Ubuntu commited on
Commit
9c8a735
·
1 Parent(s): 14f3030

solidity data finetuned

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. README.md +202 -0
  2. adapter_config.json +29 -0
  3. adapter_model.safetensors +3 -0
  4. checkpoint-100/README.md +202 -0
  5. checkpoint-100/adapter_config.json +29 -0
  6. checkpoint-100/adapter_model.safetensors +3 -0
  7. checkpoint-100/optimizer.pt +3 -0
  8. checkpoint-100/rng_state.pth +3 -0
  9. checkpoint-100/scheduler.pt +3 -0
  10. checkpoint-100/special_tokens_map.json +24 -0
  11. checkpoint-100/tokenizer.model +3 -0
  12. checkpoint-100/tokenizer_config.json +44 -0
  13. checkpoint-100/trainer_state.json +733 -0
  14. checkpoint-100/training_args.bin +3 -0
  15. checkpoint-200/README.md +202 -0
  16. checkpoint-200/adapter_config.json +29 -0
  17. checkpoint-200/adapter_model.safetensors +3 -0
  18. checkpoint-200/optimizer.pt +3 -0
  19. checkpoint-200/rng_state.pth +3 -0
  20. checkpoint-200/scheduler.pt +3 -0
  21. checkpoint-200/special_tokens_map.json +24 -0
  22. checkpoint-200/tokenizer.model +3 -0
  23. checkpoint-200/tokenizer_config.json +44 -0
  24. checkpoint-200/trainer_state.json +1433 -0
  25. checkpoint-200/training_args.bin +3 -0
  26. checkpoint-300/README.md +202 -0
  27. checkpoint-300/adapter_config.json +29 -0
  28. checkpoint-300/adapter_model.safetensors +3 -0
  29. checkpoint-300/optimizer.pt +3 -0
  30. checkpoint-300/rng_state.pth +3 -0
  31. checkpoint-300/scheduler.pt +3 -0
  32. checkpoint-300/special_tokens_map.json +24 -0
  33. checkpoint-300/tokenizer.model +3 -0
  34. checkpoint-300/tokenizer_config.json +44 -0
  35. checkpoint-300/trainer_state.json +2133 -0
  36. checkpoint-300/training_args.bin +3 -0
  37. checkpoint-310/README.md +202 -0
  38. checkpoint-310/adapter_config.json +29 -0
  39. checkpoint-310/adapter_model.safetensors +3 -0
  40. checkpoint-310/optimizer.pt +3 -0
  41. checkpoint-310/rng_state.pth +3 -0
  42. checkpoint-310/scheduler.pt +3 -0
  43. checkpoint-310/special_tokens_map.json +24 -0
  44. checkpoint-310/tokenizer.model +3 -0
  45. checkpoint-310/tokenizer_config.json +44 -0
  46. checkpoint-310/trainer_state.json +2203 -0
  47. checkpoint-310/training_args.bin +3 -0
  48. special_tokens_map.json +24 -0
  49. tokenizer.model +3 -0
  50. tokenizer_config.json +44 -0
README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: /home/ubuntu/Apps/DataInf/models/model
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.2
adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "/home/ubuntu/Apps/DataInf/models/model",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "q_proj",
24
+ "v_proj"
25
+ ],
26
+ "task_type": "CAUSAL_LM",
27
+ "use_dora": false,
28
+ "use_rslora": false
29
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a3c618c18055bfce72d306d6b635cd0ecbd60120c3067688e0d526ab340b6b02
3
+ size 26235704
checkpoint-100/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: /home/ubuntu/Apps/DataInf/models/model
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.2
checkpoint-100/adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "/home/ubuntu/Apps/DataInf/models/model",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "q_proj",
24
+ "v_proj"
25
+ ],
26
+ "task_type": "CAUSAL_LM",
27
+ "use_dora": false,
28
+ "use_rslora": false
29
+ }
checkpoint-100/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3471e7f6f9007da19571b83b2c2ffc8c2b14cebd1f4f0edafaf9d5308fe78d79
3
+ size 26235704
checkpoint-100/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f6aabca352b9775a966b16d5684f7f41606975c89d075033dcf2ac50fd4b63e4
3
+ size 52563258
checkpoint-100/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a16561ec857cdb55d8ca0062103fa8db84597e98bbcbc54a602f1c5d7574907a
3
+ size 14244
checkpoint-100/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:de4aa167f166f0cccc89350e9848a4fe7936d18a758a5fb69167c22863ba1414
3
+ size 1064
checkpoint-100/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
checkpoint-100/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
checkpoint-100/tokenizer_config.json ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": null,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ }
30
+ },
31
+ "bos_token": "<s>",
32
+ "chat_template": "{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% else %}{% set loop_messages = messages %}{% set system_message = false %}{% endif %}{% for message in loop_messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if loop.index0 == 0 and system_message != false %}{% set content = '<<SYS>>\\n' + system_message + '\\n<</SYS>>\\n\\n' + message['content'] %}{% else %}{% set content = message['content'] %}{% endif %}{% if message['role'] == 'user' %}{{ bos_token + '[INST] ' + content.strip() + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ ' ' + content.strip() + ' ' + eos_token }}{% endif %}{% endfor %}",
33
+ "clean_up_tokenization_spaces": false,
34
+ "eos_token": "</s>",
35
+ "legacy": false,
36
+ "model_max_length": 1000000000000000019884624838656,
37
+ "pad_token": "</s>",
38
+ "padding_side": "right",
39
+ "sp_model_kwargs": {},
40
+ "spaces_between_special_tokens": false,
41
+ "tokenizer_class": "LlamaTokenizer",
42
+ "unk_token": "<unk>",
43
+ "use_default_system_prompt": false
44
+ }
checkpoint-100/trainer_state.json ADDED
@@ -0,0 +1,733 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 3.2,
5
+ "eval_steps": 500,
6
+ "global_step": 100,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.032,
13
+ "grad_norm": 0.3297976851463318,
14
+ "learning_rate": 0.0002990322580645161,
15
+ "loss": 1.0389,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.064,
20
+ "grad_norm": 0.4069916307926178,
21
+ "learning_rate": 0.0002980645161290322,
22
+ "loss": 1.3377,
23
+ "step": 2
24
+ },
25
+ {
26
+ "epoch": 0.096,
27
+ "grad_norm": 0.42084500193595886,
28
+ "learning_rate": 0.00029709677419354836,
29
+ "loss": 0.9366,
30
+ "step": 3
31
+ },
32
+ {
33
+ "epoch": 0.128,
34
+ "grad_norm": 0.4641948938369751,
35
+ "learning_rate": 0.0002961290322580645,
36
+ "loss": 1.0086,
37
+ "step": 4
38
+ },
39
+ {
40
+ "epoch": 0.16,
41
+ "grad_norm": 0.3840750455856323,
42
+ "learning_rate": 0.00029516129032258065,
43
+ "loss": 0.8333,
44
+ "step": 5
45
+ },
46
+ {
47
+ "epoch": 0.192,
48
+ "grad_norm": 0.4263865053653717,
49
+ "learning_rate": 0.00029419354838709674,
50
+ "loss": 0.854,
51
+ "step": 6
52
+ },
53
+ {
54
+ "epoch": 0.224,
55
+ "grad_norm": 0.48615148663520813,
56
+ "learning_rate": 0.0002932258064516129,
57
+ "loss": 0.9548,
58
+ "step": 7
59
+ },
60
+ {
61
+ "epoch": 0.256,
62
+ "grad_norm": 0.44419369101524353,
63
+ "learning_rate": 0.00029225806451612903,
64
+ "loss": 0.8482,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.288,
69
+ "grad_norm": 0.5317733883857727,
70
+ "learning_rate": 0.0002912903225806451,
71
+ "loss": 0.9426,
72
+ "step": 9
73
+ },
74
+ {
75
+ "epoch": 0.32,
76
+ "grad_norm": 0.47260937094688416,
77
+ "learning_rate": 0.00029032258064516127,
78
+ "loss": 0.9816,
79
+ "step": 10
80
+ },
81
+ {
82
+ "epoch": 0.352,
83
+ "grad_norm": 0.39063283801078796,
84
+ "learning_rate": 0.00028935483870967736,
85
+ "loss": 0.84,
86
+ "step": 11
87
+ },
88
+ {
89
+ "epoch": 0.384,
90
+ "grad_norm": 0.39234670996665955,
91
+ "learning_rate": 0.0002883870967741935,
92
+ "loss": 0.7476,
93
+ "step": 12
94
+ },
95
+ {
96
+ "epoch": 0.416,
97
+ "grad_norm": 0.40661805868148804,
98
+ "learning_rate": 0.00028741935483870965,
99
+ "loss": 0.9282,
100
+ "step": 13
101
+ },
102
+ {
103
+ "epoch": 0.448,
104
+ "grad_norm": 0.42970865964889526,
105
+ "learning_rate": 0.0002864516129032258,
106
+ "loss": 0.7858,
107
+ "step": 14
108
+ },
109
+ {
110
+ "epoch": 0.48,
111
+ "grad_norm": 0.3780193626880646,
112
+ "learning_rate": 0.00028548387096774194,
113
+ "loss": 0.7968,
114
+ "step": 15
115
+ },
116
+ {
117
+ "epoch": 0.512,
118
+ "grad_norm": 0.37006014585494995,
119
+ "learning_rate": 0.00028451612903225803,
120
+ "loss": 0.6801,
121
+ "step": 16
122
+ },
123
+ {
124
+ "epoch": 0.544,
125
+ "grad_norm": 0.3660840392112732,
126
+ "learning_rate": 0.0002835483870967742,
127
+ "loss": 0.5914,
128
+ "step": 17
129
+ },
130
+ {
131
+ "epoch": 0.576,
132
+ "grad_norm": 0.3270975351333618,
133
+ "learning_rate": 0.00028258064516129027,
134
+ "loss": 0.6449,
135
+ "step": 18
136
+ },
137
+ {
138
+ "epoch": 0.608,
139
+ "grad_norm": 0.3859024941921234,
140
+ "learning_rate": 0.0002816129032258064,
141
+ "loss": 0.8144,
142
+ "step": 19
143
+ },
144
+ {
145
+ "epoch": 0.64,
146
+ "grad_norm": 0.37092071771621704,
147
+ "learning_rate": 0.00028064516129032256,
148
+ "loss": 0.7667,
149
+ "step": 20
150
+ },
151
+ {
152
+ "epoch": 0.672,
153
+ "grad_norm": 0.37667015194892883,
154
+ "learning_rate": 0.0002796774193548387,
155
+ "loss": 0.7751,
156
+ "step": 21
157
+ },
158
+ {
159
+ "epoch": 0.704,
160
+ "grad_norm": 0.3832458555698395,
161
+ "learning_rate": 0.0002787096774193548,
162
+ "loss": 0.755,
163
+ "step": 22
164
+ },
165
+ {
166
+ "epoch": 0.736,
167
+ "grad_norm": 0.327288419008255,
168
+ "learning_rate": 0.00027774193548387095,
169
+ "loss": 0.7178,
170
+ "step": 23
171
+ },
172
+ {
173
+ "epoch": 0.768,
174
+ "grad_norm": 0.34552687406539917,
175
+ "learning_rate": 0.0002767741935483871,
176
+ "loss": 0.7057,
177
+ "step": 24
178
+ },
179
+ {
180
+ "epoch": 0.8,
181
+ "grad_norm": 0.3611259460449219,
182
+ "learning_rate": 0.0002758064516129032,
183
+ "loss": 0.8159,
184
+ "step": 25
185
+ },
186
+ {
187
+ "epoch": 0.832,
188
+ "grad_norm": 0.3345054090023041,
189
+ "learning_rate": 0.00027483870967741933,
190
+ "loss": 0.7208,
191
+ "step": 26
192
+ },
193
+ {
194
+ "epoch": 0.864,
195
+ "grad_norm": 0.3697254955768585,
196
+ "learning_rate": 0.0002738709677419355,
197
+ "loss": 0.8964,
198
+ "step": 27
199
+ },
200
+ {
201
+ "epoch": 0.896,
202
+ "grad_norm": 0.3905017375946045,
203
+ "learning_rate": 0.00027290322580645157,
204
+ "loss": 0.7794,
205
+ "step": 28
206
+ },
207
+ {
208
+ "epoch": 0.928,
209
+ "grad_norm": 0.3715725243091583,
210
+ "learning_rate": 0.0002719354838709677,
211
+ "loss": 0.6966,
212
+ "step": 29
213
+ },
214
+ {
215
+ "epoch": 0.96,
216
+ "grad_norm": 0.3650343120098114,
217
+ "learning_rate": 0.00027096774193548386,
218
+ "loss": 0.5761,
219
+ "step": 30
220
+ },
221
+ {
222
+ "epoch": 0.992,
223
+ "grad_norm": 0.33932459354400635,
224
+ "learning_rate": 0.00027,
225
+ "loss": 0.556,
226
+ "step": 31
227
+ },
228
+ {
229
+ "epoch": 1.024,
230
+ "grad_norm": 0.6371742486953735,
231
+ "learning_rate": 0.0002690322580645161,
232
+ "loss": 0.847,
233
+ "step": 32
234
+ },
235
+ {
236
+ "epoch": 1.056,
237
+ "grad_norm": 0.37499895691871643,
238
+ "learning_rate": 0.00026806451612903224,
239
+ "loss": 0.8419,
240
+ "step": 33
241
+ },
242
+ {
243
+ "epoch": 1.088,
244
+ "grad_norm": 0.33221954107284546,
245
+ "learning_rate": 0.0002670967741935484,
246
+ "loss": 0.6011,
247
+ "step": 34
248
+ },
249
+ {
250
+ "epoch": 1.12,
251
+ "grad_norm": 0.344096839427948,
252
+ "learning_rate": 0.0002661290322580645,
253
+ "loss": 0.6501,
254
+ "step": 35
255
+ },
256
+ {
257
+ "epoch": 1.152,
258
+ "grad_norm": 0.38429391384124756,
259
+ "learning_rate": 0.0002651612903225806,
260
+ "loss": 0.8091,
261
+ "step": 36
262
+ },
263
+ {
264
+ "epoch": 1.184,
265
+ "grad_norm": 0.38014867901802063,
266
+ "learning_rate": 0.00026419354838709677,
267
+ "loss": 0.7668,
268
+ "step": 37
269
+ },
270
+ {
271
+ "epoch": 1.216,
272
+ "grad_norm": 0.3352573812007904,
273
+ "learning_rate": 0.00026322580645161286,
274
+ "loss": 0.5444,
275
+ "step": 38
276
+ },
277
+ {
278
+ "epoch": 1.248,
279
+ "grad_norm": 0.33811062574386597,
280
+ "learning_rate": 0.000262258064516129,
281
+ "loss": 0.512,
282
+ "step": 39
283
+ },
284
+ {
285
+ "epoch": 1.28,
286
+ "grad_norm": 0.3998416066169739,
287
+ "learning_rate": 0.00026129032258064515,
288
+ "loss": 0.6315,
289
+ "step": 40
290
+ },
291
+ {
292
+ "epoch": 1.312,
293
+ "grad_norm": 0.3983341157436371,
294
+ "learning_rate": 0.0002603225806451613,
295
+ "loss": 0.5882,
296
+ "step": 41
297
+ },
298
+ {
299
+ "epoch": 1.3439999999999999,
300
+ "grad_norm": 0.4585898816585541,
301
+ "learning_rate": 0.0002593548387096774,
302
+ "loss": 0.761,
303
+ "step": 42
304
+ },
305
+ {
306
+ "epoch": 1.376,
307
+ "grad_norm": 0.4080730080604553,
308
+ "learning_rate": 0.00025838709677419354,
309
+ "loss": 0.6716,
310
+ "step": 43
311
+ },
312
+ {
313
+ "epoch": 1.408,
314
+ "grad_norm": 0.4068273901939392,
315
+ "learning_rate": 0.0002574193548387096,
316
+ "loss": 0.6376,
317
+ "step": 44
318
+ },
319
+ {
320
+ "epoch": 1.44,
321
+ "grad_norm": 0.4406949579715729,
322
+ "learning_rate": 0.00025645161290322577,
323
+ "loss": 0.4594,
324
+ "step": 45
325
+ },
326
+ {
327
+ "epoch": 1.472,
328
+ "grad_norm": 0.34500986337661743,
329
+ "learning_rate": 0.0002554838709677419,
330
+ "loss": 0.3672,
331
+ "step": 46
332
+ },
333
+ {
334
+ "epoch": 1.504,
335
+ "grad_norm": 0.4760681390762329,
336
+ "learning_rate": 0.00025451612903225806,
337
+ "loss": 0.6331,
338
+ "step": 47
339
+ },
340
+ {
341
+ "epoch": 1.536,
342
+ "grad_norm": 0.39281558990478516,
343
+ "learning_rate": 0.0002535483870967742,
344
+ "loss": 0.5845,
345
+ "step": 48
346
+ },
347
+ {
348
+ "epoch": 1.568,
349
+ "grad_norm": 0.4265002906322479,
350
+ "learning_rate": 0.0002525806451612903,
351
+ "loss": 0.4461,
352
+ "step": 49
353
+ },
354
+ {
355
+ "epoch": 1.6,
356
+ "grad_norm": 0.40967294573783875,
357
+ "learning_rate": 0.00025161290322580645,
358
+ "loss": 0.7011,
359
+ "step": 50
360
+ },
361
+ {
362
+ "epoch": 1.6320000000000001,
363
+ "grad_norm": 0.4288088381290436,
364
+ "learning_rate": 0.00025064516129032254,
365
+ "loss": 0.6928,
366
+ "step": 51
367
+ },
368
+ {
369
+ "epoch": 1.6640000000000001,
370
+ "grad_norm": 0.4356289803981781,
371
+ "learning_rate": 0.0002496774193548387,
372
+ "loss": 0.7972,
373
+ "step": 52
374
+ },
375
+ {
376
+ "epoch": 1.696,
377
+ "grad_norm": 0.3827487826347351,
378
+ "learning_rate": 0.0002487096774193548,
379
+ "loss": 0.2991,
380
+ "step": 53
381
+ },
382
+ {
383
+ "epoch": 1.728,
384
+ "grad_norm": 0.40093398094177246,
385
+ "learning_rate": 0.0002477419354838709,
386
+ "loss": 0.416,
387
+ "step": 54
388
+ },
389
+ {
390
+ "epoch": 1.76,
391
+ "grad_norm": 0.41548973321914673,
392
+ "learning_rate": 0.00024677419354838707,
393
+ "loss": 0.5501,
394
+ "step": 55
395
+ },
396
+ {
397
+ "epoch": 1.792,
398
+ "grad_norm": 0.4093388617038727,
399
+ "learning_rate": 0.0002458064516129032,
400
+ "loss": 0.5557,
401
+ "step": 56
402
+ },
403
+ {
404
+ "epoch": 1.8239999999999998,
405
+ "grad_norm": 0.3934040665626526,
406
+ "learning_rate": 0.00024483870967741936,
407
+ "loss": 0.602,
408
+ "step": 57
409
+ },
410
+ {
411
+ "epoch": 1.8559999999999999,
412
+ "grad_norm": 0.42221033573150635,
413
+ "learning_rate": 0.00024387096774193545,
414
+ "loss": 0.6421,
415
+ "step": 58
416
+ },
417
+ {
418
+ "epoch": 1.888,
419
+ "grad_norm": 0.4351339340209961,
420
+ "learning_rate": 0.0002429032258064516,
421
+ "loss": 0.5615,
422
+ "step": 59
423
+ },
424
+ {
425
+ "epoch": 1.92,
426
+ "grad_norm": 0.4319838881492615,
427
+ "learning_rate": 0.00024193548387096771,
428
+ "loss": 0.6804,
429
+ "step": 60
430
+ },
431
+ {
432
+ "epoch": 1.952,
433
+ "grad_norm": 0.40016525983810425,
434
+ "learning_rate": 0.00024096774193548386,
435
+ "loss": 0.5432,
436
+ "step": 61
437
+ },
438
+ {
439
+ "epoch": 1.984,
440
+ "grad_norm": 0.3905942440032959,
441
+ "learning_rate": 0.00023999999999999998,
442
+ "loss": 0.4187,
443
+ "step": 62
444
+ },
445
+ {
446
+ "epoch": 2.016,
447
+ "grad_norm": 0.8056382536888123,
448
+ "learning_rate": 0.0002390322580645161,
449
+ "loss": 1.0174,
450
+ "step": 63
451
+ },
452
+ {
453
+ "epoch": 2.048,
454
+ "grad_norm": 0.3835236430168152,
455
+ "learning_rate": 0.00023806451612903224,
456
+ "loss": 0.5992,
457
+ "step": 64
458
+ },
459
+ {
460
+ "epoch": 2.08,
461
+ "grad_norm": 0.41092216968536377,
462
+ "learning_rate": 0.00023709677419354836,
463
+ "loss": 0.4746,
464
+ "step": 65
465
+ },
466
+ {
467
+ "epoch": 2.112,
468
+ "grad_norm": 0.39536622166633606,
469
+ "learning_rate": 0.0002361290322580645,
470
+ "loss": 0.3946,
471
+ "step": 66
472
+ },
473
+ {
474
+ "epoch": 2.144,
475
+ "grad_norm": 0.3927665948867798,
476
+ "learning_rate": 0.0002351612903225806,
477
+ "loss": 0.5187,
478
+ "step": 67
479
+ },
480
+ {
481
+ "epoch": 2.176,
482
+ "grad_norm": 0.39792704582214355,
483
+ "learning_rate": 0.00023419354838709674,
484
+ "loss": 0.4568,
485
+ "step": 68
486
+ },
487
+ {
488
+ "epoch": 2.208,
489
+ "grad_norm": 0.5023652911186218,
490
+ "learning_rate": 0.0002332258064516129,
491
+ "loss": 0.6166,
492
+ "step": 69
493
+ },
494
+ {
495
+ "epoch": 2.24,
496
+ "grad_norm": 0.425017774105072,
497
+ "learning_rate": 0.000232258064516129,
498
+ "loss": 0.42,
499
+ "step": 70
500
+ },
501
+ {
502
+ "epoch": 2.2720000000000002,
503
