File size: 20,956 Bytes
35b00e5
 
 
 
 
 
 
 
626ae5c
35b00e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5dd9ee6
35b00e5
5dd9ee6
 
 
 
5dc2a44
8e2494d
5dd9ee6
 
35b00e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
import json
import math

import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers import PreTrainedModel, PretrainedConfig
from .configuration_ministu import MiniSTUConfig
from transformers.modeling_outputs import CausalLMOutput
try:
    from flashfftconv import FlashFFTConv

    flash_fft_available = True
except ImportError as e:
    print(f"Unable to import FlashFFTConv: {e}. Falling back to PyTorch implementation.")
    flash_fft_available = False

try:
    from flash_attn import flash_attn_func
except ImportError as e:
    print(
        f"Unable to import Triton-based flash attention: {e}. No alternative currently available."
    )


def precompute_freqs_cis(head_dim: int, max_seq_len: int, theta: float = 10000.0):    
    # For half the dimensions, build the scale factor:
    freq_seq = torch.arange(0, head_dim, 2).float() / head_dim
    freqs = 1.0 / (theta ** freq_seq)

    # Outer product with positions
    t = torch.arange(max_seq_len, dtype=torch.float32)
    angles = torch.outer(t, freqs)
    
    # Build a complex exponential e^{i * theta}
    freqs_cis = torch.polar(
        torch.ones_like(angles),
        angles
    )
    return freqs_cis


def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor):
    """
    x is [B, n_heads, seq_len, head_dim_as_complex],
    so we want to broadcast freqs_cis from [max_seq_len, half_dim]
    to [1, 1, seq_len, half_dim].
    """
    seq_len = x.shape[2]
    freqs_cis = freqs_cis[:seq_len]  # slice down to current seq_len
    return freqs_cis.view(1, 1, seq_len, -1)


def apply_rotary_emb(
    xq: torch.Tensor,
    xk: torch.Tensor,
    freqs_cis: torch.Tensor,
) -> tuple[torch.Tensor, torch.Tensor]:
    # Convert real -> complex by grouping last dim in pairs
    # shape => [B, n_heads, seq_len, head_dim//2, 2] => complex => [B, n_heads, seq_len, head_dim//2]
    xq_complex = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2))
    xk_complex = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2))

    # Broadcast the frequencies to match [B, n_heads, seq_len, head_dim//2]
    freqs_cis = reshape_for_broadcast(freqs_cis, xq_complex)

    # Multiply => apply rotation
    xq_complex = xq_complex * freqs_cis
    xk_complex = xk_complex * freqs_cis

    # Convert back to real => shape [B, n_heads, seq_len, head_dim]
    xq_out = torch.view_as_real(xq_complex).reshape(*xq.shape)
    xk_out = torch.view_as_real(xk_complex).reshape(*xk.shape)
    return xq_out.type_as(xq), xk_out.type_as(xk)


def _generate_slopes(self, n: int):
        start = 2 ** (-(2 ** -(math.log2(n) - 3)))
        return [start * (start**i) for i in range(n)]

def _get_alibi_slopes(self, n_heads: int, interpolation_factor: float = 0.25):
    # If n_heads is a power of 2, generate slopes directly
    if math.log2(n_heads).is_integer():
        slopes = self._generate_slopes(n_heads)
    else:
        # Get slopes for the nearest power of two
        n = nearest_power_of_two(n_heads, round_up=False)
        slopes_power_of_two = self._generate_slopes(n)

        # Generate extra slopes
        extra_slopes = self._generate_slopes(2 * n)
        extra_slopes_trunc = extra_slopes[0::2][: n_heads - n]
        slopes = slopes_power_of_two + extra_slopes_trunc
    slopes = torch.tensor(slopes, device=self.device)
    slopes = slopes * interpolation_factor  # https://arxiv.org/pdf/2310.13017
    return slopes


def get_hankel(seq_len: int, use_hankel_L: bool = False) -> torch.Tensor:
    entries = torch.arange(1, seq_len + 1, dtype=torch.float64)
    i_plus_j = entries[:, None] + entries[None, :]

    if use_hankel_L:
        sgn = (-1.0) ** (i_plus_j - 2.0) + 1.0
        denom = (i_plus_j + 3.0) * (i_plus_j - 1.0) * (i_plus_j + 1.0)
        Z = sgn * (8.0 / denom)
    elif not use_hankel_L:
        Z = 2.0 / (i_plus_j**3 - i_plus_j)
    else:
        raise ValueError("use_hankel_L must be a boolean")

