File size: 20,956 Bytes
35b00e5 626ae5c 35b00e5 5dd9ee6 35b00e5 5dd9ee6 5dc2a44 8e2494d 5dd9ee6 35b00e5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 |
import json
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers import PreTrainedModel, PretrainedConfig
from .configuration_ministu import MiniSTUConfig
from transformers.modeling_outputs import CausalLMOutput
try:
from flashfftconv import FlashFFTConv
flash_fft_available = True
except ImportError as e:
print(f"Unable to import FlashFFTConv: {e}. Falling back to PyTorch implementation.")
flash_fft_available = False
try:
from flash_attn import flash_attn_func
except ImportError as e:
print(
f"Unable to import Triton-based flash attention: {e}. No alternative currently available."
)
def precompute_freqs_cis(head_dim: int, max_seq_len: int, theta: float = 10000.0):
# For half the dimensions, build the scale factor:
freq_seq = torch.arange(0, head_dim, 2).float() / head_dim
freqs = 1.0 / (theta ** freq_seq)
# Outer product with positions
t = torch.arange(max_seq_len, dtype=torch.float32)
angles = torch.outer(t, freqs)
# Build a complex exponential e^{i * theta}
freqs_cis = torch.polar(
torch.ones_like(angles),
angles
)
return freqs_cis
def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor):
"""
x is [B, n_heads, seq_len, head_dim_as_complex],
so we want to broadcast freqs_cis from [max_seq_len, half_dim]
to [1, 1, seq_len, half_dim].
"""
seq_len = x.shape[2]
freqs_cis = freqs_cis[:seq_len] # slice down to current seq_len
return freqs_cis.view(1, 1, seq_len, -1)
def apply_rotary_emb(
xq: torch.Tensor,
xk: torch.Tensor,
freqs_cis: torch.Tensor,
) -> tuple[torch.Tensor, torch.Tensor]:
# Convert real -> complex by grouping last dim in pairs
# shape => [B, n_heads, seq_len, head_dim//2, 2] => complex => [B, n_heads, seq_len, head_dim//2]
xq_complex = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2))
xk_complex = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2))
# Broadcast the frequencies to match [B, n_heads, seq_len, head_dim//2]
freqs_cis = reshape_for_broadcast(freqs_cis, xq_complex)
# Multiply => apply rotation
xq_complex = xq_complex * freqs_cis
xk_complex = xk_complex * freqs_cis
# Convert back to real => shape [B, n_heads, seq_len, head_dim]
xq_out = torch.view_as_real(xq_complex).reshape(*xq.shape)
xk_out = torch.view_as_real(xk_complex).reshape(*xk.shape)
return xq_out.type_as(xq), xk_out.type_as(xk)
def _generate_slopes(self, n: int):
start = 2 ** (-(2 ** -(math.log2(n) - 3)))
return [start * (start**i) for i in range(n)]
def _get_alibi_slopes(self, n_heads: int, interpolation_factor: float = 0.25):
# If n_heads is a power of 2, generate slopes directly
if math.log2(n_heads).is_integer():
slopes = self._generate_slopes(n_heads)
else:
# Get slopes for the nearest power of two
n = nearest_power_of_two(n_heads, round_up=False)
slopes_power_of_two = self._generate_slopes(n)
# Generate extra slopes
extra_slopes = self._generate_slopes(2 * n)
extra_slopes_trunc = extra_slopes[0::2][: n_heads - n]
slopes = slopes_power_of_two + extra_slopes_trunc