+ "grad_norm": 0.46458110213279724,
504
+ "learning_rate": 0.00023129032258064516,
505
+ "loss": 0.4613,
506
+ "step": 71
507
+ },
508
+ {
509
+ "epoch": 2.304,
510
+ "grad_norm": 0.49037960171699524,
511
+ "learning_rate": 0.00023032258064516125,
512
+ "loss": 0.5509,
513
+ "step": 72
514
+ },
515
+ {
516
+ "epoch": 2.336,
517
+ "grad_norm": 0.5233697891235352,
518
+ "learning_rate": 0.0002293548387096774,
519
+ "loss": 0.6396,
520
+ "step": 73
521
+ },
522
+ {
523
+ "epoch": 2.368,
524
+ "grad_norm": 0.4720582962036133,
525
+ "learning_rate": 0.0002283870967741935,
526
+ "loss": 0.5076,
527
+ "step": 74
528
+ },
529
+ {
530
+ "epoch": 2.4,
531
+ "grad_norm": 0.4900650382041931,
532
+ "learning_rate": 0.00022741935483870966,
533
+ "loss": 0.4794,
534
+ "step": 75
535
+ },
536
+ {
537
+ "epoch": 2.432,
538
+ "grad_norm": 0.6321704983711243,
539
+ "learning_rate": 0.0002264516129032258,
540
+ "loss": 0.6677,
541
+ "step": 76
542
+ },
543
+ {
544
+ "epoch": 2.464,
545
+ "grad_norm": 0.5305324792861938,
546
+ "learning_rate": 0.00022548387096774192,
547
+ "loss": 0.5102,
548
+ "step": 77
549
+ },
550
+ {
551
+ "epoch": 2.496,
552
+ "grad_norm": 0.5799248218536377,
553
+ "learning_rate": 0.00022451612903225804,
554
+ "loss": 0.5274,
555
+ "step": 78
556
+ },
557
+ {
558
+ "epoch": 2.528,
559
+ "grad_norm": 0.4990101456642151,
560
+ "learning_rate": 0.00022354838709677416,
561
+ "loss": 0.5407,
562
+ "step": 79
563
+ },
564
+ {
565
+ "epoch": 2.56,
566
+ "grad_norm": 0.4779827296733856,
567
+ "learning_rate": 0.0002225806451612903,
568
+ "loss": 0.5166,
569
+ "step": 80
570
+ },
571
+ {
572
+ "epoch": 2.592,
573
+ "grad_norm": 0.5140111446380615,
574
+ "learning_rate": 0.00022161290322580645,
575
+ "loss": 0.3288,
576
+ "step": 81
577
+ },
578
+ {
579
+ "epoch": 2.624,
580
+ "grad_norm": 0.5674853920936584,
581
+ "learning_rate": 0.00022064516129032257,
582
+ "loss": 0.666,
583
+ "step": 82
584
+ },
585
+ {
586
+ "epoch": 2.656,
587
+ "grad_norm": 0.5277597308158875,
588
+ "learning_rate": 0.00021967741935483871,
589
+ "loss": 0.5335,
590
+ "step": 83
591
+ },
592
+ {
593
+ "epoch": 2.6879999999999997,
594
+ "grad_norm": 0.6029439568519592,
595
+ "learning_rate": 0.0002187096774193548,
596
+ "loss": 0.693,
597
+ "step": 84
598
+ },
599
+ {
600
+ "epoch": 2.7199999999999998,
601
+ "grad_norm": 0.5039327144622803,
602
+ "learning_rate": 0.00021774193548387095,
603
+ "loss": 0.5728,
604
+ "step": 85
605
+ },
606
+ {
607
+ "epoch": 2.752,
608
+ "grad_norm": 0.5564692616462708,
609
+ "learning_rate": 0.00021677419354838707,
610
+ "loss": 0.4734,
611
+ "step": 86
612
+ },
613
+ {
614
+ "epoch": 2.784,
615
+ "grad_norm": 0.5278319120407104,
616
+ "learning_rate": 0.00021580645161290322,
617
+ "loss": 0.5834,
618
+ "step": 87
619
+ },
620
+ {
621
+ "epoch": 2.816,
622
+ "grad_norm": 0.5445135831832886,
623
+ "learning_rate": 0.00021483870967741936,
624
+ "loss": 0.4642,
625
+ "step": 88
626
+ },
627
+ {
628
+ "epoch": 2.848,
629
+ "grad_norm": 0.5394749045372009,
630
+ "learning_rate": 0.00021387096774193545,
631
+ "loss": 0.4779,
632
+ "step": 89
633
+ },
634
+ {
635
+ "epoch": 2.88,
636
+ "grad_norm": 0.5756134390830994,
637
+ "learning_rate": 0.0002129032258064516,
638
+ "loss": 0.5607,
639
+ "step": 90
640
+ },
641
+ {
642
+ "epoch": 2.912,
643
+ "grad_norm": 0.48361241817474365,
644
+ "learning_rate": 0.00021193548387096772,
645
+ "loss": 0.4278,
646
+ "step": 91
647
+ },
648
+ {
649
+ "epoch": 2.944,
650
+ "grad_norm": 0.5017121434211731,
651
+ "learning_rate": 0.00021096774193548386,
652
+ "loss": 0.4834,
653
+ "step": 92
654
+ },
655
+ {
656
+ "epoch": 2.976,
657
+ "grad_norm": 0.4741989076137543,
658
+ "learning_rate": 0.00020999999999999998,
659
+ "loss": 0.468,
660
+ "step": 93
661
+ },
662
+ {
663
+ "epoch": 3.008,
664
+ "grad_norm": 1.003368854522705,
665
+ "learning_rate": 0.0002090322580645161,
666
+ "loss": 0.8614,
667
+ "step": 94
668
+ },
669
+ {
670
+ "epoch": 3.04,
671
+ "grad_norm": 0.4782228469848633,
672
+ "learning_rate": 0.00020806451612903225,
673
+ "loss": 0.4111,
674
+ "step": 95
675
+ },
676
+ {
677
+ "epoch": 3.072,
678
+ "grad_norm": 0.4558674395084381,
679
+ "learning_rate": 0.00020709677419354836,
680
+ "loss": 0.3463,
681
+ "step": 96
682
+ },
683
+ {
684
+ "epoch": 3.104,
685
+ "grad_norm": 0.4409371316432953,
686
+ "learning_rate": 0.0002061290322580645,
687
+ "loss": 0.2571,
688
+ "step": 97
689
+ },
690
+ {
691
+ "epoch": 3.136,
692
+ "grad_norm": 0.5415034890174866,
693
+ "learning_rate": 0.00020516129032258063,
694
+ "loss": 0.5707,
695
+ "step": 98
696
+ },
697
+ {
698
+ "epoch": 3.168,
699
+ "grad_norm": 0.6157724857330322,
700
+ "learning_rate": 0.00020419354838709677,
701
+ "loss": 0.5692,
702
+ "step": 99
703
+ },
704
+ {
705
+ "epoch": 3.2,
706
+ "grad_norm": 0.4855688810348511,
707
+ "learning_rate": 0.00020322580645161287,
708
+ "loss": 0.3311,
709
+ "step": 100
710
+ }
711
+ ],
712
+ "logging_steps": 1,
713
+ "max_steps": 310,
714
+ "num_input_tokens_seen": 0,
715
+ "num_train_epochs": 10,
716
+ "save_steps": 100,
717
+ "stateful_callbacks": {
718
+ "TrainerControl": {
719
+ "args": {
720
+ "should_epoch_stop": false,
721
+ "should_evaluate": false,
722
+ "should_log": false,
723
+ "should_save": true,
724
+ "should_training_stop": false
725
+ },
726
+ "attributes": {}
727
+ }
728
+ },
729
+ "total_flos": 2.3700930822144e+16,
730
+ "train_batch_size": 3,
731
+ "trial_name": null,
732
+ "trial_params": null
733
+ }
checkpoint-100/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:457c697b05fd5daa3c83df8920300c4940c26fb78ace5b5428b7c95d133a0ef4
3
+ size 5560
checkpoint-200/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: /home/ubuntu/Apps/DataInf/models/model
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.2
checkpoint-200/adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "/home/ubuntu/Apps/DataInf/models/model",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "q_proj",
24
+ "v_proj"
25
+ ],
26
+ "task_type": "CAUSAL_LM",
27
+ "use_dora": false,
28
+ "use_rslora": false
29
+ }
checkpoint-200/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:76034bd12f617b62f87d1878710f04e43736a4161233cbd240f6ea4c24e35dc7
3
+ size 26235704
checkpoint-200/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a8e377a77f5c23ff7f423e5dbb2c0bb98a05cbe4a1ce433ebe86185e505f3d95
3
+ size 52563258
checkpoint-200/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0ec44201e5ce901f0bed6a4979735328ac972b7f817413219ecec88ecb8ce9c0
3
+ size 14244
checkpoint-200/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c3048d808fac665a3eab1331732df75d683f7b1c8261cab5545365b6834a4e34
3
+ size 1064
checkpoint-200/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
checkpoint-200/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
checkpoint-200/tokenizer_config.json ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": null,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ }
30
+ },
31
+ "bos_token": "<s>",
32
+ "chat_template": "{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% else %}{% set loop_messages = messages %}{% set system_message = false %}{% endif %}{% for message in loop_messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if loop.index0 == 0 and system_message != false %}{% set content = '<<SYS>>\\n' + system_message + '\\n<</SYS>>\\n\\n' + message['content'] %}{% else %}{% set content = message['content'] %}{% endif %}{% if message['role'] == 'user' %}{{ bos_token + '[INST] ' + content.strip() + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ ' ' + content.strip() + ' ' + eos_token }}{% endif %}{% endfor %}",
33
+ "clean_up_tokenization_spaces": false,
34
+ "eos_token": "</s>",
35
+ "legacy": false,
36
+ "model_max_length": 1000000000000000019884624838656,
37
+ "pad_token": "</s>",
38
+ "padding_side": "right",
39
+ "sp_model_kwargs": {},
40
+ "spaces_between_special_tokens": false,
41
+ "tokenizer_class": "LlamaTokenizer",
42
+ "unk_token": "<unk>",
43
+ "use_default_system_prompt": false
44
+ }
checkpoint-200/trainer_state.json ADDED
@@ -0,0 +1,1433 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 6.4,
5
+ "eval_steps": 500,
6
+ "global_step": 200,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.032,
13
+ "grad_norm": 0.3297976851463318,
14
+ "learning_rate": 0.0002990322580645161,
15
+ "loss": 1.0389,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.064,
20
+ "grad_norm": 0.4069916307926178,
21
+ "learning_rate": 0.0002980645161290322,
22
+ "loss": 1.3377,
23
+ "step": 2
24
+ },
25
+ {
26
+ "epoch": 0.096,
27
+ "grad_norm": 0.42084500193595886,
28
+ "learning_rate": 0.00029709677419354836,
29
+ "loss": 0.9366,
30
+ "step": 3
31
+ },
32
+ {
33
+ "epoch": 0.128,
34
+ "grad_norm": 0.4641948938369751,
35
+ "learning_rate": 0.0002961290322580645,
36
+ "loss": 1.0086,
37
+ "step": 4
38
+ },
39
+ {
40
+ "epoch": 0.16,
41
+ "grad_norm": 0.3840750455856323,
42
+ "learning_rate": 0.00029516129032258065,
43
+ "loss": 0.8333,
44
+ "step": 5
45
+ },
46
+ {
47
+ "epoch": 0.192,
48
+ "grad_norm": 0.4263865053653717,
49
+ "learning_rate": 0.00029419354838709674,
50
+ "loss": 0.854,
51
+ "step": 6
52
+ },
53
+ {
54
+ "epoch": 0.224,
55
+ "grad_norm": 0.48615148663520813,
56
+ "learning_rate": 0.0002932258064516129,
57
+ "loss": 0.9548,
58
+ "step": 7
59
+ },
60
+ {
61
+ "epoch": 0.256,
62
+ "grad_norm": 0.44419369101524353,
63
+ "learning_rate": 0.00029225806451612903,
64
+ "loss": 0.8482,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.288,
69
+ "grad_norm": 0.5317733883857727,
70
+ "learning_rate": 0.0002912903225806451,
71
+ "loss": 0.9426,
72
+ "step": 9
73
+ },
74
+ {
75
+ "epoch": 0.32,
76
+ "grad_norm": 0.47260937094688416,
77
+ "learning_rate": 0.00029032258064516127,
78
+ "loss": 0.9816,
79
+ "step": 10
80
+ },
81
+ {
82
+ "epoch": 0.352,
83
+ "grad_norm": 0.39063283801078796,
84
+ "learning_rate": 0.00028935483870967736,
85
+ "loss": 0.84,
86
+ "step": 11
87
+ },
88
+ {
89
+ "epoch": 0.384,
90
+ "grad_norm": 0.39234670996665955,
91
+ "learning_rate": 0.0002883870967741935,
92
+ "loss": 0.7476,
93
+ "step": 12
94
+ },
95
+ {
96
+ "epoch": 0.416,
97
+ "grad_norm": 0.40661805868148804,
98
+ "learning_rate": 0.00028741935483870965,
99
+ "loss": 0.9282,
100
+ "step": 13
101
+ },
102
+ {
103
+ "epoch": 0.448,
104
+ "grad_norm": 0.42970865964889526,
105
+ "learning_rate": 0.0002864516129032258,
106
+ "loss": 0.7858,
107
+ "step": 14
108
+ },
109
+ {
110
+ "epoch": 0.48,
111
+ "grad_norm": 0.3780193626880646,
112
+ "learning_rate": 0.00028548387096774194,
113
+ "loss": 0.7968,
114
+ "step": 15
115
+ },
116
+ {
117
+ "epoch": 0.512,
118
+ "grad_norm": 0.37006014585494995,
119
+ "learning_rate": 0.00028451612903225803,
120
+ "loss": 0.6801,
121
+ "step": 16
122
+ },
123
+ {
124
+ "epoch": 0.544,
125
+ "grad_norm": 0.3660840392112732,
126
+ "learning_rate": 0.0002835483870967742,
127
+ "loss": 0.5914,
128
+ "step": 17
129
+ },
130
+ {
131
+ "epoch": 0.576,
132
+ "grad_norm": 0.3270975351333618,
133
+ "learning_rate": 0.00028258064516129027,
134
+ "loss": 0.6449,
135
+ "step": 18
136
+ },
137
+ {
138
+ "epoch": 0.608,
139
+ "grad_norm": 0.3859024941921234,
140
+ "learning_rate": 0.0002816129032258064,
141
+ "loss": 0.8144,
142
+ "step": 19
143
+ },
144
+ {
145
+ "epoch": 0.64,
146
+ "grad_norm": 0.37092071771621704,
147
+ "learning_rate": 0.00028064516129032256,
148
+ "loss": 0.7667,
149
+ "step": 20
150
+ },
151
+ {
152
+ "epoch": 0.672,
153
+ "grad_norm": 0.37667015194892883,
154
+ "learning_rate": 0.0002796774193548387,
155
+ "loss": 0.7751,
156
+ "step": 21
157
+ },
158
+ {
159
+ "epoch": 0.704,
160
+ "grad_norm": 0.3832458555698395,
161
+ "learning_rate": 0.0002787096774193548,
162
+ "loss": 0.755,
163
+ "step": 22
164
+ },
165
+ {
166
+ "epoch": 0.736,
167
+ "grad_norm": 0.327288419008255,
168
+ "learning_rate": 0.00027774193548387095,
169
+ "loss": 0.7178,
170
+ "step": 23
171
+ },
172
+ {
173
+ "epoch": 0.768,
174
+ "grad_norm": 0.34552687406539917,
175
+ "learning_rate": 0.0002767741935483871,
176
+ "loss": 0.7057,
177
+ "step": 24
178
+ },
179
+ {
180
+ "epoch": 0.8,
181
+ "grad_norm": 0.3611259460449219,
182
+ "learning_rate": 0.0002758064516129032,
183
+ "loss": 0.8159,
184
+ "step": 25
185
+ },
186
+ {
187
+ "epoch": 0.832,
188
+ "grad_norm": 0.3345054090023041,
189
+ "learning_rate": 0.00027483870967741933,
190
+ "loss": 0.7208,
191
+ "step": 26
192
+ },
193
+ {
194
+ "epoch": 0.864,
195
+ "grad_norm": 0.3697254955768585,
196
+ "learning_rate": 0.0002738709677419355,
197
+ "loss": 0.8964,
198
+ "step": 27
199
+ },
200
+ {
201
+ "epoch": 0.896,
202
+ "grad_norm": 0.3905017375946045,
203
+ "learning_rate": 0.00027290322580645157,
204
+ "loss": 0.7794,
205
+ "step": 28
206
+ },
207
+ {
208
+ "epoch": 0.928,
209
+ "grad_norm": 0.3715725243091583,
210
+ "learning_rate": 0.0002719354838709677,
211
+ "loss": 0.6966,
212
+ "step": 29
213
+ },
214
+ {
215
+ "epoch": 0.96,
216
+ "grad_norm": 0.3650343120098114,
217
+ "learning_rate": 0.00027096774193548386,
218
+ "loss": 0.5761,
219
+ "step": 30
220
+ },
221
+ {
222
+ "epoch": 0.992,
223
+ "grad_norm": 0.33932459354400635,
224
+ "learning_rate": 0.00027,
225
+ "loss": 0.556,
226
+ "step": 31
227
+ },
228
+ {
229
+ "epoch": 1.024,
230
+ "grad_norm": 0.6371742486953735,
231
+ "learning_rate": 0.0002690322580645161,
232
+ "loss": 0.847,
233
+ "step": 32
234
+ },
235
+ {
236
+ "epoch": 1.056,
237
+ "grad_norm": 0.37499895691871643,
238
+ "learning_rate": 0.00026806451612903224,
239
+ "loss": 0.8419,
240
+ "step": 33
241
+ },
242
+ {
243
+ "epoch": 1.088,
244
+ "grad_norm": 0.33221954107284546,
245
+ "learning_rate": 0.0002670967741935484,
246
+ "loss": 0.6011,
247
+ "step": 34
248
+ },
249
+ {
250
+ "epoch": 1.12,
251
+ "grad_norm": 0.344096839427948,
252
+ "learning_rate": 0.0002661290322580645,
253
+ "loss": 0.6501,
254
+ "step": 35
255
+ },
256
+ {
257
+ "epoch": 1.152,
258
+ "grad_norm": 0.38429391384124756,
259
+ "learning_rate": 0.0002651612903225806,
260
+ "loss": 0.8091,
261
+ "step": 36
262
+ },
263
+ {
264
+ "epoch": 1.184,
265
+ "grad_norm": 0.38014867901802063,
266
+ "learning_rate": 0.00026419354838709677,
267
+ "loss": 0.7668,
268
+ "step": 37
269
+ },
270
+ {
271
+ "epoch": 1.216,
272
+ "grad_norm": 0.3352573812007904,
273
+ "learning_rate": 0.00026322580645161286,
274
+ "loss": 0.5444,
275
+ "step": 38
276
+ },
277
+ {
278
+ "epoch": 1.248,
279
+ "grad_norm": 0.33811062574386597,
280
+ "learning_rate": 0.000262258064516129,
281
+ "loss": 0.512,
282
+ "step": 39
283
+ },
284
+ {
285
+ "epoch": 1.28,
286
+ "grad_norm": 0.3998416066169739,
287
+ "learning_rate": 0.00026129032258064515,
288
+ "loss": 0.6315,
289
+ "step": 40
290
+ },
291
+ {
292
+ "epoch": 1.312,
293
+ "grad_norm": 0.3983341157436371,
294
+ "learning_rate": 0.0002603225806451613,
295
+ "loss": 0.5882,
296
+ "step": 41
297
+ },
298
+ {
299
+ "epoch": 1.3439999999999999,
300
+ "grad_norm": 0.4585898816585541,
301
+ "learning_rate": 0.0002593548387096774,
302
+ "loss": 0.761,
303
+ "step": 42
304
+ },
305
+ {
306
+ "epoch": 1.376,
307
+ "grad_norm": 0.4080730080604553,
308
+ "learning_rate": 0.00025838709677419354,
309
+ "loss": 0.6716,
310
+ "step": 43
311
+ },
312
+ {
313
+ "epoch": 1.408,
314
+ "grad_norm": 0.4068273901939392,
315
+ "learning_rate": 0.0002574193548387096,
316
+ "loss": 0.6376,
317
+ "step": 44
318
+ },
319
+ {
320
+ "epoch": 1.44,
321
+ "grad_norm": 0.4406949579715729,
322
+ "learning_rate": 0.00025645161290322577,
323
+ "loss": 0.4594,
324
+ "step": 45
325
+ },
326
+ {
327
+ "epoch": 1.472,
328
+ "grad_norm": 0.34500986337661743,
329
+ "learning_rate": 0.0002554838709677419,
330
+ "loss": 0.3672,
331
+ "step": 46
332
+ },
333
+ {
334
+ "epoch": 1.504,
335
+ "grad_norm": 0.4760681390762329,
336
+ "learning_rate": 0.00025451612903225806,
337
+ "loss": 0.6331,
338
+ "step": 47
339
+ },
340
+ {
341
+ "epoch": 1.536,
342
+ "grad_norm": 0.39281558990478516,
343
+ "learning_rate": 0.0002535483870967742,
344
+ "loss": 0.5845,
345
+ "step": 48
346
+ },
347
+ {
348
+ "epoch": 1.568,
349
+ "grad_norm": 0.4265002906322479,
350
+ "learning_rate": 0.0002525806451612903,
351
+ "loss": 0.4461,
352
+ "step": 49
353
+ },
354
+ {
355
+ "epoch": 1.6,
356
+ "grad_norm": 0.40967294573783875,
357
+ "learning_rate": 0.00025161290322580645,
358
+ "loss": 0.7011,
359
+ "step": 50
360
+ },
361
+ {
362
+ "epoch": 1.6320000000000001,
363
+ "grad_norm": 0.4288088381290436,
364
+ "learning_rate": 0.00025064516129032254,
365
+ "loss": 0.6928,
366
+ "step": 51
367
+ },
368
+ {
369
+ "epoch": 1.6640000000000001,
370
+ "grad_norm": 0.4356289803981781,
371
+ "learning_rate": 0.0002496774193548387,
372
+ "loss": 0.7972,
373
+ "step": 52
374
+ },
375
+ {
376
+ "epoch": 1.696,
377
+ "grad_norm": 0.3827487826347351,
378
+ "learning_rate": 0.0002487096774193548,
379
+ "loss": 0.2991,
380
+ "step": 53
381
+ },
382
+ {
383
+ "epoch": 1.728,
384
+ "grad_norm": 0.40093398094177246,
385
+ "learning_rate": 0.0002477419354838709,
386