    return Z


def get_spectral_filters(
    seq_len: int, 
    K: int, 
    use_hankel_L: bool = False, 
    device: torch.device = None,
    dtype: torch.dtype = torch.bfloat16,
) -> torch.Tensor:
    Z = get_hankel(seq_len, use_hankel_L).to(device)
    sigma, phi = torch.linalg.eigh(Z)
    sigma_k, phi_k = sigma[-K:], phi[:, -K:]
    phi_k *= sigma_k ** 0.25
    return phi_k.to(dtype=dtype)

def nearest_power_of_two(x: int, round_up: bool = False) -> int:
    return (
        1 << math.floor(math.log2(x)) if not round_up else 1 << math.ceil(math.log2(x))
    )


def convolve(u: torch.Tensor, v: torch.Tensor, n: int, use_approx: bool = True) -> tuple[torch.Tensor, torch.Tensor]:
    bsz, seq_len, d_in = u.shape

    sgn = torch.full((1, seq_len, 1), 1, device=u.device)
    sgn[:, 1::2] *= -1
    if use_approx:
        _, d_out = v.shape
        v = v.view(1, -1, d_out, 1).to(torch.float32).contiguous()
    else:
        _, K = v.shape
        sgn = sgn.unsqueeze(-1)
        v = v.view(1, -1, K, 1, 1).to(torch.float32).contiguous() # (bsz, seq_len, K, d_in, stack)
        u = u.view(bsz, -1, 1, d_in).expand(bsz, -1, K, d_in)

    v = torch.fft.rfft(v, n=n, dim=1)

    U = torch.stack([u, u * sgn], dim=-1).to(torch.float32).contiguous()
    U = torch.fft.rfft(U, n=n, dim=1)
    U_conv = torch.fft.irfft(v * U, n=n, dim=1)[:, :seq_len]
    U_plus, U_minus = torch.unbind(U_conv, dim=-1)
    U_minus = U_minus * sgn

    return U_plus, U_minus


def flash_convolve(
    u: torch.Tensor, v: torch.Tensor, flash_fft: FlashFFTConv, use_approx: bool = True,
) -> tuple[torch.Tensor, torch.Tensor]:
    """
    Flash FFT convolution.

    Args:
        u (torch.Tensor): Input tensor of shape `(B, L, d_in)`, where:
            - `B` is the batch size,
            - `L` is the sequence length,
            - `d_in` is the input dimension.
        v (torch.Tensor): Filter tensor of shape `(K, d_in)`, where:
            - `K` is the number of filters,
            - `d_in` is the input dimension.
        flash_fft (FlashFFTConv): An instance of the FlashFFTConv module, used to perform the convolution.
        use_approx (bool, optional): If `True`, performs the tensordot approximation (default is `True`).

    Returns:
        tuple[torch.Tensor, torch.Tensor]: A tuple `(U_plus, U_minus)`:
            - `U_plus`: Convolved output tensor with positive eigenvalues.
            - Shape depends on `use_approx`:
                - If `use_approx=True`: `(B, L, d_in)`
                - If `use_approx=False`: `(B, L, K, d_in)`
            - `U_minus`: Convolved output tensor with negative eigenvalues.
            - Shape depends on `use_approx`:
                - If `use_approx=True`: `(B, L, d_in)`
                - If `use_approx=False`: `(B, L, K, d_in)`

    Raises:
        ValueError: If the input tensor shapes do not conform to the expected dimensions.

    Example:
        >>> u = torch.randn(4, 16, 32)  # (B, L, d_in)
        >>> v = torch.randn(8, 32)      # (K, d_in)
        >>> flash_fft = FlashFFTConv(n=16, dtype=torch.float32)
        >>> U_plus, U_minus = flash_convolve(u, v, flash_fft, use_approx=True)
        >>> print(U_plus.shape, U_minus.shape)
        torch.Size([4, 16, 32]) torch.Size([4, 16, 32])
        """
    bsz, seq_len, d_in = u.shape
    _, K = v.shape

    padded_len = nearest_power_of_two(seq_len, round_up=True)
    pad_len = padded_len - seq_len

    sgn = torch.full((1, 1, padded_len), 1, device=u.device)
    sgn[:, :, 1::2] = -1

    if use_approx:
        u_padded = F.pad(u.transpose(1, 2), (0, pad_len)).to(torch.bfloat16).contiguous()
        v_padded = F.pad(v.transpose(0, 1), (0, pad_len)).to(torch.float32).contiguous()
        u_conv = torch.stack([u_padded, u_padded * sgn], dim=0).reshape(2 * bsz, d_in, padded_len)
    else:
        u_k_padded = F.pad(u.transpose(1, 2), (0, pad_len)).to(torch.bfloat16).repeat_interleave(K, dim=1).contiguous()
        v_padded = F.pad(v.transpose(0, 1), (0, pad_len)).to(torch.float32).repeat(d_in, 1).contiguous()
        u_conv = torch.stack([u_k_padded, u_k_padded * sgn], dim=0).reshape(2 * bsz, K * d_in, padded_len)

