File size: 9,558 Bytes
9991887
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d7d25c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
"""Adapted from https://github.com/pytorch/torchtitan/blob/main/torchtitan/models/norms.py"""

import math

from functools import partial

import torch
import torch.nn as nn

import triton
import triton.language as tl

from torch.distributed._tensor import Partial, Replicate, Shard
from torch.distributed._tensor.experimental import local_map
from torch._utils import _get_available_device_type, _get_device_module


def get_device_info():
    device_type = _get_available_device_type()

    if device_type is None:
        device_type = "cuda"  # Default to CUDA

    device_module = _get_device_module(device_type)
    return device_type, device_module

device_type, device_module = get_device_info()

def build_norm(norm_type: str, dim: int, eps: float = 1e-6):
    """
    Builds the specified normalization layer based on the norm_type.

    Args:
        norm_type (str): The type of normalization layer to build.
            Supported types: layernorm, np_layernorm, rmsnorm, fused_rmsnorm
        dim (int): The dimension of the normalization layer.
        eps (float, optional): The epsilon value for numerical stability. Defaults to 1e-6.

    Returns:
        The built normalization layer.

    Raises:
        NotImplementedError: If an unknown norm_type is provided.
    """
    norm_type = norm_type.lower()  # Normalize to lowercase

    if norm_type == "layernorm":
        return nn.LayerNorm(dim, eps=eps, bias=False)
    elif norm_type == "np_layernorm":
        return nn.LayerNorm(dim, eps=eps, elementwise_affine=False, bias=False)
    elif norm_type == "rmsnorm":
        return RMSNorm(dim, eps=eps)
    elif norm_type == "fused_rmsnorm":
        return FusedRMSNorm(dim, eps=eps)
    else:
        raise NotImplementedError(f"Unknown norm_type: '{norm_type}'")


class FusedRMSNorm(nn.Module):
    """Fused RMS Norm, wraps a fused Triton Kernel"""

    def __init__(
        self,
        dim: int,
        eps: float = 1e-6,
    ):
        super().__init__()
        self.eps = eps
        self.weight = nn.Parameter(torch.ones(dim))
        self.fused_rms_norm_fn = fused_rms_norm_fn

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """leverages Triton Fused RMS Norm kernel"""
        return self.fused_rms_norm_fn(
            x,
            self.weight,
            eps=self.eps,
        )

    def reset_parameters(self):
        torch.nn.init.ones_(self.weight)  # type: ignore


class RMSNorm(torch.nn.Module):
    def __init__(self, dim: int, eps: float = 1e-6):
        """
        Initialize the RMSNorm normalization layer.

        Args:
            dim (int): The dimension of the input tensor.
            eps (float, optional): A small value added to the denominator for numerical stability. Default is 1e-6.

        Attributes:
            eps (float): A small value added to the denominator for numerical stability.
            weight (nn.Parameter): Learnable scaling parameter.

        """
        super().__init__()
        self.eps = eps
        self.weight = nn.Parameter(torch.ones(dim))

    def _norm(self, x):
        """
        Apply the RMSNorm normalization to the input tensor.

        Args:
            x (torch.Tensor): The input tensor.

        Returns:
            torch.Tensor: The normalized tensor.

        """
        return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)

    def forward(self, x):
        """
        Forward pass through the RMSNorm layer.

        Args:
            x (torch.Tensor): The input tensor.

        Returns:
            torch.Tensor: The output tensor after applying RMSNorm.

        """
        output = self._norm(x.float()).type_as(x)
        return output * self.weight

    def reset_parameters(self):
        torch.nn.init.ones_(self.weight)  # type: ignore


# FusedRMSNorm in Triton

# Credit
# Tri Dao's Triton LayerNorm: https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/ops/triton/layer_norm.py
# Triton LayerNorm tutorial: https://triton-lang.org/main/getting-started/tutorials/05-layer-norm.html


@triton.autotune(
    configs=[
        triton.Config({}, num_warps=1),
        triton.Config({}, num_warps=2),
        triton.Config({}, num_warps=4),
        triton.Config({}, num_warps=8),
        triton.Config({}, num_warps=16),
        triton.Config({}, num_warps=32),
    ],
    key=["N"],
)
@triton.jit
def _rms_norm_fwd_kernel(
    X,
    stride_x,
    Y,
    stride_y,
    W,
    Rstd,
    eps,
    M,  # num rows
    N,  # num cols
    block_N: tl.constexpr,
):
    row = tl.program_id(0)
    cols = tl.arange(0, block_N)

    # Load input data and weights
    mask = cols < N
    x = tl.load(X + row * stride_x + cols, mask=mask, other=0.0).to(tl.float32)
    w = tl.load(W + cols, mask=mask, other=0.0).to(tl.float32)

    # Compute mean and variance
    xbar = tl.where(cols < N, x, 0.0)
    var = tl.sum(xbar * xbar, axis=0) / N
    rstd = 1 / tl.sqrt(var + eps)