+ "loss": 0.416,
387
+ "step": 54
388
+ },
389
+ {
390
+ "epoch": 1.76,
391
+ "grad_norm": 0.41548973321914673,
392
+ "learning_rate": 0.00024677419354838707,
393
+ "loss": 0.5501,
394
+ "step": 55
395
+ },
396
+ {
397
+ "epoch": 1.792,
398
+ "grad_norm": 0.4093388617038727,
399
+ "learning_rate": 0.0002458064516129032,
400
+ "loss": 0.5557,
401
+ "step": 56
402
+ },
403
+ {
404
+ "epoch": 1.8239999999999998,
405
+ "grad_norm": 0.3934040665626526,
406
+ "learning_rate": 0.00024483870967741936,
407
+ "loss": 0.602,
408
+ "step": 57
409
+ },
410
+ {
411
+ "epoch": 1.8559999999999999,
412
+ "grad_norm": 0.42221033573150635,
413
+ "learning_rate": 0.00024387096774193545,
414
+ "loss": 0.6421,
415
+ "step": 58
416
+ },
417
+ {
418
+ "epoch": 1.888,
419
+ "grad_norm": 0.4351339340209961,
420
+ "learning_rate": 0.0002429032258064516,
421
+ "loss": 0.5615,
422
+ "step": 59
423
+ },
424
+ {
425
+ "epoch": 1.92,
426
+ "grad_norm": 0.4319838881492615,
427
+ "learning_rate": 0.00024193548387096771,
428
+ "loss": 0.6804,
429
+ "step": 60
430
+ },
431
+ {
432
+ "epoch": 1.952,
433
+ "grad_norm": 0.40016525983810425,
434
+ "learning_rate": 0.00024096774193548386,
435
+ "loss": 0.5432,
436
+ "step": 61
437
+ },
438
+ {
439
+ "epoch": 1.984,
440
+ "grad_norm": 0.3905942440032959,
441
+ "learning_rate": 0.00023999999999999998,
442
+ "loss": 0.4187,
443
+ "step": 62
444
+ },
445
+ {
446
+ "epoch": 2.016,
447
+ "grad_norm": 0.8056382536888123,
448
+ "learning_rate": 0.0002390322580645161,
449
+ "loss": 1.0174,
450
+ "step": 63
451
+ },
452
+ {
453
+ "epoch": 2.048,
454
+ "grad_norm": 0.3835236430168152,
455
+ "learning_rate": 0.00023806451612903224,
456
+ "loss": 0.5992,
457
+ "step": 64
458
+ },
459
+ {
460
+ "epoch": 2.08,
461
+ "grad_norm": 0.41092216968536377,
462
+ "learning_rate": 0.00023709677419354836,
463
+ "loss": 0.4746,
464
+ "step": 65
465
+ },
466
+ {
467
+ "epoch": 2.112,
468
+ "grad_norm": 0.39536622166633606,
469
+ "learning_rate": 0.0002361290322580645,
470
+ "loss": 0.3946,
471
+ "step": 66
472
+ },
473
+ {
474
+ "epoch": 2.144,
475
+ "grad_norm": 0.3927665948867798,
476
+ "learning_rate": 0.0002351612903225806,
477
+ "loss": 0.5187,
478
+ "step": 67
479
+ },
480
+ {
481
+ "epoch": 2.176,
482
+ "grad_norm": 0.39792704582214355,
483
+ "learning_rate": 0.00023419354838709674,
484
+ "loss": 0.4568,
485
+ "step": 68
486
+ },
487
+ {
488
+ "epoch": 2.208,
489
+ "grad_norm": 0.5023652911186218,
490
+ "learning_rate": 0.0002332258064516129,
491
+ "loss": 0.6166,
492
+ "step": 69
493
+ },
494
+ {
495
+ "epoch": 2.24,
496
+ "grad_norm": 0.425017774105072,
497
+ "learning_rate": 0.000232258064516129,
498
+ "loss": 0.42,
499
+ "step": 70
500
+ },
501
+ {
502
+ "epoch": 2.2720000000000002,
503
+ "grad_norm": 0.46458110213279724,
504
+ "learning_rate": 0.00023129032258064516,
505
+ "loss": 0.4613,
506
+ "step": 71
507
+ },
508
+ {
509
+ "epoch": 2.304,
510
+ "grad_norm": 0.49037960171699524,
511
+ "learning_rate": 0.00023032258064516125,
512
+ "loss": 0.5509,
513
+ "step": 72
514
+ },
515
+ {
516
+ "epoch": 2.336,
517
+ "grad_norm": 0.5233697891235352,
518
+ "learning_rate": 0.0002293548387096774,
519
+ "loss": 0.6396,
520
+ "step": 73
521
+ },
522
+ {
523
+ "epoch": 2.368,
524
+ "grad_norm": 0.4720582962036133,
525
+ "learning_rate": 0.0002283870967741935,
526
+ "loss": 0.5076,
527
+ "step": 74
528
+ },
529
+ {
530
+ "epoch": 2.4,
531
+ "grad_norm": 0.4900650382041931,
532
+ "learning_rate": 0.00022741935483870966,
533
+ "loss": 0.4794,
534
+ "step": 75
535
+ },
536
+ {
537
+ "epoch": 2.432,
538
+ "grad_norm": 0.6321704983711243,
539
+ "learning_rate": 0.0002264516129032258,
540
+ "loss": 0.6677,
541
+ "step": 76
542
+ },
543
+ {
544
+ "epoch": 2.464,
545
+ "grad_norm": 0.5305324792861938,
546
+ "learning_rate": 0.00022548387096774192,
547
+ "loss": 0.5102,
548
+ "step": 77
549
+ },
550
+ {
551
+ "epoch": 2.496,
552
+ "grad_norm": 0.5799248218536377,
553
+ "learning_rate": 0.00022451612903225804,
554
+ "loss": 0.5274,
555
+ "step": 78
556
+ },
557
+ {
558
+ "epoch": 2.528,
559
+ "grad_norm": 0.4990101456642151,
560
+ "learning_rate": 0.00022354838709677416,
561
+ "loss": 0.5407,
562
+ "step": 79
563
+ },
564
+ {
565
+ "epoch": 2.56,
566
+ "grad_norm": 0.4779827296733856,
567
+ "learning_rate": 0.0002225806451612903,
568
+ "loss": 0.5166,
569
+ "step": 80
570
+ },
571
+ {
572
+ "epoch": 2.592,
573
+ "grad_norm": 0.5140111446380615,
574
+ "learning_rate": 0.00022161290322580645,
575
+ "loss": 0.3288,
576
+ "step": 81
577
+ },
578
+ {
579
+ "epoch": 2.624,
580
+ "grad_norm": 0.5674853920936584,
581
+ "learning_rate": 0.00022064516129032257,
582
+ "loss": 0.666,
583
+ "step": 82
584
+ },
585
+ {
586
+ "epoch": 2.656,
587
+ "grad_norm": 0.5277597308158875,
588
+ "learning_rate": 0.00021967741935483871,
589
+ "loss": 0.5335,
590
+ "step": 83
591
+ },
592
+ {
593
+ "epoch": 2.6879999999999997,
594
+ "grad_norm": 0.6029439568519592,
595
+ "learning_rate": 0.0002187096774193548,
596
+ "loss": 0.693,
597
+ "step": 84
598
+ },
599
+ {
600
+ "epoch": 2.7199999999999998,
601
+ "grad_norm": 0.5039327144622803,
602
+ "learning_rate": 0.00021774193548387095,
603
+ "loss": 0.5728,
604
+ "step": 85
605
+ },
606
+ {
607
+ "epoch": 2.752,
608
+ "grad_norm": 0.5564692616462708,
609
+ "learning_rate": 0.00021677419354838707,
610
+ "loss": 0.4734,
611
+ "step": 86
612
+ },
613
+ {
614
+ "epoch": 2.784,
615
+ "grad_norm": 0.5278319120407104,
616
+ "learning_rate": 0.00021580645161290322,
617
+ "loss": 0.5834,
618
+ "step": 87
619
+ },
620
+ {
621
+ "epoch": 2.816,
622
+ "grad_norm": 0.5445135831832886,
623
+ "learning_rate": 0.00021483870967741936,
624
+ "loss": 0.4642,
625
+ "step": 88
626
+ },
627
+ {
628
+ "epoch": 2.848,
629
+ "grad_norm": 0.5394749045372009,
630
+ "learning_rate": 0.00021387096774193545,
631
+ "loss": 0.4779,
632
+ "step": 89
633
+ },
634
+ {
635
+ "epoch": 2.88,
636
+ "grad_norm": 0.5756134390830994,
637
+ "learning_rate": 0.0002129032258064516,
638
+ "loss": 0.5607,
639
+ "step": 90
640
+ },
641
+ {
642
+ "epoch": 2.912,
643
+ "grad_norm": 0.48361241817474365,
644
+ "learning_rate": 0.00021193548387096772,
645
+ "loss": 0.4278,
646
+ "step": 91
647
+ },
648
+ {
649
+ "epoch": 2.944,
650
+ "grad_norm": 0.5017121434211731,
651
+ "learning_rate": 0.00021096774193548386,
652
+ "loss": 0.4834,
653
+ "step": 92
654
+ },
655
+ {
656
+ "epoch": 2.976,
657
+ "grad_norm": 0.4741989076137543,
658
+ "learning_rate": 0.00020999999999999998,
659
+ "loss": 0.468,
660
+ "step": 93
661
+ },
662
+ {
663
+ "epoch": 3.008,
664
+ "grad_norm": 1.003368854522705,
665
+ "learning_rate": 0.0002090322580645161,
666
+ "loss": 0.8614,
667
+ "step": 94
668
+ },
669
+ {
670
+ "epoch": 3.04,
671
+ "grad_norm": 0.4782228469848633,
672
+ "learning_rate": 0.00020806451612903225,
673
+ "loss": 0.4111,
674
+ "step": 95
675
+ },
676
+ {
677
+ "epoch": 3.072,
678
+ "grad_norm": 0.4558674395084381,
679
+ "learning_rate": 0.00020709677419354836,
680
+ "loss": 0.3463,
681
+ "step": 96
682
+ },
683
+ {
684
+ "epoch": 3.104,
685
+ "grad_norm": 0.4409371316432953,
686
+ "learning_rate": 0.0002061290322580645,
687
+ "loss": 0.2571,
688
+ "step": 97
689
+ },
690
+ {
691
+ "epoch": 3.136,
692
+ "grad_norm": 0.5415034890174866,
693
+ "learning_rate": 0.00020516129032258063,
694
+ "loss": 0.5707,
695
+ "step": 98
696
+ },
697
+ {
698
+ "epoch": 3.168,
699
+ "grad_norm": 0.6157724857330322,
700
+ "learning_rate": 0.00020419354838709677,
701
+ "loss": 0.5692,
702
+ "step": 99
703
+ },
704
+ {
705
+ "epoch": 3.2,
706
+ "grad_norm": 0.4855688810348511,
707
+ "learning_rate": 0.00020322580645161287,
708
+ "loss": 0.3311,
709
+ "step": 100
710
+ },
711
+ {
712
+ "epoch": 3.232,
713
+ "grad_norm": 0.569878101348877,
714
+ "learning_rate": 0.000202258064516129,
715
+ "loss": 0.4707,
716
+ "step": 101
717
+ },
718
+ {
719
+ "epoch": 3.2640000000000002,
720
+ "grad_norm": 0.645232081413269,
721
+ "learning_rate": 0.00020129032258064516,
722
+ "loss": 0.5504,
723
+ "step": 102
724
+ },
725
+ {
726
+ "epoch": 3.296,
727
+ "grad_norm": 0.5775763392448425,
728
+ "learning_rate": 0.00020032258064516128,
729
+ "loss": 0.3651,
730
+ "step": 103
731
+ },
732
+ {
733
+ "epoch": 3.328,
734
+ "grad_norm": 0.5808250904083252,
735
+ "learning_rate": 0.00019935483870967742,
736
+ "loss": 0.5068,
737
+ "step": 104
738
+ },
739
+ {
740
+ "epoch": 3.36,
741
+ "grad_norm": 0.689313530921936,
742
+ "learning_rate": 0.0001983870967741935,
743
+ "loss": 0.4936,
744
+ "step": 105
745
+ },
746
+ {
747
+ "epoch": 3.392,
748
+ "grad_norm": 0.6571519374847412,
749
+ "learning_rate": 0.00019741935483870966,
750
+ "loss": 0.3671,
751
+ "step": 106
752
+ },
753
+ {
754
+ "epoch": 3.424,
755
+ "grad_norm": 0.6340517401695251,
756
+ "learning_rate": 0.00019645161290322578,
757
+ "loss": 0.4783,
758
+ "step": 107
759
+ },
760
+ {
761
+ "epoch": 3.456,
762
+ "grad_norm": 0.7031407952308655,
763
+ "learning_rate": 0.00019548387096774192,
764
+ "loss": 0.427,
765
+ "step": 108
766
+ },
767
+ {
768
+ "epoch": 3.488,
769
+ "grad_norm": 0.728496789932251,
770
+ "learning_rate": 0.00019451612903225807,
771
+ "loss": 0.5497,
772
+ "step": 109
773
+ },
774
+ {
775
+ "epoch": 3.52,
776
+ "grad_norm": 0.6106727719306946,
777
+ "learning_rate": 0.00019354838709677416,
778
+ "loss": 0.392,
779
+ "step": 110
780
+ },
781
+ {
782
+ "epoch": 3.552,
783
+ "grad_norm": 0.5296047329902649,
784
+ "learning_rate": 0.0001925806451612903,
785
+ "loss": 0.3412,
786
+ "step": 111
787
+ },
788
+ {
789
+ "epoch": 3.584,
790
+ "grad_norm": 0.6282025575637817,
791
+ "learning_rate": 0.00019161290322580643,
792
+ "loss": 0.4081,
793
+ "step": 112
794
+ },
795
+ {
796
+ "epoch": 3.616,
797
+ "grad_norm": 0.6166461110115051,
798
+ "learning_rate": 0.00019064516129032257,
799
+ "loss": 0.4771,
800
+ "step": 113
801
+ },
802
+ {
803
+ "epoch": 3.648,
804
+ "grad_norm": 0.5448863506317139,
805
+ "learning_rate": 0.0001896774193548387,
806
+ "loss": 0.404,
807
+ "step": 114
808
+ },
809
+ {
810
+ "epoch": 3.68,
811
+ "grad_norm": 0.6598389148712158,
812
+ "learning_rate": 0.0001887096774193548,
813
+ "loss": 0.3915,
814
+ "step": 115
815
+ },
816
+ {
817
+ "epoch": 3.7119999999999997,
818
+ "grad_norm": 0.5567564368247986,
819
+ "learning_rate": 0.00018774193548387095,
820
+ "loss": 0.3862,
821
+ "step": 116
822
+ },
823
+ {
824
+ "epoch": 3.7439999999999998,
825
+ "grad_norm": 0.6524521708488464,
826
+ "learning_rate": 0.00018677419354838707,
827
+ "loss": 0.5315,
828
+ "step": 117
829
+ },
830
+ {
831
+ "epoch": 3.776,
832
+ "grad_norm": 0.7040128707885742,
833
+ "learning_rate": 0.00018580645161290322,
834
+ "loss": 0.5387,
835
+ "step": 118
836
+ },
837
+ {
838
+ "epoch": 3.808,
839
+ "grad_norm": 0.690262496471405,
840
+ "learning_rate": 0.00018483870967741934,
841
+ "loss": 0.4877,
842
+ "step": 119
843
+ },
844
+ {
845
+ "epoch": 3.84,
846
+ "grad_norm": 0.6928034424781799,
847
+ "learning_rate": 0.00018387096774193548,
848
+ "loss": 0.4895,
849
+ "step": 120
850
+ },
851
+ {
852
+ "epoch": 3.872,
853
+ "grad_norm": 0.7148469686508179,
854
+ "learning_rate": 0.00018290322580645157,
855
+ "loss": 0.4814,
856
+ "step": 121
857
+ },
858
+ {
859
+ "epoch": 3.904,
860
+ "grad_norm": 0.6096572875976562,
861
+ "learning_rate": 0.00018193548387096772,
862
+ "loss": 0.3403,
863
+ "step": 122
864
+ },
865
+ {
866
+ "epoch": 3.936,
867
+ "grad_norm": 0.7132399678230286,
868
+ "learning_rate": 0.00018096774193548387,
869
+ "loss": 0.4258,
870
+ "step": 123
871
+ },
872
+ {
873
+ "epoch": 3.968,
874
+ "grad_norm": 0.7302684187889099,
875
+ "learning_rate": 0.00017999999999999998,
876
+ "loss": 0.7215,
877
+ "step": 124
878
+ },
879
+ {
880
+ "epoch": 4.0,
881
+ "grad_norm": 1.5244004726409912,
882
+ "learning_rate": 0.00017903225806451613,
883
+ "loss": 0.8544,
884
+ "step": 125
885
+ },
886
+ {
887
+ "epoch": 4.032,
888
+ "grad_norm": 0.6032777428627014,
889
+ "learning_rate": 0.00017806451612903222,
890
+ "loss": 0.4183,
891
+ "step": 126
892
+ },
893
+ {
894
+ "epoch": 4.064,
895
+ "grad_norm": 0.6349691152572632,
896
+ "learning_rate": 0.00017709677419354837,
897
+ "loss": 0.5871,
898
+ "step": 127
899
+ },
900
+ {
901
+ "epoch": 4.096,
902
+ "grad_norm": 0.5730060935020447,
903
+ "learning_rate": 0.00017612903225806449,
904
+ "loss": 0.3786,
905
+ "step": 128
906
+ },
907
+ {
908
+ "epoch": 4.128,
909
+ "grad_norm": 0.6988044381141663,
910
+ "learning_rate": 0.00017516129032258063,
911
+ "loss": 0.3216,
912
+ "step": 129
913
+ },
914
+ {
915
+ "epoch": 4.16,
916
+ "grad_norm": 0.7379153370857239,
917
+ "learning_rate": 0.00017419354838709678,
918
+ "loss": 0.4026,
919
+ "step": 130
920
+ },
921
+ {
922
+ "epoch": 4.192,
923
+ "grad_norm": 0.7058238983154297,
924
+ "learning_rate": 0.00017322580645161287,
925
+ "loss": 0.4328,
926
+ "step": 131
927
+ },
928
+ {
929
+ "epoch": 4.224,
930
+ "grad_norm": 0.80663001537323,
931
+ "learning_rate": 0.00017225806451612901,
932
+ "loss": 0.3849,
933
+ "step": 132
934
+ },
935
+ {
936
+ "epoch": 4.256,
937
+ "grad_norm": 0.899818480014801,
938
+ "learning_rate": 0.00017129032258064513,
939
+ "loss": 0.4191,
940
+ "step": 133
941
+ },
942
+ {
943
+ "epoch": 4.288,
944
+ "grad_norm": 0.8538224697113037,
945
+ "learning_rate": 0.00017032258064516128,
946
+ "loss": 0.3587,
947
+ "step": 134
948
+ },
949
+ {
950
+ "epoch": 4.32,
951
+ "grad_norm": 0.8948169350624084,
952
+ "learning_rate": 0.00016935483870967742,
953
+ "loss": 0.3957,
954
+ "step": 135
955
+ },
956
+ {
957
+ "epoch": 4.352,
958
+ "grad_norm": 0.7195591926574707,
959
+ "learning_rate": 0.00016838709677419354,
960
+ "loss": 0.3361,
961
+ "step": 136
962
+ },
963
+ {
964
+ "epoch": 4.384,
965
+ "grad_norm": 0.7769681215286255,
966
+ "learning_rate": 0.00016741935483870966,
967
+ "loss": 0.3519,
968
+ "step": 137
969
+ },
970
+ {
971
+ "epoch": 4.416,
972
+ "grad_norm": 0.9509867429733276,
973
+ "learning_rate": 0.00016645161290322578,
974
+ "loss": 0.4216,
975
+ "step": 138
976
+ },
977
+ {
978
+ "epoch": 4.448,
979
+ "grad_norm": 0.7923309206962585,
980
+ "learning_rate": 0.00016548387096774193,
981
+ "loss": 0.3999,
982
+ "step": 139
983
+ },
984
+ {
985
+ "epoch": 4.48,
986
+ "grad_norm": 0.8961685299873352,
987
+ "learning_rate": 0.00016451612903225804,
988
+ "loss": 0.5385,
989
+ "step": 140
990
+ },
991
+ {
992
+ "epoch": 4.5120000000000005,
993
+ "grad_norm": 0.7496562004089355,
994
+ "learning_rate": 0.0001635483870967742,
995
+ "loss": 0.341,
996
+ "step": 141
997
+ },
998
+ {
999
+ "epoch": 4.5440000000000005,
1000
+ "grad_norm": 0.8512839674949646,
1001
+ "learning_rate": 0.00016258064516129034,
1002
+ "loss": 0.3847,
1003
+ "step": 142
1004
+ },
1005
+ {
1006
+ "epoch": 4.576,
1007
+ "grad_norm": 0.7487362027168274,
1008
+ "learning_rate": 0.00016161290322580643,
1009
+ "loss": 0.3694,
1010
+ "step": 143
1011
+ },
1012
+ {
1013
+ "epoch": 4.608,
1014
+ "grad_norm": 0.7957774996757507,
1015
+ "learning_rate": 0.00016064516129032257,
1016
+ "loss": 0.3379,
1017
+ "step": 144
1018
+ },
1019
+ {
1020
+ "epoch": 4.64,
1021
+ "grad_norm": 0.7299221754074097,
1022
+ "learning_rate": 0.0001596774193548387,
1023
+ "loss": 0.2989,
1024
+ "step": 145
1025
+ },
1026
+ {
1027
+ "epoch": 4.672,
1028
+ "grad_norm": 0.7909884452819824,
1029
+ "learning_rate": 0.00015870967741935484,
1030
+ "loss": 0.3675,
1031
+ "step": 146
1032
+ },
1033
+ {
1034
+ "epoch": 4.704,
1035
+ "grad_norm": 0.7321597933769226,
1036
+ "learning_rate": 0.00015774193548387093,
1037
+ "loss": 0.3243,
1038
+ "step": 147
1039
+ },
1040
+ {
1041
+ "epoch": 4.736,
1042
+ "grad_norm": 0.7196181416511536,
1043
+ "learning_rate": 0.00015677419354838708,
1044
+ "loss": 0.2709,
1045
+ "step": 148
1046
+ },
1047
+ {
1048
+ "epoch": 4.768,
1049
+ "grad_norm": 0.7918142676353455,
1050
+ "learning_rate": 0.00015580645161290322,
1051
+ "loss": 0.3934,
1052
+ "step": 149
1053
+ },
1054
+ {
1055
+ "epoch": 4.8,
1056
+ "grad_norm": 0.8657622337341309,
1057
+ "learning_rate": 0.00015483870967741934,
1058
+ "loss": 0.3583,
1059
+ "step": 150
1060
+ },
1061
+ {
1062
+ "epoch": 4.832,
1063
+ "grad_norm": 0.8207722306251526,
1064
+ "learning_rate": 0.00015387096774193549,
1065
+ "loss": 0.412,
1066
+ "step": 151
1067
+ },
1068
+ {
1069
+ "epoch": 4.864,
1070
+ "grad_norm": 0.7206109166145325,
1071
+ "learning_rate": 0.00015290322580645158,
1072
+ "loss": 0.3594,
1073
+ "step": 152
1074
+ },
1075
+ {
1076
+ "epoch": 4.896,
1077
+ "grad_norm": 0.8529183864593506,
1078
+ "learning_rate": 0.00015193548387096772,
1079
+ "loss": 0.512,
1080
+ "step": 153
1081
+ },
1082
+ {
1083
+ "epoch": 4.928,
1084
+ "grad_norm": 0.6895930171012878,
1085
+ "learning_rate": 0.00015096774193548384,
1086
+ "loss": 0.333,
1087
+ "step": 154
1088
+ },
1089
+ {
1090
+ "epoch": 4.96,
1091
+ "grad_norm": 0.7422910332679749,
1092
+ "learning_rate": 0.00015,
1093
+ "loss": 0.2872,
1094
+ "step": 155
1095
+ },
1096
+ {
1097
+ "epoch": 4.992,
1098
+ "grad_norm": 0.7366386651992798,
1099
+ "learning_rate": 0.0001490322580645161,
1100