    U_conv = flash_fft(u_conv, v_padded)

    # Trim the output back to the original sequence length
    U_conv = U_conv[..., :seq_len]

    u_plus, u_minus = torch.chunk(U_conv, 2, dim=0)

    if use_approx:
        u_minus = u_minus * sgn[:, :, :seq_len]
        U_plus, U_minus = u_plus.transpose(1, 2), u_minus.transpose(1, 2)
    else:
        sgn = sgn[:, :, :seq_len].unsqueeze(-1).transpose(1, 2)
        U_plus = u_plus.view(bsz, d_in, K, seq_len).permute(0, 3, 2, 1).contiguous()
        U_minus = u_minus.view(bsz, d_in, K, seq_len).permute(0, 3, 2, 1).contiguous() * sgn

    return U_plus, U_minus


class STU(nn.Module):
    def __init__(self, config, filters) -> None:
        super(STU, self).__init__()
        self.config = config
        self.stu_filters = filters
        self.n = nearest_power_of_two(config.seq_len * 2 - 1, round_up=True)
        self.K = config.num_eigh
        self.d_in = config.dim
        self.d_out = config.dim
        self.use_hankel_L = config.use_hankel_L
        self.use_approx = config.use_approx
        self.flash_fft = (
            FlashFFTConv(self.n, dtype=torch.bfloat16)
            if config.use_flash_fft and flash_fft_available
            else None
        ) # TODO: Buggy with torch.compile, need to write a custom op wrapper
        if self.use_approx:
            self.M_inputs = nn.Parameter(
                torch.empty(self.d_in, self.d_out, dtype=config.torch_dtype)
            )
            self.M_filters = nn.Parameter(
                torch.empty(self.K, self.d_in, dtype=config.torch_dtype)
            )
        else:
            self.M_phi_plus = nn.Parameter(
                torch.empty(self.K, self.d_in, self.d_out, dtype=config.torch_dtype)
            )
            if not self.use_hankel_L:
                self.M_phi_minus = nn.Parameter(
                    torch.empty(self.K, self.d_in, self.d_out, dtype=config.torch_dtype)
                )

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        if self.use_approx:
            # Contract inputs and filters over the K and d_in dimensions, then convolve
            x_proj = x @ self.M_inputs
            phi_proj = self.stu_filters @ self.M_filters
            if self.flash_fft:
                spectral_plus, spectral_minus = flash_convolve(
                    x_proj, phi_proj, self.flash_fft, self.use_approx
                )
            else:
                spectral_plus, spectral_minus = convolve(
                    x_proj, phi_proj, self.n, self.use_approx
                )
        else:
            # Convolve inputs and filters,
            if self.flash_fft:
                U_plus, U_minus = flash_convolve(
                    x, self.stu_filters, self.flash_fft, self.use_approx
                )
            else:
                U_plus, U_minus = convolve(x, self.stu_filters, self.n, self.use_approx)
            # Then, contract over the K and d_in dimensions
            spectral_plus = torch.tensordot(
                U_plus, self.M_phi_plus, dims=([2, 3], [0, 1])
            )
            if not self.use_hankel_L:
                spectral_minus = torch.tensordot(
                    U_minus, self.M_phi_minus, dims=([2, 3], [0, 1])
                )

        return spectral_plus if self.use_hankel_L else spectral_plus + spectral_minus


class STULayer(nn.Module):
    def __init__(self, config, stu_filters):
        super(STULayer, self).__init__()
        self.stu_norm = nn.RMSNorm(config.dim)
        self.stu = STU(config, stu_filters)
        self.mlp_norm = nn.RMSNorm(config.dim)
        self.mlp = MLP(config)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = x + self.stu(self.stu_norm(x))
        x = x + self.mlp(self.mlp_norm(x))
        return x


