File size: 7,824 Bytes
b9b3e2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f223616
b9b3e2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44d2569
b9b3e2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import math

import torch
import torch.nn as nn
import torch.nn.functional as F


try:
    from flash_attn import flash_attn_func
except ImportError as e:
    print(
        f"Unable to import Triton-based flash attention: {e}. No alternative currently available."
    )


def nearest_power_of_two(x: int, round_up: bool = False) -> int:
    return (
        1 << math.floor(math.log2(x)) if not round_up else 1 << math.ceil(math.log2(x))
    )

def _generate_slopes(self, n: int):
        start = 2 ** (-(2 ** -(math.log2(n) - 3)))
        return [start * (start**i) for i in range(n)]

def _get_alibi_slopes(self, n_heads: int, interpolation_factor: float = 0.25):
    # If n_heads is a power of 2, generate slopes directly
    if math.log2(n_heads).is_integer():
        slopes = self._generate_slopes(n_heads)
    else:
        # Get slopes for the nearest power of two
        n = nearest_power_of_two(n_heads, round_up=False)
        slopes_power_of_two = self._generate_slopes(n)

        # Generate extra slopes
        extra_slopes = self._generate_slopes(2 * n)
        extra_slopes_trunc = extra_slopes[0::2][: n_heads - n]
        slopes = slopes_power_of_two + extra_slopes_trunc
    slopes = torch.tensor(slopes, device=self.device, dtype=torch.float32)
    slopes = slopes * interpolation_factor  # https://arxiv.org/pdf/2310.13017
    return slopes


def precompute_freqs_cis(head_dim: int, max_seq_len: int, theta: float = 10000.0):    
    # For half the dimensions, build the scale factor:
    freq_seq = torch.arange(0, head_dim, 2).float() / head_dim
    freqs = 1.0 / (theta ** freq_seq)

    # Outer product with positions
    t = torch.arange(max_seq_len, dtype=torch.float32)
    angles = torch.outer(t, freqs)
    
    # Build a complex exponential e^{i * theta}
    freqs_cis = torch.polar(
        torch.ones_like(angles),
        angles
    )
    return freqs_cis


def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor):
    """
    x is [B, n_heads, seq_len, head_dim_as_complex],
    so we want to broadcast freqs_cis from [max_seq_len, half_dim]
    to [1, 1, seq_len, half_dim].
    """
    seq_len = x.shape[2]
    freqs_cis = freqs_cis[:seq_len]  # slice down to current seq_len
    return freqs_cis.view(1, 1, seq_len, -1)


def apply_rotary_emb(
    xq: torch.Tensor,
    xk: torch.Tensor,
    freqs_cis: torch.Tensor,
) -> tuple[torch.Tensor, torch.Tensor]:
    # Convert real -> complex by grouping last dim in pairs
    # shape => [B, n_heads, seq_len, head_dim//2, 2] => complex => [B, n_heads, seq_len, head_dim//2]
    xq_complex = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2))
    xk_complex = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2))

    # Broadcast the frequencies to match [B, n_heads, seq_len, head_dim//2]
    freqs_cis = reshape_for_broadcast(freqs_cis, xq_complex)

    # Multiply => apply rotation
    xq_complex = xq_complex * freqs_cis
    xk_complex = xk_complex * freqs_cis

    # Convert back to real => shape [B, n_heads, seq_len, head_dim]
    xq_out = torch.view_as_real(xq_complex).reshape(*xq.shape)
    xk_out = torch.view_as_real(xk_complex).reshape(*xk.shape)
    return xq_out.type_as(xq), xk_out.type_as(xk)


class Attention(nn.Module):
    def __init__(self, config):
        super(Attention, self).__init__()
        self.dim, self.num_heads = config.dim, config.num_heads
        assert config.dim % config.num_heads == 0, f"dim ({self.dim}) must be divisible num_heads ({self.num_heads})"
        self.head_dim = config.dim // config.num_heads

        self.c_attn = nn.Linear(self.dim, 3*self.dim, bias=config.bias)
        self.c_proj = nn.Linear(config.dim, config.dim, bias=config.bias)
        self.c_proj.SCALE_INIT = 1