+ "loss": 0.3415,
1101
+ "step": 156
1102
+ },
1103
+ {
1104
+ "epoch": 5.024,
1105
+ "grad_norm": 2.1416280269622803,
1106
+ "learning_rate": 0.00014806451612903225,
1107
+ "loss": 0.9961,
1108
+ "step": 157
1109
+ },
1110
+ {
1111
+ "epoch": 5.056,
1112
+ "grad_norm": 0.7944900393486023,
1113
+ "learning_rate": 0.00014709677419354837,
1114
+ "loss": 0.3372,
1115
+ "step": 158
1116
+ },
1117
+ {
1118
+ "epoch": 5.088,
1119
+ "grad_norm": 0.7071006298065186,
1120
+ "learning_rate": 0.00014612903225806452,
1121
+ "loss": 0.2732,
1122
+ "step": 159
1123
+ },
1124
+ {
1125
+ "epoch": 5.12,
1126
+ "grad_norm": 0.7874396443367004,
1127
+ "learning_rate": 0.00014516129032258063,
1128
+ "loss": 0.2861,
1129
+ "step": 160
1130
+ },
1131
+ {
1132
+ "epoch": 5.152,
1133
+ "grad_norm": 0.8244249224662781,
1134
+ "learning_rate": 0.00014419354838709675,
1135
+ "loss": 0.3428,
1136
+ "step": 161
1137
+ },
1138
+ {
1139
+ "epoch": 5.184,
1140
+ "grad_norm": 0.81637042760849,
1141
+ "learning_rate": 0.0001432258064516129,
1142
+ "loss": 0.3037,
1143
+ "step": 162
1144
+ },
1145
+ {
1146
+ "epoch": 5.216,
1147
+ "grad_norm": 0.9916559457778931,
1148
+ "learning_rate": 0.00014225806451612902,
1149
+ "loss": 0.3337,
1150
+ "step": 163
1151
+ },
1152
+ {
1153
+ "epoch": 5.248,
1154
+ "grad_norm": 0.9077599048614502,
1155
+ "learning_rate": 0.00014129032258064514,
1156
+ "loss": 0.287,
1157
+ "step": 164
1158
+ },
1159
+ {
1160
+ "epoch": 5.28,
1161
+ "grad_norm": 0.9824132919311523,
1162
+ "learning_rate": 0.00014032258064516128,
1163
+ "loss": 0.3852,
1164
+ "step": 165
1165
+ },
1166
+ {
1167
+ "epoch": 5.312,
1168
+ "grad_norm": 1.0016467571258545,
1169
+ "learning_rate": 0.0001393548387096774,
1170
+ "loss": 0.3234,
1171
+ "step": 166
1172
+ },
1173
+ {
1174
+ "epoch": 5.344,
1175
+ "grad_norm": 0.8697543144226074,
1176
+ "learning_rate": 0.00013838709677419355,
1177
+ "loss": 0.2848,
1178
+ "step": 167
1179
+ },
1180
+ {
1181
+ "epoch": 5.376,
1182
+ "grad_norm": 0.8214029669761658,
1183
+ "learning_rate": 0.00013741935483870966,
1184
+ "loss": 0.3377,
1185
+ "step": 168
1186
+ },
1187
+ {
1188
+ "epoch": 5.408,
1189
+ "grad_norm": 0.9105691313743591,
1190
+ "learning_rate": 0.00013645161290322578,
1191
+ "loss": 0.2944,
1192
+ "step": 169
1193
+ },
1194
+ {
1195
+ "epoch": 5.44,
1196
+ "grad_norm": 0.9642040133476257,
1197
+ "learning_rate": 0.00013548387096774193,
1198
+ "loss": 0.3624,
1199
+ "step": 170
1200
+ },
1201
+ {
1202
+ "epoch": 5.4719999999999995,
1203
+ "grad_norm": 0.9218887686729431,
1204
+ "learning_rate": 0.00013451612903225805,
1205
+ "loss": 0.3938,
1206
+ "step": 171
1207
+ },
1208
+ {
1209
+ "epoch": 5.504,
1210
+ "grad_norm": 0.8704710006713867,
1211
+ "learning_rate": 0.0001335483870967742,
1212
+ "loss": 0.3629,
1213
+ "step": 172
1214
+ },
1215
+ {
1216
+ "epoch": 5.536,
1217
+ "grad_norm": 0.8207693099975586,
1218
+ "learning_rate": 0.0001325806451612903,
1219
+ "loss": 0.3169,
1220
+ "step": 173
1221
+ },
1222
+ {
1223
+ "epoch": 5.568,
1224
+ "grad_norm": 0.9315701127052307,
1225
+ "learning_rate": 0.00013161290322580643,
1226
+ "loss": 0.429,
1227
+ "step": 174
1228
+ },
1229
+ {
1230
+ "epoch": 5.6,
1231
+ "grad_norm": 0.860234260559082,
1232
+ "learning_rate": 0.00013064516129032258,
1233
+ "loss": 0.3842,
1234
+ "step": 175
1235
+ },
1236
+ {
1237
+ "epoch": 5.632,
1238
+ "grad_norm": 0.8927604556083679,
1239
+ "learning_rate": 0.0001296774193548387,
1240
+ "loss": 0.3405,
1241
+ "step": 176
1242
+ },
1243
+ {
1244
+ "epoch": 5.664,
1245
+ "grad_norm": 0.8084587454795837,
1246
+ "learning_rate": 0.0001287096774193548,
1247
+ "loss": 0.306,
1248
+ "step": 177
1249
+ },
1250
+ {
1251
+ "epoch": 5.696,
1252
+ "grad_norm": 0.9102941155433655,
1253
+ "learning_rate": 0.00012774193548387096,
1254
+ "loss": 0.3285,
1255
+ "step": 178
1256
+ },
1257
+ {
1258
+ "epoch": 5.728,
1259
+ "grad_norm": 0.763113796710968,
1260
+ "learning_rate": 0.0001267741935483871,
1261
+ "loss": 0.2729,
1262
+ "step": 179
1263
+ },
1264
+ {
1265
+ "epoch": 5.76,
1266
+ "grad_norm": 0.8704251646995544,
1267
+ "learning_rate": 0.00012580645161290322,
1268
+ "loss": 0.3164,
1269
+ "step": 180
1270
+ },
1271
+ {
1272
+ "epoch": 5.792,
1273
+ "grad_norm": 0.9634932279586792,
1274
+ "learning_rate": 0.00012483870967741934,
1275
+ "loss": 0.2939,
1276
+ "step": 181
1277
+ },
1278
+ {
1279
+ "epoch": 5.824,
1280
+ "grad_norm": 1.1567790508270264,
1281
+ "learning_rate": 0.00012387096774193546,
1282
+ "loss": 0.3076,
1283
+ "step": 182
1284
+ },
1285
+ {
1286
+ "epoch": 5.856,
1287
+ "grad_norm": 0.9096764922142029,
1288
+ "learning_rate": 0.0001229032258064516,
1289
+ "loss": 0.3289,
1290
+ "step": 183
1291
+ },
1292
+ {
1293
+ "epoch": 5.888,
1294
+ "grad_norm": 0.9840425848960876,
1295
+ "learning_rate": 0.00012193548387096773,
1296
+ "loss": 0.2772,
1297
+ "step": 184
1298
+ },
1299
+ {
1300
+ "epoch": 5.92,
1301
+ "grad_norm": 0.725844144821167,
1302
+ "learning_rate": 0.00012096774193548386,
1303
+ "loss": 0.2151,
1304
+ "step": 185
1305
+ },
1306
+ {
1307
+ "epoch": 5.952,
1308
+ "grad_norm": 0.8343638181686401,
1309
+ "learning_rate": 0.00011999999999999999,
1310
+ "loss": 0.3825,
1311
+ "step": 186
1312
+ },
1313
+ {
1314
+ "epoch": 5.984,
1315
+ "grad_norm": 0.8040199279785156,
1316
+ "learning_rate": 0.00011903225806451612,
1317
+ "loss": 0.2571,
1318
+ "step": 187
1319
+ },
1320
+ {
1321
+ "epoch": 6.016,
1322
+ "grad_norm": 1.6932090520858765,
1323
+ "learning_rate": 0.00011806451612903225,
1324
+ "loss": 0.5538,
1325
+ "step": 188
1326
+ },
1327
+ {
1328
+ "epoch": 6.048,
1329
+ "grad_norm": 0.744048535823822,
1330
+ "learning_rate": 0.00011709677419354837,
1331
+ "loss": 0.2335,
1332
+ "step": 189
1333
+ },
1334
+ {
1335
+ "epoch": 6.08,
1336
+ "grad_norm": 0.6974924206733704,
1337
+ "learning_rate": 0.0001161290322580645,
1338
+ "loss": 0.2891,
1339
+ "step": 190
1340
+ },
1341
+ {
1342
+ "epoch": 6.112,
1343
+ "grad_norm": 0.7202953696250916,
1344
+ "learning_rate": 0.00011516129032258062,
1345
+ "loss": 0.2017,
1346
+ "step": 191
1347
+ },
1348
+ {
1349
+ "epoch": 6.144,
1350
+ "grad_norm": 0.8437547087669373,
1351
+ "learning_rate": 0.00011419354838709676,
1352
+ "loss": 0.2175,
1353
+ "step": 192
1354
+ },
1355
+ {
1356
+ "epoch": 6.176,
1357
+ "grad_norm": 1.0741796493530273,
1358
+ "learning_rate": 0.0001132258064516129,
1359
+ "loss": 0.3913,
1360
+ "step": 193
1361
+ },
1362
+ {
1363
+ "epoch": 6.208,
1364
+ "grad_norm": 1.031754493713379,
1365
+ "learning_rate": 0.00011225806451612902,
1366
+ "loss": 0.298,
1367
+ "step": 194
1368
+ },
1369
+ {
1370
+ "epoch": 6.24,
1371
+ "grad_norm": 0.9575178027153015,
1372
+ "learning_rate": 0.00011129032258064515,
1373
+ "loss": 0.3201,
1374
+ "step": 195
1375
+ },
1376
+ {
1377
+ "epoch": 6.272,
1378
+ "grad_norm": 0.9503082633018494,
1379
+ "learning_rate": 0.00011032258064516128,
1380
+ "loss": 0.2005,
1381
+ "step": 196
1382
+ },
1383
+ {
1384
+ "epoch": 6.304,
1385
+ "grad_norm": 1.2572892904281616,
1386
+ "learning_rate": 0.0001093548387096774,
1387
+ "loss": 0.3045,
1388
+ "step": 197
1389
+ },
1390
+ {
1391
+ "epoch": 6.336,
1392
+ "grad_norm": 1.5667368173599243,
1393
+ "learning_rate": 0.00010838709677419353,
1394
+ "loss": 0.4053,
1395
+ "step": 198
1396
+ },
1397
+ {
1398
+ "epoch": 6.368,
1399
+ "grad_norm": 0.9439151883125305,
1400
+ "learning_rate": 0.00010741935483870968,
1401
+ "loss": 0.2721,
1402
+ "step": 199
1403
+ },
1404
+ {
1405
+ "epoch": 6.4,
1406
+ "grad_norm": 1.0985567569732666,
1407
+ "learning_rate": 0.0001064516129032258,
1408
+ "loss": 0.2543,
1409
+ "step": 200
1410
+ }
1411
+ ],
1412
+ "logging_steps": 1,
1413
+ "max_steps": 310,
1414
+ "num_input_tokens_seen": 0,
1415
+ "num_train_epochs": 10,
1416
+ "save_steps": 100,
1417
+ "stateful_callbacks": {
1418
+ "TrainerControl": {
1419
+ "args": {
1420
+ "should_epoch_stop": false,
1421
+ "should_evaluate": false,
1422
+ "should_log": false,
1423
+ "should_save": true,
1424
+ "should_training_stop": false
1425
+ },
1426
+ "attributes": {}
1427
+ }
1428
+ },
1429
+ "total_flos": 4.7401861644288e+16,
1430
+ "train_batch_size": 3,
1431
+ "trial_name": null,
1432
+ "trial_params": null
1433
+ }
checkpoint-200/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:457c697b05fd5daa3c83df8920300c4940c26fb78ace5b5428b7c95d133a0ef4
3
+ size 5560
checkpoint-300/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: /home/ubuntu/Apps/DataInf/models/model
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.2
checkpoint-300/adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "/home/ubuntu/Apps/DataInf/models/model",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "q_proj",
24
+ "v_proj"
25
+ ],
26
+ "task_type": "CAUSAL_LM",
27
+ "use_dora": false,
28
+ "use_rslora": false
29
+ }
checkpoint-300/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b3a386647e475c5ceec94d64bca14946af914e62ba8c1b0ccabaf6e67ee9cc86
3
+ size 26235704
checkpoint-300/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6e6e1eb36f19824df0e3da6744f15a8782d02453f8d4fea63614aea6541336c8
3
+ size 52563258
checkpoint-300/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:459e5e31f82079d82419676e4070ee07546d1393dfcf3e2693f2cd031c775968
3
+ size 14244
checkpoint-300/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6a2a684bbb13b2471d0a344d410a300b5697fcfde43c8620a62c450f9f491758
3
+ size 1064
checkpoint-300/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
checkpoint-300/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
checkpoint-300/tokenizer_config.json ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": null,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ }
30
+ },
31
+ "bos_token": "<s>",
32
+ "chat_template": "{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% else %}{% set loop_messages = messages %}{% set system_message = false %}{% endif %}{% for message in loop_messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if loop.index0 == 0 and system_message != false %}{% set content = '<<SYS>>\\n' + system_message + '\\n<</SYS>>\\n\\n' + message['content'] %}{% else %}{% set content = message['content'] %}{% endif %}{% if message['role'] == 'user' %}{{ bos_token + '[INST] ' + content.strip() + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ ' ' + content.strip() + ' ' + eos_token }}{% endif %}{% endfor %}",
33
+ "clean_up_tokenization_spaces": false,
34
+ "eos_token": "</s>",
35
+ "legacy": false,
36
+ "model_max_length": 1000000000000000019884624838656,
37
+ "pad_token": "</s>",
38
+ "padding_side": "right",
39
+ "sp_model_kwargs": {},
40
+ "spaces_between_special_tokens": false,
41
+ "tokenizer_class": "LlamaTokenizer",
42
+ "unk_token": "<unk>",
43
+ "use_default_system_prompt": false
44
+ }
checkpoint-300/trainer_state.json ADDED
@@ -0,0 +1,2133 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 9.6,
5
+ "eval_steps": 500,
6
+ "global_step": 300,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.032,
13
+ "grad_norm": 0.3297976851463318,
14
+ "learning_rate": 0.0002990322580645161,
15
+ "loss": 1.0389,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.064,
20
+ "grad_norm": 0.4069916307926178,
21
+ "learning_rate": 0.0002980645161290322,
22
+ "loss": 1.3377,
23
+ "step": 2
24
+ },
25
+ {
26
+ "epoch": 0.096,
27
+ "grad_norm": 0.42084500193595886,
28
+ "learning_rate": 0.00029709677419354836,
29
+ "loss": 0.9366,
30
+ "step": 3
31
+ },
32
+ {
33
+ "epoch": 0.128,
34
+ "grad_norm": 0.4641948938369751,
35
+ "learning_rate": 0.0002961290322580645,
36
+ "loss": 1.0086,
37
+ "step": 4
38
+ },
39
+ {
40
+ "epoch": 0.16,
41
+ "grad_norm": 0.3840750455856323,
42
+ "learning_rate": 0.00029516129032258065,
43
+ "loss": 0.8333,
44
+ "step": 5
45
+ },
46
+ {
47
+ "epoch": 0.192,
48
+ "grad_norm": 0.4263865053653717,
49
+ "learning_rate": 0.00029419354838709674,
50
+ "loss": 0.854,
51
+ "step": 6
52
+ },
53
+ {
54
+ "epoch": 0.224,
55
+ "grad_norm": 0.48615148663520813,
56
+ "learning_rate": 0.0002932258064516129,
57
+ "loss": 0.9548,
58
+ "step": 7
59
+ },
60
+ {
61
+ "epoch": 0.256,
62
+ "grad_norm": 0.44419369101524353,
63
+ "learning_rate": 0.00029225806451612903,
64
+ "loss": 0.8482,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.288,
69
+ "grad_norm": 0.5317733883857727,
70
+ "learning_rate": 0.0002912903225806451,
71
+ "loss": 0.9426,
72
+ "step": 9
73
+ },
74
+ {
75
+ "epoch": 0.32,
76
+ "grad_norm": 0.47260937094688416,
77
+ "learning_rate": 0.00029032258064516127,
78
+ "loss": 0.9816,
79
+ "step": 10
80
+ },
81
+ {
82
+ "epoch": 0.352,
83
+ "grad_norm": 0.39063283801078796,
84
+ "learning_rate": 0.00028935483870967736,
85
+ "loss": 0.84,
86
+ "step": 11
87
+ },
88
+ {
89
+ "epoch": 0.384,
90
+ "grad_norm": 0.39234670996665955,
91
+ "learning_rate": 0.0002883870967741935,
92
+ "loss": 0.7476,
93
+ "step": 12
94
+ },
95
+ {
96
+ "epoch": 0.416,
97
+ "grad_norm": 0.40661805868148804,
98
+ "learning_rate": 0.00028741935483870965,
99
+ "loss": 0.9282,
100
+ "step": 13
101
+ },
102
+ {
103
+ "epoch": 0.448,
104
+ "grad_norm": 0.42970865964889526,
105
+ "learning_rate": 0.0002864516129032258,
106
+ "loss": 0.7858,
107
+ "step": 14
108
+ },
109
+ {
110
+ "epoch": 0.48,
111
+ "grad_norm": 0.3780193626880646,
112
+ "learning_rate": 0.00028548387096774194,
113
+ "loss": 0.7968,
114
+ "step": 15
115
+ },
116
+ {
117
+ "epoch": 0.512,
118
+ "grad_norm": 0.37006014585494995,
119
+ "learning_rate": 0.00028451612903225803,
120
+ "loss": 0.6801,
121
+ "step": 16
122
+ },
123
+ {
124
+ "epoch": 0.544,
125
+ "grad_norm": 0.3660840392112732,
126
+ "learning_rate": 0.0002835483870967742,
127
+ "loss": 0.5914,
128
+ "step": 17
129
+ },
130
+ {
131
+ "epoch": 0.576,
132
+ "grad_norm": 0.3270975351333618,
133
+ "learning_rate": 0.00028258064516129027,
134
+ "loss": 0.6449,
135
+ "step": 18
136
+ },
137
+ {
138
+ "epoch": 0.608,
139
+ "grad_norm": 0.3859024941921234,
140
+ "learning_rate": 0.0002816129032258064,
141
+ "loss": 0.8144,
142
+ "step": 19
143
+ },
144
+ {
145
+ "epoch": 0.64,
146
+ "grad_norm": 0.37092071771621704,
147
+ "learning_rate": 0.00028064516129032256,
148
+ "loss": 0.7667,
149
+ "step": 20
150
+ },
151
+ {
152
+ "epoch": 0.672,
153
+ "grad_norm": 0.37667015194892883,
154
+ "learning_rate": 0.0002796774193548387,
155
+ "loss": 0.7751,
156
+ "step": 21
157
+ },
158
+ {
159
+ "epoch": 0.704,
160
+ "grad_norm": 0.3832458555698395,
161
+ "learning_rate": 0.0002787096774193548,
162
+ "loss": 0.755,
163
+ "step": 22
164
+ },
165
+ {
166
+ "epoch": 0.736,
167
+ "grad_norm": 0.327288419008255,
168
+ "learning_rate": 0.00027774193548387095,
169
+ "loss": 0.7178,
170
+ "step": 23
171
+ },
172
+ {
173
+ "epoch": 0.768,
174
+ "grad_norm": 0.34552687406539917,
175
+ "learning_rate": 0.0002767741935483871,
176
+ "loss": 0.7057,
177
+ "step": 24
178
+ },
179
+ {
180
+ "epoch": 0.8,
181
+ "grad_norm": 0.3611259460449219,
182
+ "learning_rate": 0.0002758064516129032,
183
+ "loss": 0.8159,
184
+ "step": 25
185
+ },
186
+ {
187
+ "epoch": 0.832,
188
+ "grad_norm": 0.3345054090023041,
189
+ "learning_rate": 0.00027483870967741933,
190
+ "loss": 0.7208,
191
+ "step": 26
192
+ },
193
+ {
194
+ "epoch": 0.864,
195
+ "grad_norm": 0.3697254955768585,
196
+ "learning_rate": 0.0002738709677419355,
197
+ "loss": 0.8964,
198
+ "step": 27
199
+ },
200
+ {
201
+ "epoch": 0.896,
202
+ "grad_norm": 0.3905017375946045,
203
+ "learning_rate": 0.00027290322580645157,
204
+ "loss": 0.7794,
205
+ "step": 28
206
+ },
207
+ {
208
+ "epoch": 0.928,
209
+ "grad_norm": 0.3715725243091583,
210
+ "learning_rate": 0.0002719354838709677,
211
+ "loss": 0.6966,
212
+ "step": 29
213
+ },
214
+ {
215
+ "epoch": 0.96,
216
+ "grad_norm": 0.3650343120098114,
217
+ "learning_rate": 0.00027096774193548386,
218
+ "loss": 0.5761,
219
+ "step": 30
220
+ },
221
+ {
222
+ "epoch": 0.992,
223
+ "grad_norm": 0.33932459354400635,
224
+ "learning_rate": 0.00027,
225
+ "loss": 0.556,
226
+ "step": 31
227
+ },
228
+ {
229
+ "epoch": 1.024,
230
+ "grad_norm": 0.6371742486953735,
231
+ "learning_rate": 0.0002690322580645161,
232
+ "loss": 0.847,
233
+ "step": 32
234
+ },
235
+ {
236
+ "epoch": 1.056,
237
+ "grad_norm": 0.37499895691871643,
238
+ "learning_rate": 0.00026806451612903224,
239
+ "loss": 0.8419,
240
+ "step": 33
241
+ },
242
+ {
243
+ "epoch": 1.088,
244
+ "grad_norm": 0.33221954107284546,
245
+ "learning_rate": 0.0002670967741935484,
246
+ "loss": 0.6011,
247
+ "step": 34
248
+ },
249
+ {
250
+ "epoch": 1.12,
251
+ "grad_norm": 0.344096839427948,
252
+ "learning_rate": 0.0002661290322580645,
253
+ "loss": 0.6501,
254
+ "step": 35
255
+ },
256
+ {
257
+ "epoch": 1.152,
258
+ "grad_norm": 0.38429391384124756,
259
+ "learning_rate": 0.0002651612903225806,
260
+ "loss": 0.8091,
261
+ "step": 36
262
+ },
263
+ {
264
+ "epoch": 1.184,
265
+ "grad_norm": 0.38014867901802063,
266
+ "learning_rate": 0.00026419354838709677,
267
+ "loss": 0.7668,
268
+ "step": 37
269
+ },
270
+ {
271
+ "epoch": 1.216,
272
+ "grad_norm": 0.3352573812007904,