slopes = torch.tensor(slopes, device=self.device)
slopes = slopes * interpolation_factor # https://arxiv.org/pdf/2310.13017
return slopes
def get_hankel(seq_len: int, use_hankel_L: bool = False) -> torch.Tensor:
entries = torch.arange(1, seq_len + 1, dtype=torch.float64)
i_plus_j = entries[:, None] + entries[None, :]
if use_hankel_L:
sgn = (-1.0) ** (i_plus_j - 2.0) + 1.0
denom = (i_plus_j + 3.0) * (i_plus_j - 1.0) * (i_plus_j + 1.0)
Z = sgn * (8.0 / denom)
elif not use_hankel_L:
Z = 2.0 / (i_plus_j**3 - i_plus_j)
else:
raise ValueError("use_hankel_L must be a boolean")
return Z
def get_spectral_filters(
seq_len: int,
K: int,
use_hankel_L: bool = False,
device: torch.device = None,
dtype: torch.dtype = torch.bfloat16,
) -> torch.Tensor:
Z = get_hankel(seq_len, use_hankel_L).to(device)
sigma, phi = torch.linalg.eigh(Z)
sigma_k, phi_k = sigma[-K:], phi[:, -K:]
phi_k *= sigma_k ** 0.25
return phi_k.to(dtype=dtype)
def nearest_power_of_two(x: int, round_up: bool = False) -> int:
return (
1 << math.floor(math.log2(x)) if not round_up else 1 << math.ceil(math.log2(x))
)
def convolve(u: torch.Tensor, v: torch.Tensor, n: int, use_approx: bool = True) -> tuple[torch.Tensor, torch.Tensor]:
bsz, seq_len, d_in = u.shape
sgn = torch.full((1, seq_len, 1), 1, device=u.device)
sgn[:, 1::2] *= -1
if use_approx:
_, d_out = v.shape
v = v.view(1, -1, d_out, 1).to(torch.float32).contiguous()
else:
_, K = v.shape
sgn = sgn.unsqueeze(-1)
v = v.view(1, -1, K, 1, 1).to(torch.float32).contiguous() # (bsz, seq_len, K, d_in, stack)
u = u.view(bsz, -1, 1, d_in).expand(bsz, -1, K, d_in)
v = torch.fft.rfft(v, n=n, dim=1)
U = torch.stack([u, u * sgn], dim=-1).to(torch.float32).contiguous()
U = torch.fft.rfft(U, n=n, dim=1)
U_conv = torch.fft.irfft(v * U, n=n, dim=1)[:, :seq_len]
U_plus, U_minus = torch.unbind(U_conv, dim=-1)
U_minus = U_minus * sgn
return U_plus, U_minus
def flash_convolve(
u: torch.Tensor, v: torch.Tensor, flash_fft: FlashFFTConv, use_approx: bool = True,
) -> tuple[torch.Tensor, torch.Tensor]:
"""
Flash FFT convolution.
Args:
u (torch.Tensor): Input tensor of shape `(B, L, d_in)`, where:
- `B` is the batch size,
- `L` is the sequence length,
- `d_in` is the input dimension.
v (torch.Tensor): Filter tensor of shape `(K, d_in)`, where:
- `K` is the number of filters,
- `d_in` is the input dimension.
flash_fft (FlashFFTConv): An instance of the FlashFFTConv module, used to perform the convolution.
use_approx (bool, optional): If `True`, performs the tensordot approximation (default is `True`).
Returns:
tuple[torch.Tensor, torch.Tensor]: A tuple `(U_plus, U_minus)`:
- `U_plus`: Convolved output tensor with positive eigenvalues.
- Shape depends on `use_approx`:
- If `use_approx=True`: `(B, L, d_in)`
- If `use_approx=False`: `(B, L, K, d_in)`
- `U_minus`: Convolved output tensor with negative eigenvalues.
- Shape depends on `use_approx`:
- If `use_approx=True`: `(B, L, d_in)`
- If `use_approx=False`: `(B, L, K, d_in)`
Raises:
ValueError: If the input tensor shapes do not conform to the expected dimensions.
