.shape
padded_len = nearest_power_of_two(seq_len, round_up=True)
pad_len = padded_len - seq_len
sgn = torch.full((1, 1, padded_len), 1, device=u.device, dtype=dtype)
sgn[:, :, 1::2] = -1
if use_approx:
u_padded = F.pad(u.transpose(1, 2), (0, pad_len)).contiguous()
v_padded = F.pad(v.transpose(0, 1), (0, pad_len)).contiguous()
u_conv = torch.stack([u_padded, u_padded * sgn], dim=0).reshape(2 * bsz, d_in, padded_len)
else:
u_k_padded = F.pad(u.transpose(1, 2), (0, pad_len)).repeat_interleave(K, dim=1).contiguous()
v_padded = F.pad(v.transpose(0, 1), (0, pad_len)).repeat(d_in, 1).contiguous()
u_conv = torch.stack([u_k_padded, u_k_padded * sgn], dim=0).reshape(2 * bsz, K * d_in, padded_len)
U_conv = flash_fft(u_conv, v_padded)
# Trim the output back to the original sequence length
U_conv = U_conv[..., :seq_len]
u_plus, u_minus = torch.chunk(U_conv, 2, dim=0)
if use_approx:
u_minus = u_minus * sgn[:, :, :seq_len]
U_plus, U_minus = u_plus.transpose(1, 2), u_minus.transpose(1, 2)
else:
sgn = sgn[:, :, :seq_len].unsqueeze(-1).transpose(1, 2)
U_plus = u_plus.view(bsz, d_in, K, seq_len).permute(0, 3, 2, 1).contiguous()
U_minus = u_minus.view(bsz, d_in, K, seq_len).permute(0, 3, 2, 1).contiguous() * sgn
# Convert back to original dtype
U_plus = U_plus.to(dtype)
U_minus = U_minus.to(dtype)
return U_plus, U_minus