273
+ "learning_rate": 0.00026322580645161286,
274
+ "loss": 0.5444,
275
+ "step": 38
276
+ },
277
+ {
278
+ "epoch": 1.248,
279
+ "grad_norm": 0.33811062574386597,
280
+ "learning_rate": 0.000262258064516129,
281
+ "loss": 0.512,
282
+ "step": 39
283
+ },
284
+ {
285
+ "epoch": 1.28,
286
+ "grad_norm": 0.3998416066169739,
287
+ "learning_rate": 0.00026129032258064515,
288
+ "loss": 0.6315,
289
+ "step": 40
290
+ },
291
+ {
292
+ "epoch": 1.312,
293
+ "grad_norm": 0.3983341157436371,
294
+ "learning_rate": 0.0002603225806451613,
295
+ "loss": 0.5882,
296
+ "step": 41
297
+ },
298
+ {
299
+ "epoch": 1.3439999999999999,
300
+ "grad_norm": 0.4585898816585541,
301
+ "learning_rate": 0.0002593548387096774,
302
+ "loss": 0.761,
303
+ "step": 42
304
+ },
305
+ {
306
+ "epoch": 1.376,
307
+ "grad_norm": 0.4080730080604553,
308
+ "learning_rate": 0.00025838709677419354,
309
+ "loss": 0.6716,
310
+ "step": 43
311
+ },
312
+ {
313
+ "epoch": 1.408,
314
+ "grad_norm": 0.4068273901939392,
315
+ "learning_rate": 0.0002574193548387096,
316
+ "loss": 0.6376,
317
+ "step": 44
318
+ },
319
+ {
320
+ "epoch": 1.44,
321
+ "grad_norm": 0.4406949579715729,
322
+ "learning_rate": 0.00025645161290322577,
323
+ "loss": 0.4594,
324
+ "step": 45
325
+ },
326
+ {
327
+ "epoch": 1.472,
328
+ "grad_norm": 0.34500986337661743,
329
+ "learning_rate": 0.0002554838709677419,
330
+ "loss": 0.3672,
331
+ "step": 46
332
+ },
333
+ {
334
+ "epoch": 1.504,
335
+ "grad_norm": 0.4760681390762329,
336
+ "learning_rate": 0.00025451612903225806,
337
+ "loss": 0.6331,
338
+ "step": 47
339
+ },
340
+ {
341
+ "epoch": 1.536,
342
+ "grad_norm": 0.39281558990478516,
343
+ "learning_rate": 0.0002535483870967742,
344
+ "loss": 0.5845,
345
+ "step": 48
346
+ },
347
+ {
348
+ "epoch": 1.568,
349
+ "grad_norm": 0.4265002906322479,
350
+ "learning_rate": 0.0002525806451612903,
351
+ "loss": 0.4461,
352
+ "step": 49
353
+ },
354
+ {
355
+ "epoch": 1.6,
356
+ "grad_norm": 0.40967294573783875,
357
+ "learning_rate": 0.00025161290322580645,
358
+ "loss": 0.7011,
359
+ "step": 50
360
+ },
361
+ {
362
+ "epoch": 1.6320000000000001,
363
+ "grad_norm": 0.4288088381290436,
364
+ "learning_rate": 0.00025064516129032254,
365
+ "loss": 0.6928,
366
+ "step": 51
367
+ },
368
+ {
369
+ "epoch": 1.6640000000000001,
370
+ "grad_norm": 0.4356289803981781,
371
+ "learning_rate": 0.0002496774193548387,
372
+ "loss": 0.7972,
373
+ "step": 52
374
+ },
375
+ {
376
+ "epoch": 1.696,
377
+ "grad_norm": 0.3827487826347351,
378
+ "learning_rate": 0.0002487096774193548,
379
+ "loss": 0.2991,
380
+ "step": 53
381
+ },
382
+ {
383
+ "epoch": 1.728,
384
+ "grad_norm": 0.40093398094177246,
385
+ "learning_rate": 0.0002477419354838709,
386
+ "loss": 0.416,
387
+ "step": 54
388
+ },
389
+ {
390
+ "epoch": 1.76,
391
+ "grad_norm": 0.41548973321914673,
392
+ "learning_rate": 0.00024677419354838707,
393
+ "loss": 0.5501,
394
+ "step": 55
395
+ },
396
+ {
397
+ "epoch": 1.792,
398
+ "grad_norm": 0.4093388617038727,
399
+ "learning_rate": 0.0002458064516129032,
400
+ "loss": 0.5557,
401
+ "step": 56
402
+ },
403
+ {
404
+ "epoch": 1.8239999999999998,
405
+ "grad_norm": 0.3934040665626526,
406
+ "learning_rate": 0.00024483870967741936,
407
+ "loss": 0.602,
408
+ "step": 57
409
+ },
410
+ {
411
+ "epoch": 1.8559999999999999,
412
+ "grad_norm": 0.42221033573150635,
413
+ "learning_rate": 0.00024387096774193545,
414
+ "loss": 0.6421,
415
+ "step": 58
416
+ },
417
+ {
418
+ "epoch": 1.888,
419
+ "grad_norm": 0.4351339340209961,
420
+ "learning_rate": 0.0002429032258064516,
421
+ "loss": 0.5615,
422
+ "step": 59
423
+ },
424
+ {
425
+ "epoch": 1.92,
426
+ "grad_norm": 0.4319838881492615,
427
+ "learning_rate": 0.00024193548387096771,
428
+ "loss": 0.6804,
429
+ "step": 60
430
+ },
431
+ {
432
+ "epoch": 1.952,
433
+ "grad_norm": 0.40016525983810425,
434
+ "learning_rate": 0.00024096774193548386,
435
+ "loss": 0.5432,
436
+ "step": 61
437
+ },
438
+ {
439
+ "epoch": 1.984,
440
+ "grad_norm": 0.3905942440032959,
441
+ "learning_rate": 0.00023999999999999998,
442
+ "loss": 0.4187,
443
+ "step": 62
444
+ },
445
+ {
446
+ "epoch": 2.016,
447
+ "grad_norm": 0.8056382536888123,
448
+ "learning_rate": 0.0002390322580645161,
449
+ "loss": 1.0174,
450
+ "step": 63
451
+ },
452
+ {
453
+ "epoch": 2.048,
454
+ "grad_norm": 0.3835236430168152,
455
+ "learning_rate": 0.00023806451612903224,
456
+ "loss": 0.5992,
457
+ "step": 64
458
+ },
459
+ {
460
+ "epoch": 2.08,
461
+ "grad_norm": 0.41092216968536377,
462
+ "learning_rate": 0.00023709677419354836,
463
+ "loss": 0.4746,
464
+ "step": 65
465
+ },
466
+ {
467
+ "epoch": 2.112,
468
+ "grad_norm": 0.39536622166633606,
469
+ "learning_rate": 0.0002361290322580645,
470
+ "loss": 0.3946,
471
+ "step": 66
472
+ },
473
+ {
474
+ "epoch": 2.144,
475
+ "grad_norm": 0.3927665948867798,
476
+ "learning_rate": 0.0002351612903225806,
477
+ "loss": 0.5187,
478
+ "step": 67
479
+ },
480
+ {
481
+ "epoch": 2.176,
482
+ "grad_norm": 0.39792704582214355,
483
+ "learning_rate": 0.00023419354838709674,
484
+ "loss": 0.4568,
485
+ "step": 68
486
+ },
487
+ {
488
+ "epoch": 2.208,
489
+ "grad_norm": 0.5023652911186218,
490
+ "learning_rate": 0.0002332258064516129,
491
+ "loss": 0.6166,
492
+ "step": 69
493
+ },
494
+ {
495
+ "epoch": 2.24,
496
+ "grad_norm": 0.425017774105072,
497
+ "learning_rate": 0.000232258064516129,
498
+ "loss": 0.42,
499
+ "step": 70
500
+ },
501
+ {
502
+ "epoch": 2.2720000000000002,
503
+ "grad_norm": 0.46458110213279724,
504
+ "learning_rate": 0.00023129032258064516,
505
+ "loss": 0.4613,
506
+ "step": 71
507
+ },
508
+ {
509
+ "epoch": 2.304,
510
+ "grad_norm": 0.49037960171699524,
511
+ "learning_rate": 0.00023032258064516125,
512
+ "loss": 0.5509,
513
+ "step": 72
514
+ },
515
+ {
516
+ "epoch": 2.336,
517
+ "grad_norm": 0.5233697891235352,
518
+ "learning_rate": 0.0002293548387096774,
519
+ "loss": 0.6396,
520
+ "step": 73
521
+ },
522
+ {
523
+ "epoch": 2.368,
524
+ "grad_norm": 0.4720582962036133,
525
+ "learning_rate": 0.0002283870967741935,
526
+ "loss": 0.5076,
527
+ "step": 74
528
+ },
529
+ {
530
+ "epoch": 2.4,
531
+ "grad_norm": 0.4900650382041931,
532
+ "learning_rate": 0.00022741935483870966,
533
+ "loss": 0.4794,
534
+ "step": 75
535
+ },
536
+ {
537
+ "epoch": 2.432,
538
+ "grad_norm": 0.6321704983711243,
539
+ "learning_rate": 0.0002264516129032258,
540
+ "loss": 0.6677,
541
+ "step": 76
542
+ },
543
+ {
544
+ "epoch": 2.464,
545
+ "grad_norm": 0.5305324792861938,
546
+ "learning_rate": 0.00022548387096774192,
547
+ "loss": 0.5102,
548
+ "step": 77
549
+ },
550
+ {
551
+ "epoch": 2.496,
552
+ "grad_norm": 0.5799248218536377,
553
+ "learning_rate": 0.00022451612903225804,
554
+ "loss": 0.5274,
555
+ "step": 78
556
+ },
557
+ {
558
+ "epoch": 2.528,
559
+ "grad_norm": 0.4990101456642151,
560
+ "learning_rate": 0.00022354838709677416,
561
+ "loss": 0.5407,
562
+ "step": 79
563
+ },
564
+ {
565
+ "epoch": 2.56,
566
+ "grad_norm": 0.4779827296733856,
567
+ "learning_rate": 0.0002225806451612903,
568
+ "loss": 0.5166,
569
+ "step": 80
570
+ },
571
+ {
572
+ "epoch": 2.592,
573
+ "grad_norm": 0.5140111446380615,
574
+ "learning_rate": 0.00022161290322580645,
575
+ "loss": 0.3288,
576
+ "step": 81
577
+ },
578
+ {
579
+ "epoch": 2.624,
580
+ "grad_norm": 0.5674853920936584,
581
+ "learning_rate": 0.00022064516129032257,
582
+ "loss": 0.666,
583
+ "step": 82
584
+ },
585
+ {
586
+ "epoch": 2.656,
587
+ "grad_norm": 0.5277597308158875,
588
+ "learning_rate": 0.00021967741935483871,
589
+ "loss": 0.5335,
590
+ "step": 83
591
+ },
592
+ {
593
+ "epoch": 2.6879999999999997,
594
+ "grad_norm": 0.6029439568519592,
595
+ "learning_rate": 0.0002187096774193548,
596
+ "loss": 0.693,
597
+ "step": 84
598
+ },
599
+ {
600
+ "epoch": 2.7199999999999998,
601
+ "grad_norm": 0.5039327144622803,
602
+ "learning_rate": 0.00021774193548387095,
603
+ "loss": 0.5728,
604
+ "step": 85
605
+ },
606
+ {
607
+ "epoch": 2.752,
608
+ "grad_norm": 0.5564692616462708,
609
+ "learning_rate": 0.00021677419354838707,
610
+ "loss": 0.4734,
611
+ "step": 86
612
+ },
613
+ {
614
+ "epoch": 2.784,
615
+ "grad_norm": 0.5278319120407104,
616
+ "learning_rate": 0.00021580645161290322,
617
+ "loss": 0.5834,
618
+ "step": 87
619
+ },
620
+ {
621
+ "epoch": 2.816,
622
+ "grad_norm": 0.5445135831832886,
623
+ "learning_rate": 0.00021483870967741936,
624
+ "loss": 0.4642,
625
+ "step": 88
626
+ },
627
+ {
628
+ "epoch": 2.848,
629
+ "grad_norm": 0.5394749045372009,
630
+ "learning_rate": 0.00021387096774193545,
631
+ "loss": 0.4779,
632
+ "step": 89
633
+ },
634
+ {
635
+ "epoch": 2.88,
636
+ "grad_norm": 0.5756134390830994,
637
+ "learning_rate": 0.0002129032258064516,
638
+ "loss": 0.5607,
639
+ "step": 90
640
+ },
641
+ {
642
+ "epoch": 2.912,
643
+ "grad_norm": 0.48361241817474365,
644
+ "learning_rate": 0.00021193548387096772,
645
+ "loss": 0.4278,
646
+ "step": 91
647
+ },
648
+ {
649
+ "epoch": 2.944,
650
+ "grad_norm": 0.5017121434211731,
651
+ "learning_rate": 0.00021096774193548386,
652
+ "loss": 0.4834,
653
+ "step": 92
654
+ },
655
+ {
656
+ "epoch": 2.976,
657
+ "grad_norm": 0.4741989076137543,
658
+ "learning_rate": 0.00020999999999999998,
659
+ "loss": 0.468,
660
+ "step": 93
661
+ },
662
+ {
663
+ "epoch": 3.008,
664
+ "grad_norm": 1.003368854522705,
665
+ "learning_rate": 0.0002090322580645161,
666
+ "loss": 0.8614,
667
+ "step": 94
668
+ },
669
+ {
670
+ "epoch": 3.04,
671
+ "grad_norm": 0.4782228469848633,
672
+ "learning_rate": 0.00020806451612903225,
673
+ "loss": 0.4111,
674
+ "step": 95
675
+ },
676
+ {
677
+ "epoch": 3.072,
678
+ "grad_norm": 0.4558674395084381,
679
+ "learning_rate": 0.00020709677419354836,
680
+ "loss": 0.3463,
681
+ "step": 96
682
+ },
683
+ {
684
+ "epoch": 3.104,
685
+ "grad_norm": 0.4409371316432953,
686
+ "learning_rate": 0.0002061290322580645,
687
+ "loss": 0.2571,
688
+ "step": 97
689
+ },
690
+ {
691
+ "epoch": 3.136,
692
+ "grad_norm": 0.5415034890174866,
693
+ "learning_rate": 0.00020516129032258063,
694
+ "loss": 0.5707,
695
+ "step": 98
696
+ },
697
+ {
698
+ "epoch": 3.168,
699
+ "grad_norm": 0.6157724857330322,
700
+ "learning_rate": 0.00020419354838709677,
701
+ "loss": 0.5692,
702
+ "step": 99
703
+ },
704
+ {
705
+ "epoch": 3.2,
706
+ "grad_norm": 0.4855688810348511,
707
+ "learning_rate": 0.00020322580645161287,
708
+ "loss": 0.3311,
709
+ "step": 100
710
+ },
711
+ {
712
+ "epoch": 3.232,
713
+ "grad_norm": 0.569878101348877,
714
+ "learning_rate": 0.000202258064516129,
715
+ "loss": 0.4707,
716
+ "step": 101
717
+ },
718
+ {
719
+ "epoch": 3.2640000000000002,
720
+ "grad_norm": 0.645232081413269,
721
+ "learning_rate": 0.00020129032258064516,
722
+ "loss": 0.5504,
723
+ "step": 102
724
+ },
725
+ {
726
+ "epoch": 3.296,
727
+ "grad_norm": 0.5775763392448425,
728
+ "learning_rate": 0.00020032258064516128,
729
+ "loss": 0.3651,
730
+ "step": 103
731
+ },
732
+ {
733
+ "epoch": 3.328,
734
+ "grad_norm": 0.5808250904083252,
735
+ "learning_rate": 0.00019935483870967742,
736
+ "loss": 0.5068,
737
+ "step": 104
738
+ },
739
+ {
740
+ "epoch": 3.36,
741
+ "grad_norm": 0.689313530921936,
742
+ "learning_rate": 0.0001983870967741935,
743
+ "loss": 0.4936,
744
+ "step": 105
745
+ },
746
+ {
747
+ "epoch": 3.392,
748
+ "grad_norm": 0.6571519374847412,
749
+ "learning_rate": 0.00019741935483870966,
750
+ "loss": 0.3671,
751
+ "step": 106
752
+ },
753
+ {
754
+ "epoch": 3.424,
755
+ "grad_norm": 0.6340517401695251,
756
+ "learning_rate": 0.00019645161290322578,
757
+ "loss": 0.4783,
758
+ "step": 107
759
+ },
760
+ {
761
+ "epoch": 3.456,
762
+ "grad_norm": 0.7031407952308655,
763
+ "learning_rate": 0.00019548387096774192,
764
+ "loss": 0.427,
765
+ "step": 108
766
+ },
767
+ {
768
+ "epoch": 3.488,
769
+ "grad_norm": 0.728496789932251,
770
+ "learning_rate": 0.00019451612903225807,
771
+ "loss": 0.5497,
772
+ "step": 109
773
+ },
774
+ {
775
+ "epoch": 3.52,
776
+ "grad_norm": 0.6106727719306946,
777
+ "learning_rate": 0.00019354838709677416,
778
+ "loss": 0.392,
779
+ "step": 110
780
+ },
781
+ {
782
+ "epoch": 3.552,
783
+ "grad_norm": 0.5296047329902649,
784
+ "learning_rate": 0.0001925806451612903,
785
+ "loss": 0.3412,
786
+ "step": 111
787
+ },
788
+ {
789
+ "epoch": 3.584,
790
+ "grad_norm": 0.6282025575637817,
791
+ "learning_rate": 0.00019161290322580643,
792
+ "loss": 0.4081,
793
+ "step": 112
794
+ },
795
+ {
796
+ "epoch": 3.616,
797
+ "grad_norm": 0.6166461110115051,
798
+ "learning_rate": 0.00019064516129032257,
799
+ "loss": 0.4771,
800
+ "step": 113
801
+ },
802
+ {
803
+ "epoch": 3.648,
804
+ "grad_norm": 0.5448863506317139,
805
+ "learning_rate": 0.0001896774193548387,
806
+ "loss": 0.404,
807
+ "step": 114
808
+ },
809
+ {
810
+ "epoch": 3.68,
811
+ "grad_norm": 0.6598389148712158,
812
+ "learning_rate": 0.0001887096774193548,
813
+ "loss": 0.3915,
814
+ "step": 115
815
+ },
816
+ {
817
+ "epoch": 3.7119999999999997,
818
+ "grad_norm": 0.5567564368247986,
819
+ "learning_rate": 0.00018774193548387095,
820
+ "loss": 0.3862,
821
+ "step": 116
822
+ },
823
+ {
824
+ "epoch": 3.7439999999999998,
825
+ "grad_norm": 0.6524521708488464,
826
+ "learning_rate": 0.00018677419354838707,
827
+ "loss": 0.5315,
828
+ "step": 117
829
+ },
830
+ {
831
+ "epoch": 3.776,
832
+ "grad_norm": 0.7040128707885742,
833
+ "learning_rate": 0.00018580645161290322,
834
+ "loss": 0.5387,
835
+ "step": 118
836
+ },
837
+ {
838
+ "epoch": 3.808,
839
+ "grad_norm": 0.690262496471405,
840
+ "learning_rate": 0.00018483870967741934,
841
+ "loss": 0.4877,
842
+ "step": 119
843
+ },
844
+ {
845
+ "epoch": 3.84,
846
+ "grad_norm": 0.6928034424781799,
847
+ "learning_rate": 0.00018387096774193548,
848
+ "loss": 0.4895,
849
+ "step": 120
850
+ },
851
+ {
852
+ "epoch": 3.872,
853
+ "grad_norm": 0.7148469686508179,
854
+ "learning_rate": 0.00018290322580645157,
855
+ "loss": 0.4814,
856
+ "step": 121
857
+ },
858
+ {
859
+ "epoch": 3.904,
860
+ "grad_norm": 0.6096572875976562,
861
+ "learning_rate": 0.00018193548387096772,
862
+ "loss": 0.3403,
863
+ "step": 122
864
+ },
865
+ {
866
+ "epoch": 3.936,
867
+ "grad_norm": 0.7132399678230286,
868
+ "learning_rate": 0.00018096774193548387,
869
+ "loss": 0.4258,
870
+ "step": 123
871
+ },
872
+ {
873
+ "epoch": 3.968,
874
+ "grad_norm": 0.7302684187889099,
875
+ "learning_rate": 0.00017999999999999998,
876
+ "loss": 0.7215,
877
+ "step": 124
878
+ },
879
+ {
880
+ "epoch": 4.0,
881
+ "grad_norm": 1.5244004726409912,
882
+ "learning_rate": 0.00017903225806451613,
883
+ "loss": 0.8544,
884
+ "step": 125
885
+ },
886
+ {
887
+ "epoch": 4.032,
888
+ "grad_norm": 0.6032777428627014,
889
+ "learning_rate": 0.00017806451612903222,
890
+ "loss": 0.4183,
891
+ "step": 126
892
+ },
893
+ {
894
+ "epoch": 4.064,
895
+ "grad_norm": 0.6349691152572632,
896
+ "learning_rate": 0.00017709677419354837,
897
+ "loss": 0.5871,
898
+ "step": 127
899
+ },
900
+ {
901
+ "epoch": 4.096,
902
+ "grad_norm": 0.5730060935020447,
903
+ "learning_rate": 0.00017612903225806449,
904
+ "loss": 0.3786,
905
+ "step": 128
906
+ },
907
+ {
908
+ "epoch": 4.128,
909
+ "grad_norm": 0.6988044381141663,
910
+ "learning_rate": 0.00017516129032258063,
911
+ "loss": 0.3216,
912
+ "step": 129
913
+ },
914
+ {
915
+ "epoch": 4.16,
916
+ "grad_norm": 0.7379153370857239,
917
+ "learning_rate": 0.00017419354838709678,
918
+ "loss": 0.4026,
919
+ "step": 130
920
+ },
921
+ {
922
+ "epoch": 4.192,
923
+ "grad_norm": 0.7058238983154297,
924
+ "learning_rate": 0.00017322580645161287,
925
+ "loss": 0.4328,
926
+ "step": 131
927
+ },
928
+ {
929
+ "epoch": 4.224,
930
+ "grad_norm": 0.80663001537323,
931
+ "learning_rate": 0.00017225806451612901,
932
+ "loss": 0.3849,
933
+ "step": 132
934
+ },
935
+ {
936
+ "epoch": 4.256,
937
+ "grad_norm": 0.899818480014801,
938
+ "learning_rate": 0.00017129032258064513,
939
+ "loss": 0.4191,
940
+ "step": 133
941
+ },
942
+ {
943
+ "epoch": 4.288,
944
+ "grad_norm": 0.8538224697113037,
945
+ "learning_rate": 0.00017032258064516128,
946
+ "loss": 0.3587,
947
+ "step": 134
948
+ },
949
+ {
950
+ "epoch": 4.32,
951
+ "grad_norm": 0.8948169350624084,
952
+ "learning_rate": 0.00016935483870967742,
953
+ "loss": 0.3957,
954
+ "step": 135
955
+ },
956
+ {
957
+ "epoch": 4.352,
958
+ "grad_norm": 0.7195591926574707,
959
+ "learning_rate": 0.00016838709677419354,
960
+ "loss": 0.3361,
961
+ "step": 136
962
+ },
963
+ {
964
+ "epoch": 4.384,
965
+ "grad_norm": 0.7769681215286255,
966
+ "learning_rate": 0.00016741935483870966,
967
+ "loss": 0.3519,
968
+ "step": 137
969
+ },
970
+ {
971
+ "epoch": 4.416,
972
+ "grad_norm": 0.9509867429733276,
973
+ "learning_rate": 0.00016645161290322578,
974
+ "loss": 0.4216,
975
+ "step": 138
976
+ },
977
+ {
978
+ "epoch": 4.448,
979
+ "grad_norm": 0.7923309206962585,
980
+ "learning_rate": 0.00016548387096774193,
981
+ "loss": 0.3999,
982
+ "step": 139
983
+ },
984
+ {
985
+ "epoch": 4.48,
986
+ "grad_norm": 0.8961685299873352,
987
+ "learning_rate": 0.00016451612903225804,
988
+ "loss": 0.5385,