        self.alibi_slopes = self._get_alibi_slopes(self.num_heads) if config.use_alibi else None
        self.window_size = config.window_size
        self.softcap = config.softcap

        self.dropout = config.dropout
        self.resid_dropout = nn.Dropout(self.dropout)

    def _generate_slopes(self, n: int):
            start = 2 ** (-(2 ** -(math.log2(n) - 3)))
            return [start * (start**i) for i in range(n)]

    def _get_alibi_slopes(self, num_heads: int, interpolation_factor: float = 0.25):
        # If n_heads is a power of 2, generate slopes directly
        if math.log2(num_heads).is_integer():
            slopes = self._generate_slopes(num_heads)
        else:
            # Get slopes for the nearest power of two
            n = nearest_power_of_two(num_heads, round_up=False)
            slopes_power_of_two = self._generate_slopes(n)

            # Generate extra slopes
            extra_slopes = self._generate_slopes(2 * n)
            extra_slopes_trunc = extra_slopes[0::2][: num_heads - n]
            slopes = slopes_power_of_two + extra_slopes_trunc
        slopes = torch.tensor(slopes, device=torch.device("cuda"), dtype=torch.float32)
        slopes = slopes * interpolation_factor  # https://arxiv.org/pdf/2310.13017
        return slopes

    def forward(
        self,
        x: torch.Tensor = None,
        q: torch.Tensor = None,
        k: torch.Tensor = None,
        v: torch.Tensor = None,
        freqs_cis: torch.Tensor = None,
    ) -> torch.Tensor:
        if x is not None:
            q = k = v = x
        if any(t is None for t in [q, k, v]):
            raise ValueError("Must provide either x for self-attention or q/k/v for cross-attention.")

        bsz, q_len, dim = q.shape
        _, k_len, _ = k.shape
        _, v_len, _ = v.shape

        qkv = self.c_attn(x)
        q, k, v = torch.chunk(qkv, 3, dim=2)

        q = q.view(bsz, q_len, self.num_heads, self.head_dim)
        k = k.view(bsz, k_len, self.num_heads, self.head_dim)
        v = v.view(bsz, v_len, self.num_heads, self.head_dim)

        if self.alibi_slopes is None: # Use either ALiBi or RoPE
            q, k = apply_rotary_emb(q, k, freqs_cis=freqs_cis)

        y = flash_attn_func(  # https://arxiv.org/pdf/2307.08691
            q=q, k=k, v=v,
            dropout_p=self.dropout if self.training else 0.0,
            causal=True,
            window_size=(self.window_size, 0), # Set to config.seq_len if full attention
            alibi_slopes=self.alibi_slopes, # https://arxiv.org/pdf/2108.12409
            softcap=self.softcap,  # https://arxiv.org/pdf/2408.00118
        )

        y = y.contiguous().view(bsz, q_len, -1)
        y = self.resid_dropout(self.c_proj(y))
        return y


class MLP(nn.Module):
    def __init__(self, config):
        # https://arxiv.org/pdf/2002.05202
        super().__init__()
        self.hidden_size = config.dim
        self.intermediate_size = config.dim * config.mlp_scale
        self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.bias)
        self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.bias)
        self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.bias)
        self.dropout = nn.Dropout(config.dropout)

    def forward(self, x):
        gate = self.gate_proj(x)
        gate = F.gelu(gate, approximate="tanh")
        up = self.up_proj(x)
        fuse = gate * up
        outputs = self.down_proj(fuse)
        outputs = self.dropout(outputs)
        return outputs


class AttentionLayer(nn.Module):
    def __init__(self, config) -> None:
        super(AttentionLayer, self).__init__()
        self.attn_norm = nn.RMSNorm(config.dim)
        self.attn = Attention(config=config)
        self.mlp_norm = nn.RMSNorm(config.dim)
        self.mlp = MLP(config)

    def forward(self, x: torch.Tensor, freqs_cis: torch.Tensor=None) -> torch.Tensor:
        x = x + self.attn(x=self.attn_norm(x), freqs_cis=freqs_cis)
        x = x + self.mlp(self.mlp_norm(x))
        return x