    # Store the reciprocal standard deviation
    tl.store(Rstd + row, rstd)

    # Normalize and apply linear transformation
    x_hat = x * rstd
    y = x_hat * w

    # Write output
    tl.store(Y + row * stride_y + cols, y, mask=mask)


@triton.autotune(
    configs=[
        triton.Config({}, num_warps=1),
        triton.Config({}, num_warps=2),
        triton.Config({}, num_warps=4),
        triton.Config({}, num_warps=8),
        triton.Config({}, num_warps=16),
        triton.Config({}, num_warps=32),
    ],
    key=["N"],
)
@triton.jit
def _rms_norm_bwd_kernel_sm(
    X,
    stride_x,
    W,
    DY,
    stride_dy,
    DX,
    stride_dx,
    Rstd,
    DW,
    eps,
    M,  # num rows
    N,  # num cols
    rows_per_program,
    block_N: tl.constexpr,
):
    row_block_id = tl.program_id(0)
    row_start = row_block_id * rows_per_program
    cols = tl.arange(0, block_N)
    mask = cols < N

    # Load weights
    w = tl.load(W + cols, mask=mask, other=0.0).to(tl.float32)

    # Accumulate gradients for weights
    dw = tl.zeros((block_N,), dtype=tl.float32)

    row_end = min(row_start + rows_per_program, M)
    for row in range(row_start, row_end):
        # Load input, output gradient, and reciprocal standard deviation
        x = tl.load(X + row * stride_x + cols, mask=mask, other=0.0).to(tl.float32)
        dy = tl.load(DY + row * stride_dy + cols, mask=mask, other=0.0).to(tl.float32)
        rstd = tl.load(Rstd + row)

        # Compute normalized input and gradients
        x_hat = x * rstd
        wdy = w * dy
        dw += dy * x_hat
        c1 = tl.sum(x_hat * wdy, axis=0) / N
        dx = (wdy - x_hat * c1) * rstd

        # Store input gradient
        tl.store(DX + row * stride_dx + cols, dx, mask=mask)

    # Store weight gradients
    tl.store(DW + row_block_id * N + cols, dw, mask=mask)


class TritonFusedRMSNorm(torch.autograd.Function):
    @partial(
        local_map,
        out_placements=[Shard(1)],
        in_placements=(None, [Shard(1)], [Replicate()], None),
    )
    @staticmethod
    def forward(ctx, x, weight, eps):
        x_shape_start = x.shape

        # Flatten input
        x = x.view(-1, x.shape[-1])
        if x.stride(-1) != 1:
            x = x.contiguous()
        if weight.stride(-1) != 1:
            weight = weight.contiguous()

        M, N = x.shape
        y = torch.empty_like(x)
        rstd = torch.empty((M,), dtype=torch.float32, device=x.device)

        max_size = 65536 // x.element_size()
        block_N = min(max_size, triton.next_power_of_2(N))

        if N > block_N:
            raise ValueError(f"N {N} must be <= {block_N=}")

        grid = lambda meta: (M,)
        _rms_norm_fwd_kernel[grid](
            x,
            x.stride(0),
            y,
            y.stride(0),
            weight,
            rstd,
            eps,
            M,
            N,
            block_N,
        )

        ctx.eps = eps
        ctx.save_for_backward(x, weight, rstd)
        ctx.x_shape_start = x_shape_start

        y = y.reshape(x_shape_start)
        return y

    @partial(
        local_map,
        out_placements=([Shard(1)], [Partial()], None),
        in_placements=(None, [Shard(1)]),
    )
    @staticmethod
    def backward(ctx, dy):
        x, weight, rstd = ctx.saved_tensors
        eps = ctx.eps
        x_shape_start = ctx.x_shape_start

        # Flatten input and output gradients
        dy = dy.view(-1, dy.shape[-1])
        if dy.stride(-1) != 1:
            dy = dy.contiguous()

        M, N = dy.shape
        dx = torch.empty_like(x)

        sm_count = device_module.get_device_properties(x.device).multi_processor_count
        _dw = torch.empty((sm_count, N), dtype=torch.float32, device=weight.device)

        max_size = 65536 // x.element_size()
        block_N = min(max_size, triton.next_power_of_2(N))
        rows_per_sm = math.ceil(M / sm_count)

        if N > block_N:
            raise ValueError(f"N {N} must be <= {block_N=}")

        grid = lambda meta: (sm_count,)
        _rms_norm_bwd_kernel_sm[grid](
            x,
            x.stride(0),
            weight,
            dy,
            dy.stride(0),
            dx,
            dx.stride(0),
            rstd,
            _dw,
            eps,
            M,
            N,
            rows_per_sm,
            block_N,
        )
        dw = _dw.sum(0).to(weight.dtype)
        dx = dx.view(x_shape_start)
        return dx, dw, None


# expose fusedRMSNorm as a function
def fused_rms_norm_fn(
    x,
    weight,
    eps=1e-6,
):
    return TritonFusedRMSNorm.apply(
        x,
        weight,
        eps,
    )