Example:
>>> u = torch.randn(4, 16, 32) # (B, L, d_in)
>>> v = torch.randn(8, 32) # (K, d_in)
>>> flash_fft = FlashFFTConv(n=16, dtype=torch.float32)
>>> U_plus, U_minus = flash_convolve(u, v, flash_fft, use_approx=True)
>>> print(U_plus.shape, U_minus.shape)
torch.Size([4, 16, 32]) torch.Size([4, 16, 32])
"""
bsz, seq_len, d_in = u.shape
_, K = v.shape
padded_len = nearest_power_of_two(seq_len, round_up=True)
pad_len = padded_len - seq_len
sgn = torch.full((1, 1, padded_len), 1, device=u.device)
sgn[:, :, 1::2] = -1
if use_approx:
u_padded = F.pad(u.transpose(1, 2), (0, pad_len)).to(torch.bfloat16).contiguous()
v_padded = F.pad(v.transpose(0, 1), (0, pad_len)).to(torch.float32).contiguous()
u_conv = torch.stack([u_padded, u_padded * sgn], dim=0).reshape(2 * bsz, d_in, padded_len)
else:
u_k_padded = F.pad(u.transpose(1, 2), (0, pad_len)).to(torch.bfloat16).repeat_interleave(K, dim=1).contiguous()
v_padded = F.pad(v.transpose(0, 1), (0, pad_len)).to(torch.float32).repeat(d_in, 1).contiguous()
u_conv = torch.stack([u_k_padded, u_k_padded * sgn], dim=0).reshape(2 * bsz, K * d_in, padded_len)
U_conv = flash_fft(u_conv, v_padded)
# Trim the output back to the original sequence length
U_conv = U_conv[..., :seq_len]
u_plus, u_minus = torch.chunk(U_conv, 2, dim=0)
if use_approx:
u_minus = u_minus * sgn[:, :, :seq_len]
U_plus, U_minus = u_plus.transpose(1, 2), u_minus.transpose(1, 2)
else:
sgn = sgn[:, :, :seq_len].unsqueeze(-1).transpose(1, 2)
U_plus = u_plus.view(bsz, d_in, K, seq_len).permute(0, 3, 2, 1).contiguous()
U_minus = u_minus.view(bsz, d_in, K, seq_len).permute(0, 3, 2, 1).contiguous() * sgn
return U_plus, U_minus
class STU(nn.Module):
def __init__(self, config, filters) -> None:
super(STU, self).__init__()
self.config = config
self.stu_filters = filters
self.n = nearest_power_of_two(config.seq_len * 2 - 1, round_up=True)
self.K = config.num_eigh
self.d_in = config.dim
self.d_out = config.dim
self.use_hankel_L = config.use_hankel_L
self.use_approx = config.use_approx
self.flash_fft = (
FlashFFTConv(self.n, dtype=torch.bfloat16)
if config.use_flash_fft and flash_fft_available
else None
) # TODO: Buggy with torch.compile, need to write a custom op wrapper
if self.use_approx:
self.M_inputs = nn.Parameter(
torch.empty(self.d_in, self.d_out, dtype=config.torch_dtype)
)
self.M_filters = nn.Parameter(
torch.empty(self.K, self.d_in, dtype=config.torch_dtype)
)
else:
self.M_phi_plus = nn.Parameter(
torch.empty(self.K, self.d_in, self.d_out, dtype=config.torch_dtype)
)
if not self.use_hankel_L:
self.M_phi_minus = nn.Parameter(
torch.empty(self.K, self.d_in, self.d_out, dtype=config.torch_dtype)
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
if self.use_approx:
# Contract inputs and filters over the K and d_in dimensions, then convolve
x_proj = x @ self.M_inputs
phi_proj = self.stu_filters @ self.M_filters
if self.flash_fft:
spectral_plus, spectral_minus = flash_convolve(
x_proj, phi_proj, self.flash_fft, self.use_approx
)
else:
spectral_plus, spectral_minus = convolve(
x_proj, phi_proj, self.n, self.use_approx
)
else:
# Convolve inputs and filters,
if self.flash_fft:
U_plus, U_minus = flash_convolve(
x, self.stu_filters, self.flash_fft, self.use_approx
)
else:
U_plus, U_minus = convolve(x, self.stu_filters, self.n, self.use_approx)
# Then, contract over the K and d_in dimensions
spectral_plus = torch.tensordot(
U_plus, self.M_phi_plus, dims=([2, 3], [0, 1])
)
if not self.use_hankel_L:
spectral_minus = torch.tensordot(
U_minus, self.M_phi_minus, dims=([2, 3], [0, 1])
)
return spectral_plus if self.use_hankel_L else spectral_plus + spectral_minus
class STULayer(nn.Module):
def __init__(self, config, stu_filters):