class Attention(nn.Module):
    def __init__(self, config):
        super(Attention, self).__init__()
        self.dim, self.num_heads = config.dim, config.num_heads
        assert config.dim % config.num_heads == 0, f"dim ({self.dim}) must be divisible num_heads ({self.num_heads})"
        self.head_dim = config.dim // config.num_heads

        self.c_attn = nn.Linear(self.dim, 3*self.dim, bias=config.bias)
        self.c_proj = nn.Linear(config.dim, config.dim, bias=config.bias)
        self.c_proj.SCALE_INIT = 1

        self.alibi_slopes = self._get_alibi_slopes(self.num_heads) if config.use_alibi else None
        self.window_size = config.window_size
        self.softcap = config.softcap

        self.dropout = config.dropout
        self.resid_dropout = nn.Dropout(self.dropout)

    def _generate_slopes(self, n: int):
            start = 2 ** (-(2 ** -(math.log2(n) - 3)))
            return [start * (start**i) for i in range(n)]

    def _get_alibi_slopes(self, num_heads: int, interpolation_factor: float = 0.25):
        # If n_heads is a power of 2, generate slopes directly
        if math.log2(num_heads).is_integer():
            slopes = self._generate_slopes(num_heads)
        else:
            # Get slopes for the nearest power of two
            n = nearest_power_of_two(num_heads, round_up=False)
            slopes_power_of_two = self._generate_slopes(n)

            # Generate extra slopes
            extra_slopes = self._generate_slopes(2 * n)
            extra_slopes_trunc = extra_slopes[0::2][: num_heads - n]
            slopes = slopes_power_of_two + extra_slopes_trunc
        slopes = torch.tensor(slopes, device=torch.device("cuda"))
        slopes = slopes * interpolation_factor  # https://arxiv.org/pdf/2310.13017
        return slopes

    def forward(
        self,
        x: torch.Tensor = None,
        q: torch.Tensor = None,
        k: torch.Tensor = None,
        v: torch.Tensor = None,
        freqs_cis: torch.Tensor = None,
    ) -> torch.Tensor:
        if x is not None:
            q = k = v = x
        if any(t is None for t in [q, k, v]):
            raise ValueError("Must provide either x for self-attention or q/k/v for cross-attention.")

        bsz, q_len, dim = q.shape
        _, k_len, _ = k.shape
        _, v_len, _ = v.shape

        qkv = self.c_attn(x)
        q, k, v = torch.chunk(qkv, 3, dim=2)

        q = q.view(bsz, q_len, self.num_heads, self.head_dim)
        k = k.view(bsz, k_len, self.num_heads, self.head_dim)
        v = v.view(bsz, v_len, self.num_heads, self.head_dim)

        if self.alibi_slopes is None: # Use either ALiBi or RoPE
            q, k = apply_rotary_emb(q, k, freqs_cis=freqs_cis)

        y = flash_attn_func(  # https://arxiv.org/pdf/2307.08691
            q=q, k=k, v=v,
            dropout_p=self.dropout if self.training else 0.0,
            causal=True,
            window_size=(self.window_size, 0), # Set to config.seq_len if full attention
            alibi_slopes=self.alibi_slopes, # https://arxiv.org/pdf/2108.12409
            softcap=self.softcap,  # https://arxiv.org/pdf/2408.00118
        )

        y = y.contiguous().view(bsz, q_len, -1)
        y = self.resid_dropout(self.c_proj(y))
        return y


class AttentionLayer(nn.Module):
    def __init__(self, config) -> None:
        super(AttentionLayer, self).__init__()
        self.attn_norm = nn.RMSNorm(config.dim)
        self.attn = Attention(config=config)
        self.mlp_norm = nn.RMSNorm(config.dim)
        self.mlp = MLP(config)

    def forward(self, x: torch.Tensor, freqs_cis: torch.Tensor=None) -> torch.Tensor:
        x = x + self.attn(x=self.attn_norm(x), freqs_cis=freqs_cis)
        x = x + self.mlp(self.mlp_norm(x))
        return x

class MLP(nn.Module):
    def __init__(self, config):
        # https://arxiv.org/pdf/2002.05202
        super().__init__()
        self.hidden_size = config.dim
        self.intermediate_size = config.dim * config.mlp_scale
        self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.bias)
        self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.bias)
        self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.bias)
        self.dropout = nn.Dropout(config.dropout)

    def forward(self, x):
        gate = self.gate_proj(x)
        gate = F.gelu(gate, approximate="tanh")
        up = self.up_proj(x)
        fuse = gate * up
        outputs = self.down_proj(fuse)
        outputs = self.dropout(outputs)
        return outputs


class MiniSTU(PreTrainedModel):
    config_class = MiniSTUConfig

    def __init__(self, config) -> None:
        super(MiniSTU, self).__init__(config)
        filters = get_spectral_filters(
            seq_len=config.seq_len,
            K=config.num_eigh,
            use_hankel_L=config.use_hankel_L,
            device=config.device,
            dtype=config.torch_dtype,
        )

        self.num_layers = config.num_layers
        assert config.dim % config.num_heads == 0, f"dim ({self.dim}) must be divisible num_heads ({self.num_heads})"
        self.head_dim = config.dim // config.num_heads