989
+ "step": 140
990
+ },
991
+ {
992
+ "epoch": 4.5120000000000005,
993
+ "grad_norm": 0.7496562004089355,
994
+ "learning_rate": 0.0001635483870967742,
995
+ "loss": 0.341,
996
+ "step": 141
997
+ },
998
+ {
999
+ "epoch": 4.5440000000000005,
1000
+ "grad_norm": 0.8512839674949646,
1001
+ "learning_rate": 0.00016258064516129034,
1002
+ "loss": 0.3847,
1003
+ "step": 142
1004
+ },
1005
+ {
1006
+ "epoch": 4.576,
1007
+ "grad_norm": 0.7487362027168274,
1008
+ "learning_rate": 0.00016161290322580643,
1009
+ "loss": 0.3694,
1010
+ "step": 143
1011
+ },
1012
+ {
1013
+ "epoch": 4.608,
1014
+ "grad_norm": 0.7957774996757507,
1015
+ "learning_rate": 0.00016064516129032257,
1016
+ "loss": 0.3379,
1017
+ "step": 144
1018
+ },
1019
+ {
1020
+ "epoch": 4.64,
1021
+ "grad_norm": 0.7299221754074097,
1022
+ "learning_rate": 0.0001596774193548387,
1023
+ "loss": 0.2989,
1024
+ "step": 145
1025
+ },
1026
+ {
1027
+ "epoch": 4.672,
1028
+ "grad_norm": 0.7909884452819824,
1029
+ "learning_rate": 0.00015870967741935484,
1030
+ "loss": 0.3675,
1031
+ "step": 146
1032
+ },
1033
+ {
1034
+ "epoch": 4.704,
1035
+ "grad_norm": 0.7321597933769226,
1036
+ "learning_rate": 0.00015774193548387093,
1037
+ "loss": 0.3243,
1038
+ "step": 147
1039
+ },
1040
+ {
1041
+ "epoch": 4.736,
1042
+ "grad_norm": 0.7196181416511536,
1043
+ "learning_rate": 0.00015677419354838708,
1044
+ "loss": 0.2709,
1045
+ "step": 148
1046
+ },
1047
+ {
1048
+ "epoch": 4.768,
1049
+ "grad_norm": 0.7918142676353455,
1050
+ "learning_rate": 0.00015580645161290322,
1051
+ "loss": 0.3934,
1052
+ "step": 149
1053
+ },
1054
+ {
1055
+ "epoch": 4.8,
1056
+ "grad_norm": 0.8657622337341309,
1057
+ "learning_rate": 0.00015483870967741934,
1058
+ "loss": 0.3583,
1059
+ "step": 150
1060
+ },
1061
+ {
1062
+ "epoch": 4.832,
1063
+ "grad_norm": 0.8207722306251526,
1064
+ "learning_rate": 0.00015387096774193549,
1065
+ "loss": 0.412,
1066
+ "step": 151
1067
+ },
1068
+ {
1069
+ "epoch": 4.864,
1070
+ "grad_norm": 0.7206109166145325,
1071
+ "learning_rate": 0.00015290322580645158,
1072
+ "loss": 0.3594,
1073
+ "step": 152
1074
+ },
1075
+ {
1076
+ "epoch": 4.896,
1077
+ "grad_norm": 0.8529183864593506,
1078
+ "learning_rate": 0.00015193548387096772,
1079
+ "loss": 0.512,
1080
+ "step": 153
1081
+ },
1082
+ {
1083
+ "epoch": 4.928,
1084
+ "grad_norm": 0.6895930171012878,
1085
+ "learning_rate": 0.00015096774193548384,
1086
+ "loss": 0.333,
1087
+ "step": 154
1088
+ },
1089
+ {
1090
+ "epoch": 4.96,
1091
+ "grad_norm": 0.7422910332679749,
1092
+ "learning_rate": 0.00015,
1093
+ "loss": 0.2872,
1094
+ "step": 155
1095
+ },
1096
+ {
1097
+ "epoch": 4.992,
1098
+ "grad_norm": 0.7366386651992798,
1099
+ "learning_rate": 0.0001490322580645161,
1100
+ "loss": 0.3415,
1101
+ "step": 156
1102
+ },
1103
+ {
1104
+ "epoch": 5.024,
1105
+ "grad_norm": 2.1416280269622803,
1106
+ "learning_rate": 0.00014806451612903225,
1107
+ "loss": 0.9961,
1108
+ "step": 157
1109
+ },
1110
+ {
1111
+ "epoch": 5.056,
1112
+ "grad_norm": 0.7944900393486023,
1113
+ "learning_rate": 0.00014709677419354837,
1114
+ "loss": 0.3372,
1115
+ "step": 158
1116
+ },
1117
+ {
1118
+ "epoch": 5.088,
1119
+ "grad_norm": 0.7071006298065186,
1120
+ "learning_rate": 0.00014612903225806452,
1121
+ "loss": 0.2732,
1122
+ "step": 159
1123
+ },
1124
+ {
1125
+ "epoch": 5.12,
1126
+ "grad_norm": 0.7874396443367004,
1127
+ "learning_rate": 0.00014516129032258063,
1128
+ "loss": 0.2861,
1129
+ "step": 160
1130
+ },
1131
+ {
1132
+ "epoch": 5.152,
1133
+ "grad_norm": 0.8244249224662781,
1134
+ "learning_rate": 0.00014419354838709675,
1135
+ "loss": 0.3428,
1136
+ "step": 161
1137
+ },
1138
+ {
1139
+ "epoch": 5.184,
1140
+ "grad_norm": 0.81637042760849,
1141
+ "learning_rate": 0.0001432258064516129,
1142
+ "loss": 0.3037,
1143
+ "step": 162
1144
+ },
1145
+ {
1146
+ "epoch": 5.216,
1147
+ "grad_norm": 0.9916559457778931,
1148
+ "learning_rate": 0.00014225806451612902,
1149
+ "loss": 0.3337,
1150
+ "step": 163
1151
+ },
1152
+ {
1153
+ "epoch": 5.248,
1154
+ "grad_norm": 0.9077599048614502,
1155
+ "learning_rate": 0.00014129032258064514,
1156
+ "loss": 0.287,
1157
+ "step": 164
1158
+ },
1159
+ {
1160
+ "epoch": 5.28,
1161
+ "grad_norm": 0.9824132919311523,
1162
+ "learning_rate": 0.00014032258064516128,
1163
+ "loss": 0.3852,
1164
+ "step": 165
1165
+ },
1166
+ {
1167
+ "epoch": 5.312,
1168
+ "grad_norm": 1.0016467571258545,
1169
+ "learning_rate": 0.0001393548387096774,
1170
+ "loss": 0.3234,
1171
+ "step": 166
1172
+ },
1173
+ {
1174
+ "epoch": 5.344,
1175
+ "grad_norm": 0.8697543144226074,
1176
+ "learning_rate": 0.00013838709677419355,
1177
+ "loss": 0.2848,
1178
+ "step": 167
1179
+ },
1180
+ {
1181
+ "epoch": 5.376,
1182
+ "grad_norm": 0.8214029669761658,
1183
+ "learning_rate": 0.00013741935483870966,
1184
+ "loss": 0.3377,
1185
+ "step": 168
1186
+ },
1187
+ {
1188
+ "epoch": 5.408,
1189
+ "grad_norm": 0.9105691313743591,
1190
+ "learning_rate": 0.00013645161290322578,
1191
+ "loss": 0.2944,
1192
+ "step": 169
1193
+ },
1194
+ {
1195
+ "epoch": 5.44,
1196
+ "grad_norm": 0.9642040133476257,
1197
+ "learning_rate": 0.00013548387096774193,
1198
+ "loss": 0.3624,
1199
+ "step": 170
1200
+ },
1201
+ {
1202
+ "epoch": 5.4719999999999995,
1203
+ "grad_norm": 0.9218887686729431,
1204
+ "learning_rate": 0.00013451612903225805,
1205
+ "loss": 0.3938,
1206
+ "step": 171
1207
+ },
1208
+ {
1209
+ "epoch": 5.504,
1210
+ "grad_norm": 0.8704710006713867,
1211
+ "learning_rate": 0.0001335483870967742,
1212
+ "loss": 0.3629,
1213
+ "step": 172
1214
+ },
1215
+ {
1216
+ "epoch": 5.536,
1217
+ "grad_norm": 0.8207693099975586,
1218
+ "learning_rate": 0.0001325806451612903,
1219
+ "loss": 0.3169,
1220
+ "step": 173
1221
+ },
1222
+ {
1223
+ "epoch": 5.568,
1224
+ "grad_norm": 0.9315701127052307,
1225
+ "learning_rate": 0.00013161290322580643,
1226
+ "loss": 0.429,
1227
+ "step": 174
1228
+ },
1229
+ {
1230
+ "epoch": 5.6,
1231
+ "grad_norm": 0.860234260559082,
1232
+ "learning_rate": 0.00013064516129032258,
1233
+ "loss": 0.3842,
1234
+ "step": 175
1235
+ },
1236
+ {
1237
+ "epoch": 5.632,
1238
+ "grad_norm": 0.8927604556083679,
1239
+ "learning_rate": 0.0001296774193548387,
1240
+ "loss": 0.3405,
1241
+ "step": 176
1242
+ },
1243
+ {
1244
+ "epoch": 5.664,
1245
+ "grad_norm": 0.8084587454795837,
1246
+ "learning_rate": 0.0001287096774193548,
1247
+ "loss": 0.306,
1248
+ "step": 177
1249
+ },
1250
+ {
1251
+ "epoch": 5.696,
1252
+ "grad_norm": 0.9102941155433655,
1253
+ "learning_rate": 0.00012774193548387096,
1254
+ "loss": 0.3285,
1255
+ "step": 178
1256
+ },
1257
+ {
1258
+ "epoch": 5.728,
1259
+ "grad_norm": 0.763113796710968,
1260
+ "learning_rate": 0.0001267741935483871,
1261
+ "loss": 0.2729,
1262
+ "step": 179
1263
+ },
1264
+ {
1265
+ "epoch": 5.76,
1266
+ "grad_norm": 0.8704251646995544,
1267
+ "learning_rate": 0.00012580645161290322,
1268
+ "loss": 0.3164,
1269
+ "step": 180
1270
+ },
1271
+ {
1272
+ "epoch": 5.792,
1273
+ "grad_norm": 0.9634932279586792,
1274
+ "learning_rate": 0.00012483870967741934,
1275
+ "loss": 0.2939,
1276
+ "step": 181
1277
+ },
1278
+ {
1279
+ "epoch": 5.824,
1280
+ "grad_norm": 1.1567790508270264,
1281
+ "learning_rate": 0.00012387096774193546,
1282
+ "loss": 0.3076,
1283
+ "step": 182
1284
+ },
1285
+ {
1286
+ "epoch": 5.856,
1287
+ "grad_norm": 0.9096764922142029,
1288
+ "learning_rate": 0.0001229032258064516,
1289
+ "loss": 0.3289,
1290
+ "step": 183
1291
+ },
1292
+ {
1293
+ "epoch": 5.888,
1294
+ "grad_norm": 0.9840425848960876,
1295
+ "learning_rate": 0.00012193548387096773,
1296
+ "loss": 0.2772,
1297
+ "step": 184
1298
+ },
1299
+ {
1300
+ "epoch": 5.92,
1301
+ "grad_norm": 0.725844144821167,
1302
+ "learning_rate": 0.00012096774193548386,
1303
+ "loss": 0.2151,
1304
+ "step": 185
1305
+ },
1306
+ {
1307
+ "epoch": 5.952,
1308
+ "grad_norm": 0.8343638181686401,
1309
+ "learning_rate": 0.00011999999999999999,
1310
+ "loss": 0.3825,
1311
+ "step": 186
1312
+ },
1313
+ {
1314
+ "epoch": 5.984,
1315
+ "grad_norm": 0.8040199279785156,
1316
+ "learning_rate": 0.00011903225806451612,
1317
+ "loss": 0.2571,
1318
+ "step": 187
1319
+ },
1320
+ {
1321
+ "epoch": 6.016,
1322
+ "grad_norm": 1.6932090520858765,
1323
+ "learning_rate": 0.00011806451612903225,
1324
+ "loss": 0.5538,
1325
+ "step": 188
1326
+ },
1327
+ {
1328
+ "epoch": 6.048,
1329
+ "grad_norm": 0.744048535823822,
1330
+ "learning_rate": 0.00011709677419354837,
1331
+ "loss": 0.2335,
1332
+ "step": 189
1333
+ },
1334
+ {
1335
+ "epoch": 6.08,
1336
+ "grad_norm": 0.6974924206733704,
1337
+ "learning_rate": 0.0001161290322580645,
1338
+ "loss": 0.2891,
1339
+ "step": 190
1340
+ },
1341
+ {
1342
+ "epoch": 6.112,
1343
+ "grad_norm": 0.7202953696250916,
1344
+ "learning_rate": 0.00011516129032258062,
1345
+ "loss": 0.2017,
1346
+ "step": 191
1347
+ },
1348
+ {
1349
+ "epoch": 6.144,
1350
+ "grad_norm": 0.8437547087669373,
1351
+ "learning_rate": 0.00011419354838709676,
1352
+ "loss": 0.2175,
1353
+ "step": 192
1354
+ },
1355
+ {
1356
+ "epoch": 6.176,
1357
+ "grad_norm": 1.0741796493530273,
1358
+ "learning_rate": 0.0001132258064516129,
1359
+ "loss": 0.3913,
1360
+ "step": 193
1361
+ },
1362
+ {
1363
+ "epoch": 6.208,
1364
+ "grad_norm": 1.031754493713379,
1365
+ "learning_rate": 0.00011225806451612902,
1366
+ "loss": 0.298,
1367
+ "step": 194
1368
+ },
1369
+ {
1370
+ "epoch": 6.24,
1371
+ "grad_norm": 0.9575178027153015,
1372
+ "learning_rate": 0.00011129032258064515,
1373
+ "loss": 0.3201,
1374
+ "step": 195
1375
+ },
1376
+ {
1377
+ "epoch": 6.272,
1378
+ "grad_norm": 0.9503082633018494,
1379
+ "learning_rate": 0.00011032258064516128,
1380
+ "loss": 0.2005,
1381
+ "step": 196
1382
+ },
1383
+ {
1384
+ "epoch": 6.304,
1385
+ "grad_norm": 1.2572892904281616,
1386
+ "learning_rate": 0.0001093548387096774,
1387
+ "loss": 0.3045,
1388
+ "step": 197
1389
+ },
1390
+ {
1391
+ "epoch": 6.336,
1392
+ "grad_norm": 1.5667368173599243,
1393
+ "learning_rate": 0.00010838709677419353,
1394
+ "loss": 0.4053,
1395
+ "step": 198
1396
+ },
1397
+ {
1398
+ "epoch": 6.368,
1399
+ "grad_norm": 0.9439151883125305,
1400
+ "learning_rate": 0.00010741935483870968,
1401
+ "loss": 0.2721,
1402
+ "step": 199
1403
+ },
1404
+ {
1405
+ "epoch": 6.4,
1406
+ "grad_norm": 1.0985567569732666,
1407
+ "learning_rate": 0.0001064516129032258,
1408
+ "loss": 0.2543,
1409
+ "step": 200
1410
+ },
1411
+ {
1412
+ "epoch": 6.432,
1413
+ "grad_norm": 0.789880633354187,
1414
+ "learning_rate": 0.00010548387096774193,
1415
+ "loss": 0.2148,
1416
+ "step": 201
1417
+ },
1418
+ {
1419
+ "epoch": 6.464,
1420
+ "grad_norm": 0.9937541484832764,
1421
+ "learning_rate": 0.00010451612903225805,
1422
+ "loss": 0.2343,
1423
+ "step": 202
1424
+ },
1425
+ {
1426
+ "epoch": 6.496,
1427
+ "grad_norm": 0.9496509432792664,
1428
+ "learning_rate": 0.00010354838709677418,
1429
+ "loss": 0.2576,
1430
+ "step": 203
1431
+ },
1432
+ {
1433
+ "epoch": 6.5280000000000005,
1434
+ "grad_norm": 0.9214590191841125,
1435
+ "learning_rate": 0.00010258064516129031,
1436
+ "loss": 0.3067,
1437
+ "step": 204
1438
+ },
1439
+ {
1440
+ "epoch": 6.5600000000000005,
1441
+ "grad_norm": 0.8984239101409912,
1442
+ "learning_rate": 0.00010161290322580643,
1443
+ "loss": 0.2471,
1444
+ "step": 205
1445
+ },
1446
+ {
1447
+ "epoch": 6.592,
1448
+ "grad_norm": 0.8055192232131958,
1449
+ "learning_rate": 0.00010064516129032258,
1450
+ "loss": 0.2234,
1451
+ "step": 206
1452
+ },
1453
+ {
1454
+ "epoch": 6.624,
1455
+ "grad_norm": 0.769008219242096,
1456
+ "learning_rate": 9.967741935483871e-05,
1457
+ "loss": 0.1963,
1458
+ "step": 207
1459
+ },
1460
+ {
1461
+ "epoch": 6.656,
1462
+ "grad_norm": 0.7947174310684204,
1463
+ "learning_rate": 9.870967741935483e-05,
1464
+ "loss": 0.2165,
1465
+ "step": 208
1466
+ },
1467
+ {
1468
+ "epoch": 6.688,
1469
+ "grad_norm": 1.0192420482635498,
1470
+ "learning_rate": 9.774193548387096e-05,
1471
+ "loss": 0.2581,
1472
+ "step": 209
1473
+ },
1474
+ {
1475
+ "epoch": 6.72,
1476
+ "grad_norm": 1.0067439079284668,
1477
+ "learning_rate": 9.677419354838708e-05,
1478
+ "loss": 0.2394,
1479
+ "step": 210
1480
+ },
1481
+ {
1482
+ "epoch": 6.752,
1483
+ "grad_norm": 1.0539058446884155,
1484
+ "learning_rate": 9.580645161290321e-05,
1485
+ "loss": 0.2526,
1486
+ "step": 211
1487
+ },
1488
+ {
1489
+ "epoch": 6.784,
1490
+ "grad_norm": 1.130011796951294,
1491
+ "learning_rate": 9.483870967741934e-05,
1492
+ "loss": 0.3339,
1493
+ "step": 212
1494
+ },
1495
+ {
1496
+ "epoch": 6.816,
1497
+ "grad_norm": 0.9603860378265381,
1498
+ "learning_rate": 9.387096774193548e-05,
1499
+ "loss": 0.2808,
1500
+ "step": 213
1501
+ },
1502
+ {
1503
+ "epoch": 6.848,
1504
+ "grad_norm": 1.0667173862457275,
1505
+ "learning_rate": 9.290322580645161e-05,
1506
+ "loss": 0.3025,
1507
+ "step": 214
1508
+ },
1509
+ {
1510
+ "epoch": 6.88,
1511
+ "grad_norm": 0.9093402624130249,
1512
+ "learning_rate": 9.193548387096774e-05,
1513
+ "loss": 0.2698,
1514
+ "step": 215
1515
+ },
1516
+ {
1517
+ "epoch": 6.912,
1518
+ "grad_norm": 0.8621392846107483,
1519
+ "learning_rate": 9.096774193548386e-05,
1520
+ "loss": 0.2259,
1521
+ "step": 216
1522
+ },
1523
+ {
1524
+ "epoch": 6.944,
1525
+ "grad_norm": 1.035175085067749,
1526
+ "learning_rate": 8.999999999999999e-05,
1527
+ "loss": 0.3156,
1528
+ "step": 217
1529
+ },
1530
+ {
1531
+ "epoch": 6.976,
1532
+ "grad_norm": 1.0241689682006836,
1533
+ "learning_rate": 8.903225806451611e-05,
1534
+ "loss": 0.2723,
1535
+ "step": 218
1536
+ },
1537
+ {
1538
+ "epoch": 7.008,
1539
+ "grad_norm": 1.735946536064148,
1540
+ "learning_rate": 8.806451612903224e-05,
1541
+ "loss": 0.411,
1542
+ "step": 219
1543
+ },
1544
+ {
1545
+ "epoch": 7.04,
1546
+ "grad_norm": 0.8678178191184998,
1547
+ "learning_rate": 8.709677419354839e-05,
1548
+ "loss": 0.2415,
1549
+ "step": 220
1550
+ },
1551
+ {
1552
+ "epoch": 7.072,
1553
+ "grad_norm": 0.7134645581245422,
1554
+ "learning_rate": 8.612903225806451e-05,
1555
+ "loss": 0.1509,
1556
+ "step": 221
1557
+ },
1558
+ {
1559
+ "epoch": 7.104,
1560
+ "grad_norm": 0.8543497920036316,
1561
+ "learning_rate": 8.516129032258064e-05,
1562
+ "loss": 0.2459,
1563
+ "step": 222
1564
+ },
1565
+ {
1566
+ "epoch": 7.136,
1567
+ "grad_norm": 0.9644029140472412,
1568
+ "learning_rate": 8.419354838709677e-05,
1569
+ "loss": 0.2828,
1570
+ "step": 223
1571
+ },
1572
+ {
1573
+ "epoch": 7.168,
1574
+ "grad_norm": 0.8568740487098694,
1575
+ "learning_rate": 8.322580645161289e-05,
1576
+ "loss": 0.1936,
1577
+ "step": 224
1578
+ },
1579
+ {
1580
+ "epoch": 7.2,
1581
+ "grad_norm": 1.005867600440979,
1582
+ "learning_rate": 8.225806451612902e-05,
1583
+ "loss": 0.2678,
1584
+ "step": 225
1585
+ },
1586
+ {
1587
+ "epoch": 7.232,
1588
+ "grad_norm": 0.9942033290863037,
1589
+ "learning_rate": 8.129032258064517e-05,
1590
+ "loss": 0.2111,
1591
+ "step": 226
1592
+ },
1593
+ {
1594
+ "epoch": 7.264,
1595
+ "grad_norm": 0.9886007905006409,
1596
+ "learning_rate": 8.032258064516129e-05,
1597
+ "loss": 0.2375,
1598
+ "step": 227
1599
+ },
1600
+ {
1601
+ "epoch": 7.296,
1602
+ "grad_norm": 1.0586844682693481,
1603
+ "learning_rate": 7.935483870967742e-05,
1604
+ "loss": 0.2385,
1605
+ "step": 228
1606
+ },
1607
+ {
1608
+ "epoch": 7.328,
1609
+ "grad_norm": 1.026432991027832,
1610
+ "learning_rate": 7.838709677419354e-05,
1611
+ "loss": 0.2139,
1612
+ "step": 229
1613
+ },
1614
+ {
1615
+ "epoch": 7.36,
1616
+ "grad_norm": 1.0039665699005127,
1617
+ "learning_rate": 7.741935483870967e-05,
1618
+ "loss": 0.2211,
1619
+ "step": 230
1620
+ },
1621
+ {
1622
+ "epoch": 7.392,
1623
+ "grad_norm": 1.1125057935714722,
1624
+ "learning_rate": 7.645161290322579e-05,
1625
+ "loss": 0.2725,
1626
+ "step": 231
1627
+ },
1628
+ {
1629
+ "epoch": 7.424,
1630
+ "grad_norm": 0.9078079462051392,
1631
+ "learning_rate": 7.548387096774192e-05,
1632
+ "loss": 0.1965,
1633
+ "step": 232
1634
+ },
1635
+ {
1636
+ "epoch": 7.456,
1637
+ "grad_norm": 0.8247030377388,
1638
+ "learning_rate": 7.451612903225805e-05,
1639
+ "loss": 0.1502,
1640
+ "step": 233
1641
+ },
1642
+ {
1643
+ "epoch": 7.4879999999999995,
1644
+ "grad_norm": 1.1396474838256836,
1645
+ "learning_rate": 7.354838709677418e-05,
1646
+ "loss": 0.37,
1647
+ "step": 234
1648
+ },
1649
+ {
1650
+ "epoch": 7.52,
1651
+ "grad_norm": 0.753663182258606,
1652
+ "learning_rate": 7.258064516129032e-05,
1653
+ "loss": 0.1627,
1654
+ "step": 235
1655
+ },
1656
+ {
1657
+ "epoch": 7.552,
1658
+ "grad_norm": 0.7927701473236084,
1659
+ "learning_rate": 7.161290322580645e-05,
1660
+ "loss": 0.1684,
1661
+ "step": 236
1662
+ },
1663
+ {
1664
+ "epoch": 7.584,
1665
+ "grad_norm": 0.9258756637573242,
1666
+ "learning_rate": 7.064516129032257e-05,
1667
+ "loss": 0.213,
1668
+ "step": 237
1669
+ },
1670
+ {
1671
+ "epoch": 7.616,
1672
+ "grad_norm": 0.8111560940742493,
1673
+ "learning_rate": 6.96774193548387e-05,
1674
+ "loss": 0.1998,
1675
+ "step": 238
1676
+ },
1677
+ {
1678
+ "epoch": 7.648,
1679
+ "grad_norm": 0.8484370708465576,
1680