super(STULayer, self).__init__()
self.stu_norm = nn.RMSNorm(config.dim)
self.stu = STU(config, stu_filters)
self.mlp_norm = nn.RMSNorm(config.dim)
self.mlp = MLP(config)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = x + self.stu(self.stu_norm(x))
x = x + self.mlp(self.mlp_norm(x))
return x
class Attention(nn.Module):
def __init__(self, config):
super(Attention, self).__init__()
self.dim, self.num_heads = config.dim, config.num_heads
assert config.dim % config.num_heads == 0, f"dim ({self.dim}) must be divisible num_heads ({self.num_heads})"
self.head_dim = config.dim // config.num_heads
self.c_attn = nn.Linear(self.dim, 3*self.dim, bias=config.bias)
self.c_proj = nn.Linear(config.dim, config.dim, bias=config.bias)
self.c_proj.SCALE_INIT = 1
self.alibi_slopes = self._get_alibi_slopes(self.num_heads) if config.use_alibi else None
self.window_size = config.window_size
self.softcap = config.softcap
self.dropout = config.dropout
self.resid_dropout = nn.Dropout(self.dropout)
def _generate_slopes(self, n: int):
start = 2 ** (-(2 ** -(math.log2(n) - 3)))
return [start * (start**i) for i in range(n)]
def _get_alibi_slopes(self, num_heads: int, interpolation_factor: float = 0.25):
# If n_heads is a power of 2, generate slopes directly
if math.log2(num_heads).is_integer():
slopes = self._generate_slopes(num_heads)
else:
# Get slopes for the nearest power of two
n = nearest_power_of_two(num_heads, round_up=False)
slopes_power_of_two = self._generate_slopes(n)
# Generate extra slopes
extra_slopes = self._generate_slopes(2 * n)
extra_slopes_trunc = extra_slopes[0::2][: num_heads - n]
slopes = slopes_power_of_two + extra_slopes_trunc
slopes = torch.tensor(slopes, device=torch.device("cuda"))
slopes = slopes * interpolation_factor # https://arxiv.org/pdf/2310.13017
return slopes
def forward(
self,
x: torch.Tensor = None,
q: torch.Tensor = None,
k: torch.Tensor = None,
v: torch.Tensor = None,
freqs_cis: torch.Tensor = None,
) -> torch.Tensor:
if x is not None:
q = k = v = x
if any(t is None for t in [q, k, v]):
raise ValueError("Must provide either x for self-attention or q/k/v for cross-attention.")
bsz, q_len, dim = q.shape
_, k_len, _ = k.shape
_, v_len, _ = v.shape
qkv = self.c_attn(x)
q, k, v = torch.chunk(qkv, 3, dim=2)
q = q.view(bsz, q_len, self.num_heads, self.head_dim)
k = k.view(bsz, k_len, self.num_heads, self.head_dim)
v = v.view(bsz, v_len, self.num_heads, self.head_dim)
if self.alibi_slopes is None: # Use either ALiBi or RoPE
q, k = apply_rotary_emb(q, k, freqs_cis=freqs_cis)
y = flash_attn_func( # https://arxiv.org/pdf/2307.08691
q=q, k=k, v=v,
dropout_p=self.dropout if self.training else 0.0,
causal=True,
window_size=(self.window_size, 0), # Set to config.seq_len if full attention
alibi_slopes=self.alibi_slopes, # https://arxiv.org/pdf/2108.12409
softcap=self.softcap, # https://arxiv.org/pdf/2408.00118
)
y = y.contiguous().view(bsz, q_len, -1)
y = self.resid_dropout(self.c_proj(y))
return y
class AttentionLayer(nn.Module):
def __init__(self, config) -> None:
super(AttentionLayer, self).__init__()
self.attn_norm = nn.RMSNorm(config.dim)
self.attn = Attention(config=config)
self.mlp_norm = nn.RMSNorm(config.dim)
self.mlp = MLP(config)
def forward(self, x: torch.Tensor, freqs_cis: torch.Tensor=None) -> torch.Tensor:
x = x + self.attn(x=self.attn_norm(x), freqs_cis=freqs_cis)
x = x + self.mlp(self.mlp_norm(x))
return x
class MLP(nn.Module):
def __init__(self, config):
# https://arxiv.org/pdf/2002.05202
super().__init__()
self.hidden_size = config.dim
self.intermediate_size = config.dim * config.mlp_scale
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.bias)
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.bias)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.bias)