        # From pytorch/pytorch#123411, we set persistent=True for torch.compile and PP compatibility
        self.register_buffer(
            "freqs_cis",
            precompute_freqs_cis(
                head_dim=self.head_dim,
                max_seq_len=config.seq_len,
                theta=config.theta,
            ),
            persistent=True,
        )

        self.use_approx = config.use_approx
        self.use_hankel_L = config.use_hankel_L

        self.tok_emb = nn.Embedding(config.vocab_size, config.dim, dtype=config.torch_dtype)
        self.dropout = nn.Dropout(config.dropout)

        self.layers = nn.ModuleList()
        for layer_idx in range(config.num_layers):
            # For more complex %-split arrangements, see https://arxiv.org/pdf/2406.07887
            if layer_idx % 2 == 0:
                self.layers.append(STULayer(config, filters))
            else:
                self.layers.append(AttentionLayer(config) if config.use_attn else STULayer(config, filters))

        self.norm = nn.RMSNorm(config.dim)
        self.lm_head = nn.Linear(config.dim, config.vocab_size, bias=config.bias)

        if config.weight_tying:
            self.tok_emb.weight = self.lm_head.weight

        self.std = config.dim**-0.5
        self.apply(self._init_weights)
        print("Model Parameter Count: %.2fM\n" % (self._get_num_params() / 1e6,))

    def forward(
        self,
        input_ids: torch.Tensor,
        labels: torch.Tensor = None,
        **kwargs
    ) -> CausalLMOutput:
        # Compute embeddings
        tok_emb = self.tok_emb(input_ids)
        tok_emb = self.dropout(tok_emb)

        for layer in self.layers:
            if hasattr(layer, "attn"):
                tok_emb = layer(tok_emb, freqs_cis=self.freqs_cis)
            else:
                tok_emb = layer(tok_emb)

        # Normalize and project to vocabulary
        tok_emb = self.norm(tok_emb)
        logits = self.lm_head(tok_emb)

        loss = None
        if labels is not None:
            # Shift so that tokens predict the next token
            shift_logits = logits[..., :-1, :].contiguous()
            shift_labels = labels[..., 1:].contiguous()
            loss_fct = nn.CrossEntropyLoss()
            loss = loss_fct(
                shift_logits.view(-1, shift_logits.size(-1)),
                shift_labels.view(-1)
            )

        return CausalLMOutput(
            loss=loss,
            logits=logits,
        )

    def _get_num_params(self):
        n_params = sum(p.numel() for p in self.parameters())
        if hasattr(self, "pos_emb") and self.pos_emb is not None:
            n_params -= self.pos_emb.weight.numel()
        return n_params

    def _init_weights(self, module):
        if isinstance(module, nn.Linear):
            if hasattr(module, "SCALE_INIT"):
                self.std *= (2 * self.num_layers) ** -0.5
            torch.nn.init.normal_(module.weight, mean=0.0, std=self.std)
            if module.bias is not None:
                torch.nn.init.zeros_(module.bias)
        elif isinstance(module, nn.Embedding):
            torch.nn.init.normal_(module.weight, mean=0.0, std=self.std)
        elif isinstance(module, Attention):
            torch.nn.init.xavier_normal_(module.c_attn.weight)
            torch.nn.init.xavier_normal_(module.c_proj.weight)
            if module.c_attn.bias is not None:
                torch.nn.init.zeros_(module.c_attn.bias)
            if module.c_proj.bias is not None:
                torch.nn.init.zeros_(module.c_proj.bias)
        elif isinstance(module, STU):
            if self.use_approx:
                torch.nn.init.xavier_normal_(module.M_inputs)
                torch.nn.init.xavier_normal_(module.M_filters)
            else:
                torch.nn.init.xavier_normal_(module.M_phi_plus)
                if not self.use_hankel_L:
                    torch.nn.init.xavier_normal_(module.M_phi_minus)