+ "learning_rate": 6.870967741935483e-05,
1681
+ "loss": 0.1307,
1682
+ "step": 239
1683
+ },
1684
+ {
1685
+ "epoch": 7.68,
1686
+ "grad_norm": 0.9123087525367737,
1687
+ "learning_rate": 6.774193548387096e-05,
1688
+ "loss": 0.2529,
1689
+ "step": 240
1690
+ },
1691
+ {
1692
+ "epoch": 7.712,
1693
+ "grad_norm": 1.0526336431503296,
1694
+ "learning_rate": 6.67741935483871e-05,
1695
+ "loss": 0.2468,
1696
+ "step": 241
1697
+ },
1698
+ {
1699
+ "epoch": 7.744,
1700
+ "grad_norm": 1.0104210376739502,
1701
+ "learning_rate": 6.580645161290322e-05,
1702
+ "loss": 0.23,
1703
+ "step": 242
1704
+ },
1705
+ {
1706
+ "epoch": 7.776,
1707
+ "grad_norm": 0.8749745488166809,
1708
+ "learning_rate": 6.483870967741935e-05,
1709
+ "loss": 0.1973,
1710
+ "step": 243
1711
+ },
1712
+ {
1713
+ "epoch": 7.808,
1714
+ "grad_norm": 0.9921355247497559,
1715
+ "learning_rate": 6.387096774193548e-05,
1716
+ "loss": 0.2144,
1717
+ "step": 244
1718
+ },
1719
+ {
1720
+ "epoch": 7.84,
1721
+ "grad_norm": 0.8243810534477234,
1722
+ "learning_rate": 6.290322580645161e-05,
1723
+ "loss": 0.1531,
1724
+ "step": 245
1725
+ },
1726
+ {
1727
+ "epoch": 7.872,
1728
+ "grad_norm": 1.0764353275299072,
1729
+ "learning_rate": 6.193548387096773e-05,
1730
+ "loss": 0.2763,
1731
+ "step": 246
1732
+ },
1733
+ {
1734
+ "epoch": 7.904,
1735
+ "grad_norm": 1.1754212379455566,
1736
+ "learning_rate": 6.096774193548386e-05,
1737
+ "loss": 0.2249,
1738
+ "step": 247
1739
+ },
1740
+ {
1741
+ "epoch": 7.936,
1742
+ "grad_norm": 0.8588422536849976,
1743
+ "learning_rate": 5.9999999999999995e-05,
1744
+ "loss": 0.1782,
1745
+ "step": 248
1746
+ },
1747
+ {
1748
+ "epoch": 7.968,
1749
+ "grad_norm": 1.045143961906433,
1750
+ "learning_rate": 5.903225806451613e-05,
1751
+ "loss": 0.2789,
1752
+ "step": 249
1753
+ },
1754
+ {
1755
+ "epoch": 8.0,
1756
+ "grad_norm": 1.9824038743972778,
1757
+ "learning_rate": 5.806451612903225e-05,
1758
+ "loss": 0.3057,
1759
+ "step": 250
1760
+ },
1761
+ {
1762
+ "epoch": 8.032,
1763
+ "grad_norm": 0.9252362847328186,
1764
+ "learning_rate": 5.709677419354838e-05,
1765
+ "loss": 0.2221,
1766
+ "step": 251
1767
+ },
1768
+ {
1769
+ "epoch": 8.064,
1770
+ "grad_norm": 0.8381021022796631,
1771
+ "learning_rate": 5.612903225806451e-05,
1772
+ "loss": 0.2639,
1773
+ "step": 252
1774
+ },
1775
+ {
1776
+ "epoch": 8.096,
1777
+ "grad_norm": 0.9777012467384338,
1778
+ "learning_rate": 5.516129032258064e-05,
1779
+ "loss": 0.1533,
1780
+ "step": 253
1781
+ },
1782
+ {
1783
+ "epoch": 8.128,
1784
+ "grad_norm": 0.8053516745567322,
1785
+ "learning_rate": 5.419354838709677e-05,
1786
+ "loss": 0.1883,
1787
+ "step": 254
1788
+ },
1789
+ {
1790
+ "epoch": 8.16,
1791
+ "grad_norm": 0.8703336119651794,
1792
+ "learning_rate": 5.32258064516129e-05,
1793
+ "loss": 0.2079,
1794
+ "step": 255
1795
+ },
1796
+ {
1797
+ "epoch": 8.192,
1798
+ "grad_norm": 0.8113718032836914,
1799
+ "learning_rate": 5.2258064516129025e-05,
1800
+ "loss": 0.1609,
1801
+ "step": 256
1802
+ },
1803
+ {
1804
+ "epoch": 8.224,
1805
+ "grad_norm": 1.0667418241500854,
1806
+ "learning_rate": 5.129032258064516e-05,
1807
+ "loss": 0.2544,
1808
+ "step": 257
1809
+ },
1810
+ {
1811
+ "epoch": 8.256,
1812
+ "grad_norm": 0.7853135466575623,
1813
+ "learning_rate": 5.032258064516129e-05,
1814
+ "loss": 0.1391,
1815
+ "step": 258
1816
+ },
1817
+ {
1818
+ "epoch": 8.288,
1819
+ "grad_norm": 0.9970865845680237,
1820
+ "learning_rate": 4.9354838709677415e-05,
1821
+ "loss": 0.2305,
1822
+ "step": 259
1823
+ },
1824
+ {
1825
+ "epoch": 8.32,
1826
+ "grad_norm": 12.063047409057617,
1827
+ "learning_rate": 4.838709677419354e-05,
1828
+ "loss": 0.189,
1829
+ "step": 260
1830
+ },
1831
+ {
1832
+ "epoch": 8.352,
1833
+ "grad_norm": 1.2325772047042847,
1834
+ "learning_rate": 4.741935483870967e-05,
1835
+ "loss": 0.2308,
1836
+ "step": 261
1837
+ },
1838
+ {
1839
+ "epoch": 8.384,
1840
+ "grad_norm": 1.1118851900100708,
1841
+ "learning_rate": 4.6451612903225805e-05,
1842
+ "loss": 0.2009,
1843
+ "step": 262
1844
+ },
1845
+ {
1846
+ "epoch": 8.416,
1847
+ "grad_norm": 1.0783390998840332,
1848
+ "learning_rate": 4.548387096774193e-05,
1849
+ "loss": 0.2276,
1850
+ "step": 263
1851
+ },
1852
+ {
1853
+ "epoch": 8.448,
1854
+ "grad_norm": 1.2127933502197266,
1855
+ "learning_rate": 4.4516129032258055e-05,
1856
+ "loss": 0.2046,
1857
+ "step": 264
1858
+ },
1859
+ {
1860
+ "epoch": 8.48,
1861
+ "grad_norm": 1.1135843992233276,
1862
+ "learning_rate": 4.3548387096774194e-05,
1863
+ "loss": 0.1791,
1864
+ "step": 265
1865
+ },
1866
+ {
1867
+ "epoch": 8.512,
1868
+ "grad_norm": 0.8666661381721497,
1869
+ "learning_rate": 4.258064516129032e-05,
1870
+ "loss": 0.1287,
1871
+ "step": 266
1872
+ },
1873
+ {
1874
+ "epoch": 8.544,
1875
+ "grad_norm": 0.8430101275444031,
1876
+ "learning_rate": 4.1612903225806445e-05,
1877
+ "loss": 0.1475,
1878
+ "step": 267
1879
+ },
1880
+ {
1881
+ "epoch": 8.576,
1882
+ "grad_norm": 0.7744110822677612,
1883
+ "learning_rate": 4.0645161290322584e-05,
1884
+ "loss": 0.1458,
1885
+ "step": 268
1886
+ },
1887
+ {
1888
+ "epoch": 8.608,
1889
+ "grad_norm": 1.4067776203155518,
1890
+ "learning_rate": 3.967741935483871e-05,
1891
+ "loss": 0.2189,
1892
+ "step": 269
1893
+ },
1894
+ {
1895
+ "epoch": 8.64,
1896
+ "grad_norm": 0.8347670435905457,
1897
+ "learning_rate": 3.8709677419354835e-05,
1898
+ "loss": 0.1602,
1899
+ "step": 270
1900
+ },
1901
+ {
1902
+ "epoch": 8.672,
1903
+ "grad_norm": 0.7643276453018188,
1904
+ "learning_rate": 3.774193548387096e-05,
1905
+ "loss": 0.1363,
1906
+ "step": 271
1907
+ },
1908
+ {
1909
+ "epoch": 8.704,
1910
+ "grad_norm": 0.898059606552124,
1911
+ "learning_rate": 3.677419354838709e-05,
1912
+ "loss": 0.156,
1913
+ "step": 272
1914
+ },
1915
+ {
1916
+ "epoch": 8.736,
1917
+ "grad_norm": 0.8416333198547363,
1918
+ "learning_rate": 3.5806451612903225e-05,
1919
+ "loss": 0.1754,
1920
+ "step": 273
1921
+ },
1922
+ {
1923
+ "epoch": 8.768,
1924
+ "grad_norm": 0.8691906929016113,
1925
+ "learning_rate": 3.483870967741935e-05,
1926
+ "loss": 0.1808,
1927
+ "step": 274
1928
+ },
1929
+ {
1930
+ "epoch": 8.8,
1931
+ "grad_norm": 1.062111496925354,
1932
+ "learning_rate": 3.387096774193548e-05,
1933
+ "loss": 0.2559,
1934
+ "step": 275
1935
+ },
1936
+ {
1937
+ "epoch": 8.832,
1938
+ "grad_norm": 0.881698727607727,
1939
+ "learning_rate": 3.290322580645161e-05,
1940
+ "loss": 0.1732,
1941
+ "step": 276
1942
+ },
1943
+ {
1944
+ "epoch": 8.864,
1945
+ "grad_norm": 0.8446074724197388,
1946
+ "learning_rate": 3.193548387096774e-05,
1947
+ "loss": 0.1833,
1948
+ "step": 277
1949
+ },
1950
+ {
1951
+ "epoch": 8.896,
1952
+ "grad_norm": 0.9393475651741028,
1953
+ "learning_rate": 3.0967741935483865e-05,
1954
+ "loss": 0.2165,
1955
+ "step": 278
1956
+ },
1957
+ {
1958
+ "epoch": 8.928,
1959
+ "grad_norm": 0.8838346004486084,
1960
+ "learning_rate": 2.9999999999999997e-05,
1961
+ "loss": 0.146,
1962
+ "step": 279
1963
+ },
1964
+ {
1965
+ "epoch": 8.96,
1966
+ "grad_norm": 0.8380343914031982,
1967
+ "learning_rate": 2.9032258064516126e-05,
1968
+ "loss": 0.1721,
1969
+ "step": 280
1970
+ },
1971
+ {
1972
+ "epoch": 8.992,
1973
+ "grad_norm": 0.8561931252479553,
1974
+ "learning_rate": 2.8064516129032255e-05,
1975
+ "loss": 0.1519,
1976
+ "step": 281
1977
+ },
1978
+ {
1979
+ "epoch": 9.024,
1980
+ "grad_norm": 1.6088253259658813,
1981
+ "learning_rate": 2.7096774193548384e-05,
1982
+ "loss": 0.2658,
1983
+ "step": 282
1984
+ },
1985
+ {
1986
+ "epoch": 9.056,
1987
+ "grad_norm": 0.8154093027114868,
1988
+ "learning_rate": 2.6129032258064513e-05,
1989
+ "loss": 0.1693,
1990
+ "step": 283
1991
+ },
1992
+ {
1993
+ "epoch": 9.088,
1994
+ "grad_norm": 0.7722072005271912,
1995
+ "learning_rate": 2.5161290322580645e-05,
1996
+ "loss": 0.1853,
1997
+ "step": 284
1998
+ },
1999
+ {
2000
+ "epoch": 9.12,
2001
+ "grad_norm": 0.8294870257377625,
2002
+ "learning_rate": 2.419354838709677e-05,
2003
+ "loss": 0.1736,
2004
+ "step": 285
2005
+ },
2006
+ {
2007
+ "epoch": 9.152,
2008
+ "grad_norm": 0.7481442093849182,
2009
+ "learning_rate": 2.3225806451612902e-05,
2010
+ "loss": 0.1544,
2011
+ "step": 286
2012
+ },
2013
+ {
2014
+ "epoch": 9.184,
2015
+ "grad_norm": 0.923413872718811,
2016
+ "learning_rate": 2.2258064516129028e-05,
2017
+ "loss": 0.2162,
2018
+ "step": 287
2019
+ },
2020
+ {
2021
+ "epoch": 9.216,
2022
+ "grad_norm": 0.8326953053474426,
2023
+ "learning_rate": 2.129032258064516e-05,
2024
+ "loss": 0.1926,
2025
+ "step": 288
2026
+ },
2027
+ {
2028
+ "epoch": 9.248,
2029
+ "grad_norm": 0.7642485499382019,
2030
+ "learning_rate": 2.0322580645161292e-05,
2031
+ "loss": 0.1555,
2032
+ "step": 289
2033
+ },
2034
+ {
2035
+ "epoch": 9.28,
2036
+ "grad_norm": 0.7902241945266724,
2037
+ "learning_rate": 1.9354838709677417e-05,
2038
+ "loss": 0.1459,
2039
+ "step": 290
2040
+ },
2041
+ {
2042
+ "epoch": 9.312,
2043
+ "grad_norm": 0.7414844036102295,
2044
+ "learning_rate": 1.8387096774193546e-05,
2045
+ "loss": 0.1425,
2046
+ "step": 291
2047
+ },
2048
+ {
2049
+ "epoch": 9.344,
2050
+ "grad_norm": 0.7870174646377563,
2051
+ "learning_rate": 1.7419354838709675e-05,
2052
+ "loss": 0.1853,
2053
+ "step": 292
2054
+ },
2055
+ {
2056
+ "epoch": 9.376,
2057
+ "grad_norm": 0.9091981649398804,
2058
+ "learning_rate": 1.6451612903225804e-05,
2059
+ "loss": 0.1666,
2060
+ "step": 293
2061
+ },
2062
+ {
2063
+ "epoch": 9.408,
2064
+ "grad_norm": 0.8651584386825562,
2065
+ "learning_rate": 1.5483870967741933e-05,
2066
+ "loss": 0.174,
2067
+ "step": 294
2068
+ },
2069
+ {
2070
+ "epoch": 9.44,
2071
+ "grad_norm": 0.7866891622543335,
2072
+ "learning_rate": 1.4516129032258063e-05,
2073
+ "loss": 0.1478,
2074
+ "step": 295
2075
+ },
2076
+ {
2077
+ "epoch": 9.472,
2078
+ "grad_norm": 0.717932403087616,
2079
+ "learning_rate": 1.3548387096774192e-05,
2080
+ "loss": 0.1425,
2081
+ "step": 296
2082
+ },
2083
+ {
2084
+ "epoch": 9.504,
2085
+ "grad_norm": 1.0217758417129517,
2086
+ "learning_rate": 1.2580645161290322e-05,
2087
+ "loss": 0.1574,
2088
+ "step": 297
2089
+ },
2090
+ {
2091
+ "epoch": 9.536,
2092
+ "grad_norm": 0.8149961829185486,
2093
+ "learning_rate": 1.1612903225806451e-05,
2094
+ "loss": 0.1422,
2095
+ "step": 298
2096
+ },
2097
+ {
2098
+ "epoch": 9.568,
2099
+ "grad_norm": 0.9206218719482422,
2100
+ "learning_rate": 1.064516129032258e-05,
2101
+ "loss": 0.1809,
2102
+ "step": 299
2103
+ },
2104
+ {
2105
+ "epoch": 9.6,
2106
+ "grad_norm": 0.6865082383155823,
2107
+ "learning_rate": 9.677419354838709e-06,
2108
+ "loss": 0.133,
2109
+ "step": 300
2110
+ }
2111
+ ],
2112
+ "logging_steps": 1,
2113
+ "max_steps": 310,
2114
+ "num_input_tokens_seen": 0,
2115
+ "num_train_epochs": 10,
2116
+ "save_steps": 100,
2117
+ "stateful_callbacks": {
2118
+ "TrainerControl": {
2119
+ "args": {
2120
+ "should_epoch_stop": false,
2121
+ "should_evaluate": false,
2122
+ "should_log": false,
2123
+ "should_save": true,
2124
+ "should_training_stop": false
2125
+ },
2126
+ "attributes": {}
2127
+ }
2128
+ },
2129
+ "total_flos": 7.1102792466432e+16,
2130
+ "train_batch_size": 3,
2131
+ "trial_name": null,
2132
+ "trial_params": null
2133
+ }
checkpoint-300/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:457c697b05fd5daa3c83df8920300c4940c26fb78ace5b5428b7c95d133a0ef4
3
+ size 5560
checkpoint-310/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: /home/ubuntu/Apps/DataInf/models/model
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.2
checkpoint-310/adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "/home/ubuntu/Apps/DataInf/models/model",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "q_proj",
24
+ "v_proj"
25
+ ],
26
+ "task_type": "CAUSAL_LM",
27
+ "use_dora": false,
28
+ "use_rslora": false
29
+ }
checkpoint-310/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a3c618c18055bfce72d306d6b635cd0ecbd60120c3067688e0d526ab340b6b02
3
+ size 26235704
checkpoint-310/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1ef2087b1fbe093489148f4eb3a1c5ef6c381a445db728bd5dffc0f7e1d1f8b9
3
+ size 52563258
checkpoint-310/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a9ad5db2e1c1e26a024ec88b44e8e3dd0cd3608c099e37825d10b614778afd4e
3
+ size 14244
checkpoint-310/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6e89b1f0ce5285b1ae483386e0af782d4064a7bcec888d6919f207b0b5e5fa62
3
+ size 1064
checkpoint-310/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
checkpoint-310/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
checkpoint-310/tokenizer_config.json ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": null,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ }
30
+ },
31
+ "bos_token": "<s>",
32
+ "chat_template": "{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% else %}{% set loop_messages = messages %}{% set system_message = false %}{% endif %}{% for message in loop_messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if loop.index0 == 0 and system_message != false %}{% set content = '<<SYS>>\\n' + system_message + '\\n<</SYS>>\\n\\n' + message['content'] %}{% else %}{% set content = message['content'] %}{% endif %}{% if message['role'] == 'user' %}{{ bos_token + '[INST] ' + content.strip() + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ ' ' + content.strip() + ' ' + eos_token }}{% endif %}{% endfor %}",
33
+ "clean_up_tokenization_spaces": false,
34
+ "eos_token": "</s>",
35
+ "legacy": false,
36
+ "model_max_length": 1000000000000000019884624838656,
37
+ "pad_token": "</s>",
38
+ "padding_side": "right",
39
+ "sp_model_kwargs": {},
40
+ "spaces_between_special_tokens": false,
41
+ "tokenizer_class": "LlamaTokenizer",
42
+ "unk_token": "<unk>",
43
+ "use_default_system_prompt": false
44
+ }
checkpoint-310/trainer_state.json ADDED
@@ -0,0 +1,2203 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 9.92,
5
+ "eval_steps": 500,
6
+ "global_step": 310,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.032,
13
+ "grad_norm": 0.3297976851463318,
14
+ "learning_rate": 0.0002990322580645161,
15
+ "loss": 1.0389,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.064,
20
+ "grad_norm": 0.4069916307926178,
21
+ "learning_rate": 0.0002980645161290322,
22
+ "loss": 1.3377,
23
+ "step": 2
24
+ },
25
+ {
26
+ "epoch": 0.096,
27
+ "grad_norm": 0.42084500193595886,
28
+ "learning_rate": 0.00029709677419354836,
29
+ "loss": 0.9366,
30
+ "step": 3
31
+ },
32
+ {
33
+ "epoch": 0.128,
34
+ "grad_norm": 0.4641948938369751,
35
+ "learning_rate": 0.0002961290322580645,
36
+ "loss": 1.0086,
37
+ "step": 4
38
+ },
39
+ {
40
+ "epoch": 0.16,
41
+ "grad_norm": 0.3840750455856323,
42
+ "learning_rate": 0.00029516129032258065,
43
+ "loss": 0.8333,
44
+ "step": 5
45
+ },
46
+ {
47
+ "epoch": 0.192,
48
+ "grad_norm": 0.4263865053653717,
49
+ "learning_rate": 0.00029419354838709674,
50
+ "loss": 0.854,
51
+ "step": 6
52
+ },
53
+ {
54
+ "epoch": 0.224,
55
+ "grad_norm": 0.48615148663520813,
56
+ "learning_rate": 0.0002932258064516129,
57
+ "loss": 0.9548,
58
+ "step": 7
59
+ },
60
+ {
61
+ "epoch": 0.256,
62
+ "grad_norm": 0.44419369101524353,
63
+ "learning_rate": 0.00029225806451612903,
64
+ "loss": 0.8482,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.288,
69
+ "grad_norm": 0.5317733883857727,
70
+ "learning_rate": 0.0002912903225806451,
71
+ "loss": 0.9426,
72
+ "step": 9
73
+ },
74
+ {
75
+ "epoch": 0.32,
76
+ "grad_norm": 0.47260937094688416,
77
+ "learning_rate": 0.00029032258064516127,
78
+ "loss": 0.9816,
79
+ "step": 10
80
+ },
81
+ {
82
+ "epoch": 0.352,
83
+ "grad_norm": 0.39063283801078796,
84
+ "learning_rate": 0.00028935483870967736,
85
+ "loss": 0.84,
86
+ "step": 11
87
+ },
88
+ {
89
+ "epoch": 0.384,
90
+ "grad_norm": 0.39234670996665955,
91
+ "learning_rate": 0.0002883870967741935,
92
+ "loss": 0.7476,
93
+ "step": 12
94
+ },
95
+ {
96
+ "epoch": 0.416,
97
+ "grad_norm": 0.40661805868148804,
98
+ "learning_rate": 0.00028741935483870965,
99
+ "loss": 0.9282,
100
+ "step": 13
101
+ },
102
+ {
103
+ "epoch": 0.448,
104
+ "grad_norm": 0.42970865964889526,
105
+ "learning_rate": 0.0002864516129032258,
106
+ "loss": 0.7858,
107
+ "step": 14
108
+ },
109
+ {
110
+ "epoch": 0.48,
111
+ "grad_norm": 0.3780193626880646,
112
+ "learning_rate": 0.00028548387096774194,
113
+ "loss": 0.7968,
114
+ "step": 15
115
+ },
116
+ {
117
+ "epoch": 0.512,
118
+ "grad_norm": 0.37006014585494995,
119
+ "learning_rate": 0.00028451612903225803,
120
+ "loss": 0.6801,
121
+ "step": 16
122
+ },
123
+ {
124
+ "epoch": 0.544,
125
+ "grad_norm": 0.3660840392112732,
126
+ "learning_rate": 0.0002835483870967742,
127
+ "loss": 0.5914,
128
+ "step": 17
129
+ },
130
+ {
131
+ "epoch": 0.576,
132
+ "grad_norm": 0.3270975351333618,
133
+ "learning_rate": 0.00028258064516129027,
134
+ "loss": 0.6449,
135
+ "step": 18
136
+ },
137
+ {
138
+ "epoch": 0.608,
139
+ "grad_norm": 0.3859024941921234,
140
+ "learning_rate": 0.0002816129032258064,
141
+ "loss": 0.8144,
142
+ "step": 19
143
+ },
144
+ {
145
+ "epoch": 0.64,
146
+ "grad_norm": 0.37092071771621704,