self.dropout = nn.Dropout(config.dropout)
def forward(self, x):
gate = self.gate_proj(x)
gate = F.gelu(gate, approximate="tanh")
up = self.up_proj(x)
fuse = gate * up
outputs = self.down_proj(fuse)
outputs = self.dropout(outputs)
return outputs
class MiniSTU(PreTrainedModel):
config_class = MiniSTUConfig
def __init__(self, config) -> None:
super(MiniSTU, self).__init__(config)
filters = get_spectral_filters(
seq_len=config.seq_len,
K=config.num_eigh,
use_hankel_L=config.use_hankel_L,
device=config.device,
dtype=config.torch_dtype,
)
self.num_layers = config.num_layers
assert config.dim % config.num_heads == 0, f"dim ({self.dim}) must be divisible num_heads ({self.num_heads})"
self.head_dim = config.dim // config.num_heads
# From pytorch/pytorch#123411, we set persistent=True for torch.compile and PP compatibility
self.register_buffer(
"freqs_cis",
precompute_freqs_cis(
head_dim=self.head_dim,
max_seq_len=config.seq_len,
theta=config.theta,
),
persistent=True,
)
self.use_approx = config.use_approx
self.use_hankel_L = config.use_hankel_L
self.tok_emb = nn.Embedding(config.vocab_size, config.dim, dtype=config.torch_dtype)
self.dropout = nn.Dropout(config.dropout)
self.layers = nn.ModuleList()
for layer_idx in range(config.num_layers):
# For more complex %-split arrangements, see https://arxiv.org/pdf/2406.07887
if layer_idx % 2 == 0:
self.layers.append(STULayer(config, filters))
else:
self.layers.append(AttentionLayer(config) if config.use_attn else STULayer(config, filters))
self.norm = nn.RMSNorm(config.dim)
self.lm_head = nn.Linear(config.dim, config.vocab_size, bias=config.bias)
if config.weight_tying:
self.tok_emb.weight = self.lm_head.weight
self.std = config.dim**-0.5
self.apply(self._init_weights)
print("Model Parameter Count: %.2fM\n" % (self._get_num_params() / 1e6,))
def forward(
self,
input_ids: torch.Tensor,
labels: torch.Tensor = None,
**kwargs
) -> CausalLMOutput:
# Compute embeddings
tok_emb = self.tok_emb(input_ids)
tok_emb = self.dropout(tok_emb)
for layer in self.layers:
if hasattr(layer, "attn"):
tok_emb = layer(tok_emb, freqs_cis=self.freqs_cis)
else:
tok_emb = layer(tok_emb)
# Normalize and project to vocabulary
tok_emb = self.norm(tok_emb)
logits = self.lm_head(tok_emb)
loss = None
if labels is not None:
# Shift so that tokens predict the next token
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
loss_fct = nn.CrossEntropyLoss()
loss = loss_fct(
shift_logits.view(-1, shift_logits.size(-1)),
shift_labels.view(-1)
)
return CausalLMOutput(
loss=loss,
logits=logits,
)
def _get_num_params(self):
n_params = sum(p.numel() for p in self.parameters())
if hasattr(self, "pos_emb") and self.pos_emb is not None:
n_params -= self.pos_emb.weight.numel()
return n_params
def _init_weights(self, module):
if isinstance(module, nn.Linear):
if hasattr(module, "SCALE_INIT"):
self.std *= (2 * self.num_layers) ** -0.5
torch.nn.init.normal_(module.weight, mean=0.0, std=self.std)
if module.bias is not None:
torch.nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
torch.nn.init.normal_(module.weight, mean=0.0, std=self.std)
elif isinstance(module, Attention):
torch.nn.init.xavier_normal_(module.c_attn.weight)
torch.nn.init.xavier_normal_(module.c_proj.weight)
if module.c_attn.bias is not None:
torch.nn.init.zeros_(module.c_attn.bias)
if module.c_proj.bias is not None:
torch.nn.init.zeros_(module.c_proj.bias)
elif isinstance(module, STU):
if self.use_approx:
torch.nn.init.xavier_normal_(module.M_inputs)
torch.nn.init.xavier_normal_(module.M_filters)
else:
torch.nn.init.xavier_normal_(module.M_phi_plus)
if not self.use_hankel_L:
torch.nn.init.xavier_normal_(module.M_phi_minus)
|