147
+ "learning_rate": 0.00028064516129032256,
148
+ "loss": 0.7667,
149
+ "step": 20
150
+ },
151
+ {
152
+ "epoch": 0.672,
153
+ "grad_norm": 0.37667015194892883,
154
+ "learning_rate": 0.0002796774193548387,
155
+ "loss": 0.7751,
156
+ "step": 21
157
+ },
158
+ {
159
+ "epoch": 0.704,
160
+ "grad_norm": 0.3832458555698395,
161
+ "learning_rate": 0.0002787096774193548,
162
+ "loss": 0.755,
163
+ "step": 22
164
+ },
165
+ {
166
+ "epoch": 0.736,
167
+ "grad_norm": 0.327288419008255,
168
+ "learning_rate": 0.00027774193548387095,
169
+ "loss": 0.7178,
170
+ "step": 23
171
+ },
172
+ {
173
+ "epoch": 0.768,
174
+ "grad_norm": 0.34552687406539917,
175
+ "learning_rate": 0.0002767741935483871,
176
+ "loss": 0.7057,
177
+ "step": 24
178
+ },
179
+ {
180
+ "epoch": 0.8,
181
+ "grad_norm": 0.3611259460449219,
182
+ "learning_rate": 0.0002758064516129032,
183
+ "loss": 0.8159,
184
+ "step": 25
185
+ },
186
+ {
187
+ "epoch": 0.832,
188
+ "grad_norm": 0.3345054090023041,
189
+ "learning_rate": 0.00027483870967741933,
190
+ "loss": 0.7208,
191
+ "step": 26
192
+ },
193
+ {
194
+ "epoch": 0.864,
195
+ "grad_norm": 0.3697254955768585,
196
+ "learning_rate": 0.0002738709677419355,
197
+ "loss": 0.8964,
198
+ "step": 27
199
+ },
200
+ {
201
+ "epoch": 0.896,
202
+ "grad_norm": 0.3905017375946045,
203
+ "learning_rate": 0.00027290322580645157,
204
+ "loss": 0.7794,
205
+ "step": 28
206
+ },
207
+ {
208
+ "epoch": 0.928,
209
+ "grad_norm": 0.3715725243091583,
210
+ "learning_rate": 0.0002719354838709677,
211
+ "loss": 0.6966,
212
+ "step": 29
213
+ },
214
+ {
215
+ "epoch": 0.96,
216
+ "grad_norm": 0.3650343120098114,
217
+ "learning_rate": 0.00027096774193548386,
218
+ "loss": 0.5761,
219
+ "step": 30
220
+ },
221
+ {
222
+ "epoch": 0.992,
223
+ "grad_norm": 0.33932459354400635,
224
+ "learning_rate": 0.00027,
225
+ "loss": 0.556,
226
+ "step": 31
227
+ },
228
+ {
229
+ "epoch": 1.024,
230
+ "grad_norm": 0.6371742486953735,
231
+ "learning_rate": 0.0002690322580645161,
232
+ "loss": 0.847,
233
+ "step": 32
234
+ },
235
+ {
236
+ "epoch": 1.056,
237
+ "grad_norm": 0.37499895691871643,
238
+ "learning_rate": 0.00026806451612903224,
239
+ "loss": 0.8419,
240
+ "step": 33
241
+ },
242
+ {
243
+ "epoch": 1.088,
244
+ "grad_norm": 0.33221954107284546,
245
+ "learning_rate": 0.0002670967741935484,
246
+ "loss": 0.6011,
247
+ "step": 34
248
+ },
249
+ {
250
+ "epoch": 1.12,
251
+ "grad_norm": 0.344096839427948,
252
+ "learning_rate": 0.0002661290322580645,
253
+ "loss": 0.6501,
254
+ "step": 35
255
+ },
256
+ {
257
+ "epoch": 1.152,
258
+ "grad_norm": 0.38429391384124756,
259
+ "learning_rate": 0.0002651612903225806,
260
+ "loss": 0.8091,
261
+ "step": 36
262
+ },
263
+ {
264
+ "epoch": 1.184,
265
+ "grad_norm": 0.38014867901802063,
266
+ "learning_rate": 0.00026419354838709677,
267
+ "loss": 0.7668,
268
+ "step": 37
269
+ },
270
+ {
271
+ "epoch": 1.216,
272
+ "grad_norm": 0.3352573812007904,
273
+ "learning_rate": 0.00026322580645161286,
274
+ "loss": 0.5444,
275
+ "step": 38
276
+ },
277
+ {
278
+ "epoch": 1.248,
279
+ "grad_norm": 0.33811062574386597,
280
+ "learning_rate": 0.000262258064516129,
281
+ "loss": 0.512,
282
+ "step": 39
283
+ },
284
+ {
285
+ "epoch": 1.28,
286
+ "grad_norm": 0.3998416066169739,
287
+ "learning_rate": 0.00026129032258064515,
288
+ "loss": 0.6315,
289
+ "step": 40
290
+ },
291
+ {
292
+ "epoch": 1.312,
293
+ "grad_norm": 0.3983341157436371,
294
+ "learning_rate": 0.0002603225806451613,
295
+ "loss": 0.5882,
296
+ "step": 41
297
+ },
298
+ {
299
+ "epoch": 1.3439999999999999,
300
+ "grad_norm": 0.4585898816585541,
301
+ "learning_rate": 0.0002593548387096774,
302
+ "loss": 0.761,
303
+ "step": 42
304
+ },
305
+ {
306
+ "epoch": 1.376,
307
+ "grad_norm": 0.4080730080604553,
308
+ "learning_rate": 0.00025838709677419354,
309
+ "loss": 0.6716,
310
+ "step": 43
311
+ },
312
+ {
313
+ "epoch": 1.408,
314
+ "grad_norm": 0.4068273901939392,
315
+ "learning_rate": 0.0002574193548387096,
316
+ "loss": 0.6376,
317
+ "step": 44
318
+ },
319
+ {
320
+ "epoch": 1.44,
321
+ "grad_norm": 0.4406949579715729,
322
+ "learning_rate": 0.00025645161290322577,
323
+ "loss": 0.4594,
324
+ "step": 45
325
+ },
326
+ {
327
+ "epoch": 1.472,
328
+ "grad_norm": 0.34500986337661743,
329
+ "learning_rate": 0.0002554838709677419,
330
+ "loss": 0.3672,
331
+ "step": 46
332
+ },
333
+ {
334
+ "epoch": 1.504,
335
+ "grad_norm": 0.4760681390762329,
336
+ "learning_rate": 0.00025451612903225806,
337
+ "loss": 0.6331,
338
+ "step": 47
339
+ },
340
+ {
341
+ "epoch": 1.536,
342
+ "grad_norm": 0.39281558990478516,
343
+ "learning_rate": 0.0002535483870967742,
344
+ "loss": 0.5845,
345
+ "step": 48
346
+ },
347
+ {
348
+ "epoch": 1.568,
349
+ "grad_norm": 0.4265002906322479,
350
+ "learning_rate": 0.0002525806451612903,
351
+ "loss": 0.4461,
352
+ "step": 49
353
+ },
354
+ {
355
+ "epoch": 1.6,
356
+ "grad_norm": 0.40967294573783875,
357
+ "learning_rate": 0.00025161290322580645,
358
+ "loss": 0.7011,
359
+ "step": 50
360
+ },
361
+ {
362
+ "epoch": 1.6320000000000001,
363
+ "grad_norm": 0.4288088381290436,
364
+ "learning_rate": 0.00025064516129032254,
365
+ "loss": 0.6928,
366
+ "step": 51
367
+ },
368
+ {
369
+ "epoch": 1.6640000000000001,
370
+ "grad_norm": 0.4356289803981781,
371
+ "learning_rate": 0.0002496774193548387,
372
+ "loss": 0.7972,
373
+ "step": 52
374
+ },
375
+ {
376
+ "epoch": 1.696,
377
+ "grad_norm": 0.3827487826347351,
378
+ "learning_rate": 0.0002487096774193548,
379
+ "loss": 0.2991,
380
+ "step": 53
381
+ },
382
+ {
383
+ "epoch": 1.728,
384
+ "grad_norm": 0.40093398094177246,
385
+ "learning_rate": 0.0002477419354838709,
386
+ "loss": 0.416,
387
+ "step": 54
388
+ },
389
+ {
390
+ "epoch": 1.76,
391
+ "grad_norm": 0.41548973321914673,
392
+ "learning_rate": 0.00024677419354838707,
393
+ "loss": 0.5501,
394
+ "step": 55
395
+ },
396
+ {
397
+ "epoch": 1.792,
398
+ "grad_norm": 0.4093388617038727,
399
+ "learning_rate": 0.0002458064516129032,
400
+ "loss": 0.5557,
401
+ "step": 56
402
+ },
403
+ {
404
+ "epoch": 1.8239999999999998,
405
+ "grad_norm": 0.3934040665626526,
406
+ "learning_rate": 0.00024483870967741936,
407
+ "loss": 0.602,
408
+ "step": 57
409
+ },
410
+ {
411
+ "epoch": 1.8559999999999999,
412
+ "grad_norm": 0.42221033573150635,
413
+ "learning_rate": 0.00024387096774193545,
414
+ "loss": 0.6421,
415
+ "step": 58
416
+ },
417
+ {
418
+ "epoch": 1.888,
419
+ "grad_norm": 0.4351339340209961,
420
+ "learning_rate": 0.0002429032258064516,
421
+ "loss": 0.5615,
422
+ "step": 59
423
+ },
424
+ {
425
+ "epoch": 1.92,
426
+ "grad_norm": 0.4319838881492615,
427
+ "learning_rate": 0.00024193548387096771,
428
+ "loss": 0.6804,
429
+ "step": 60
430
+ },
431
+ {
432
+ "epoch": 1.952,
433
+ "grad_norm": 0.40016525983810425,
434
+ "learning_rate": 0.00024096774193548386,
435
+ "loss": 0.5432,
436
+ "step": 61
437
+ },
438
+ {
439
+ "epoch": 1.984,
440
+ "grad_norm": 0.3905942440032959,
441
+ "learning_rate": 0.00023999999999999998,
442
+ "loss": 0.4187,
443
+ "step": 62
444
+ },
445
+ {
446
+ "epoch": 2.016,
447
+ "grad_norm": 0.8056382536888123,
448
+ "learning_rate": 0.0002390322580645161,
449
+ "loss": 1.0174,
450
+ "step": 63
451
+ },
452
+ {
453
+ "epoch": 2.048,
454
+ "grad_norm": 0.3835236430168152,
455
+ "learning_rate": 0.00023806451612903224,
456
+ "loss": 0.5992,
457
+ "step": 64
458
+ },
459
+ {
460
+ "epoch": 2.08,
461
+ "grad_norm": 0.41092216968536377,
462
+ "learning_rate": 0.00023709677419354836,
463
+ "loss": 0.4746,
464
+ "step": 65
465
+ },
466
+ {
467
+ "epoch": 2.112,
468
+ "grad_norm": 0.39536622166633606,
469
+ "learning_rate": 0.0002361290322580645,
470
+ "loss": 0.3946,
471
+ "step": 66
472
+ },
473
+ {
474
+ "epoch": 2.144,
475
+ "grad_norm": 0.3927665948867798,
476
+ "learning_rate": 0.0002351612903225806,
477
+ "loss": 0.5187,
478
+ "step": 67
479
+ },
480
+ {
481
+ "epoch": 2.176,
482
+ "grad_norm": 0.39792704582214355,
483
+ "learning_rate": 0.00023419354838709674,
484
+ "loss": 0.4568,
485
+ "step": 68
486
+ },
487
+ {
488
+ "epoch": 2.208,
489
+ "grad_norm": 0.5023652911186218,
490
+ "learning_rate": 0.0002332258064516129,
491
+ "loss": 0.6166,
492
+ "step": 69
493
+ },
494
+ {
495
+ "epoch": 2.24,
496
+ "grad_norm": 0.425017774105072,
497
+ "learning_rate": 0.000232258064516129,
498
+ "loss": 0.42,
499
+ "step": 70
500
+ },
501
+ {
502
+ "epoch": 2.2720000000000002,
503
+ "grad_norm": 0.46458110213279724,
504
+ "learning_rate": 0.00023129032258064516,
505
+ "loss": 0.4613,
506
+ "step": 71
507
+ },
508
+ {
509
+ "epoch": 2.304,
510
+ "grad_norm": 0.49037960171699524,
511
+ "learning_rate": 0.00023032258064516125,
512
+ "loss": 0.5509,
513
+ "step": 72
514
+ },
515
+ {
516
+ "epoch": 2.336,
517
+ "grad_norm": 0.5233697891235352,
518
+ "learning_rate": 0.0002293548387096774,
519
+ "loss": 0.6396,
520
+ "step": 73
521
+ },
522
+ {
523
+ "epoch": 2.368,
524
+ "grad_norm": 0.4720582962036133,
525
+ "learning_rate": 0.0002283870967741935,
526
+ "loss": 0.5076,
527
+ "step": 74
528
+ },
529
+ {
530
+ "epoch": 2.4,
531
+ "grad_norm": 0.4900650382041931,
532
+ "learning_rate": 0.00022741935483870966,
533
+ "loss": 0.4794,
534
+ "step": 75
535
+ },
536
+ {
537
+ "epoch": 2.432,
538
+ "grad_norm": 0.6321704983711243,
539
+ "learning_rate": 0.0002264516129032258,
540
+ "loss": 0.6677,
541
+ "step": 76
542
+ },
543
+ {
544
+ "epoch": 2.464,
545
+ "grad_norm": 0.5305324792861938,
546
+ "learning_rate": 0.00022548387096774192,
547
+ "loss": 0.5102,
548
+ "step": 77
549
+ },
550
+ {
551
+ "epoch": 2.496,
552
+ "grad_norm": 0.5799248218536377,
553
+ "learning_rate": 0.00022451612903225804,
554
+ "loss": 0.5274,
555
+ "step": 78
556
+ },
557
+ {
558
+ "epoch": 2.528,
559
+ "grad_norm": 0.4990101456642151,
560
+ "learning_rate": 0.00022354838709677416,
561
+ "loss": 0.5407,
562
+ "step": 79
563
+ },
564
+ {
565
+ "epoch": 2.56,
566
+ "grad_norm": 0.4779827296733856,
567
+ "learning_rate": 0.0002225806451612903,
568
+ "loss": 0.5166,
569
+ "step": 80
570
+ },
571
+ {
572
+ "epoch": 2.592,
573
+ "grad_norm": 0.5140111446380615,
574
+ "learning_rate": 0.00022161290322580645,
575
+ "loss": 0.3288,
576
+ "step": 81
577
+ },
578
+ {
579
+ "epoch": 2.624,
580
+ "grad_norm": 0.5674853920936584,
581
+ "learning_rate": 0.00022064516129032257,
582
+ "loss": 0.666,
583
+ "step": 82
584
+ },
585
+ {
586
+ "epoch": 2.656,
587
+ "grad_norm": 0.5277597308158875,
588
+ "learning_rate": 0.00021967741935483871,
589
+ "loss": 0.5335,
590
+ "step": 83
591
+ },
592
+ {
593
+ "epoch": 2.6879999999999997,
594
+ "grad_norm": 0.6029439568519592,
595
+ "learning_rate": 0.0002187096774193548,
596
+ "loss": 0.693,
597
+ "step": 84
598
+ },
599
+ {
600
+ "epoch": 2.7199999999999998,
601
+ "grad_norm": 0.5039327144622803,
602
+ "learning_rate": 0.00021774193548387095,
603
+ "loss": 0.5728,
604
+ "step": 85
605
+ },
606
+ {
607
+ "epoch": 2.752,
608
+ "grad_norm": 0.5564692616462708,
609
+ "learning_rate": 0.00021677419354838707,
610
+ "loss": 0.4734,
611
+ "step": 86
612
+ },
613
+ {
614
+ "epoch": 2.784,
615
+ "grad_norm": 0.5278319120407104,
616
+ "learning_rate": 0.00021580645161290322,
617
+ "loss": 0.5834,
618
+ "step": 87
619
+ },
620
+ {
621
+ "epoch": 2.816,
622
+ "grad_norm": 0.5445135831832886,
623
+ "learning_rate": 0.00021483870967741936,
624
+ "loss": 0.4642,
625
+ "step": 88
626
+ },
627
+ {
628
+ "epoch": 2.848,
629
+ "grad_norm": 0.5394749045372009,
630
+ "learning_rate": 0.00021387096774193545,
631
+ "loss": 0.4779,
632
+ "step": 89
633
+ },
634
+ {
635
+ "epoch": 2.88,
636
+ "grad_norm": 0.5756134390830994,
637
+ "learning_rate": 0.0002129032258064516,
638
+ "loss": 0.5607,
639
+ "step": 90
640
+ },
641
+ {
642
+ "epoch": 2.912,
643
+ "grad_norm": 0.48361241817474365,
644
+ "learning_rate": 0.00021193548387096772,
645
+ "loss": 0.4278,
646
+ "step": 91
647
+ },
648
+ {
649
+ "epoch": 2.944,
650
+ "grad_norm": 0.5017121434211731,
651
+ "learning_rate": 0.00021096774193548386,
652
+ "loss": 0.4834,
653
+ "step": 92
654
+ },
655
+ {
656
+ "epoch": 2.976,
657
+ "grad_norm": 0.4741989076137543,
658
+ "learning_rate": 0.00020999999999999998,
659
+ "loss": 0.468,
660
+ "step": 93
661
+ },
662
+ {
663
+ "epoch": 3.008,
664
+ "grad_norm": 1.003368854522705,
665
+ "learning_rate": 0.0002090322580645161,
666
+ "loss": 0.8614,
667
+ "step": 94
668
+ },
669
+ {
670
+ "epoch": 3.04,
671
+ "grad_norm": 0.4782228469848633,
672
+ "learning_rate": 0.00020806451612903225,
673
+ "loss": 0.4111,
674
+ "step": 95
675
+ },
676
+ {
677
+ "epoch": 3.072,
678
+ "grad_norm": 0.4558674395084381,
679
+ "learning_rate": 0.00020709677419354836,
680
+ "loss": 0.3463,
681
+ "step": 96
682
+ },
683
+ {
684
+ "epoch": 3.104,
685
+ "grad_norm": 0.4409371316432953,
686
+ "learning_rate": 0.0002061290322580645,
687
+ "loss": 0.2571,
688
+ "step": 97
689
+ },
690
+ {
691
+ "epoch": 3.136,
692
+ "grad_norm": 0.5415034890174866,
693
+ "learning_rate": 0.00020516129032258063,
694
+ "loss": 0.5707,
695
+ "step": 98
696
+ },
697
+ {
698
+ "epoch": 3.168,
699
+ "grad_norm": 0.6157724857330322,
700
+ "learning_rate": 0.00020419354838709677,
701
+ "loss": 0.5692,
702
+ "step": 99
703
+ },
704
+ {
705
+ "epoch": 3.2,
706
+ "grad_norm": 0.4855688810348511,
707
+ "learning_rate": 0.00020322580645161287,
708
+ "loss": 0.3311,
709
+ "step": 100
710
+ },
711
+ {
712
+ "epoch": 3.232,
713
+ "grad_norm": 0.569878101348877,
714
+ "learning_rate": 0.000202258064516129,
715
+ "loss": 0.4707,
716
+ "step": 101
717
+ },
718
+ {
719
+ "epoch": 3.2640000000000002,
720
+ "grad_norm": 0.645232081413269,
721
+ "learning_rate": 0.00020129032258064516,
722
+ "loss": 0.5504,
723
+ "step": 102
724
+ },
725
+ {
726
+ "epoch": 3.296,
727
+ "grad_norm": 0.5775763392448425,
728
+ "learning_rate": 0.00020032258064516128,
729
+ "loss": 0.3651,
730
+ "step": 103
731
+ },
732
+ {
733
+ "epoch": 3.328,
734
+ "grad_norm": 0.5808250904083252,
735
+ "learning_rate": 0.00019935483870967742,
736
+ "loss": 0.5068,
737
+ "step": 104
738
+ },
739
+ {
740
+ "epoch": 3.36,
741
+ "grad_norm": 0.689313530921936,
742
+ "learning_rate": 0.0001983870967741935,
743
+ "loss": 0.4936,
744
+ "step": 105
745
+ },
746
+ {
747
+ "epoch": 3.392,
748
+ "grad_norm": 0.6571519374847412,
749
+ "learning_rate": 0.00019741935483870966,
750
+ "loss": 0.3671,
751
+ "step": 106
752
+ },
753
+ {
754
+ "epoch": 3.424,
755
+ "grad_norm": 0.6340517401695251,
756
+ "learning_rate": 0.00019645161290322578,
757
+ "loss": 0.4783,
758
+ "step": 107
759
+ },
760
+ {
761
+ "epoch": 3.456,
762
+ "grad_norm": 0.7031407952308655,
763
+ "learning_rate": 0.00019548387096774192,
764
+ "loss": 0.427,
765
+ "step": 108
766
+ },
767
+ {
768
+ "epoch": 3.488,
769
+ "grad_norm": 0.728496789932251,
770
+ "learning_rate": 0.00019451612903225807,
771
+ "loss": 0.5497,
772
+ "step": 109
773
+ },
774
+ {
775
+ "epoch": 3.52,
776
+ "grad_norm": 0.6106727719306946,
777
+ "learning_rate": 0.00019354838709677416,
778
+ "loss": 0.392,
779
+ "step": 110
780
+ },
781
+ {
782
+ "epoch": 3.552,
783
+ "grad_norm": 0.5296047329902649,
784
+ "learning_rate": 0.0001925806451612903,
785
+ "loss": 0.3412,
786
+ "step": 111
787
+ },
788
+ {
789
+ "epoch": 3.584,
790
+ "grad_norm": 0.6282025575637817,
791
+ "learning_rate": 0.00019161290322580643,
792
+ "loss": 0.4081,
793
+ "step": 112
794
+ },
795
+ {
796
+ "epoch": 3.616,
797
+ "grad_norm": 0.6166461110115051,
798
+ "learning_rate": 0.00019064516129032257,
799
+ "loss": 0.4771,
800
+ "step": 113
801
+ },
802
+ {
803
+ "epoch": 3.648,
804
+ "grad_norm": 0.5448863506317139,
805
+ "learning_rate": 0.0001896774193548387,
806
+ "loss": 0.404,
807
+ "step": 114
808
+ },
809
+ {
810
+ "epoch": 3.68,
811
+ "grad_norm": 0.6598389148712158,
812
+ "learning_rate": 0.0001887096774193548,
813
+ "loss": 0.3915,
814
+ "step": 115
815
+ },
816
+ {
817
+ "epoch": 3.7119999999999997,
818
+ "grad_norm": 0.5567564368247986,
819
+ "learning_rate": 0.00018774193548387095,
820
+ "loss": 0.3862,
821
+ "step": 116
822
+ },
823
+ {
824
+ "epoch": 3.7439999999999998,
825
+ "grad_norm": 0.6524521708488464,
826
+ "learning_rate": 0.00018677419354838707,
827
+ "loss": 0.5315,
828
+ "step": 117
829
+ },
830
+ {
831
+ "epoch": 3.776,
832
+ "grad_norm": 0.7040128707885742,
833
+ "learning_rate": 0.00018580645161290322,
834
+ "loss": 0.5387,
835
+ "step": 118
836
+ },
837
+ {
838
+ "epoch": 3.808,
839
+ "grad_norm": 0.690262496471405,
840
+ "learning_rate": 0.00018483870967741934,
841
+ "loss": 0.4877,
842
+ "step": 119
843
+ },
844
+ {
845
+ "epoch": 3.84,
846
+ "grad_norm": 0.6928034424781799,
847
+ "learning_rate": 0.00018387096774193548,
848
+ "loss": 0.4895,
849
+ "step": 120
850
+ },
851
+ {
852
+ "epoch": 3.872,
853
+ "grad_norm": 0.7148469686508179,
854
+ "learning_rate": 0.00018290322580645157,
855
+ "loss": 0.4814,
856
+ "step": 121
857
+ },
858
+ {
859
+ "epoch": 3.904,
860
+ "grad_norm": 0.6096572875976562,
861
+ "learning_rate": 0.00018193548387096772,
862
+ "loss": 0.3403,
863
+ "step": 122
864
+ },
865
+ {
866
+ "epoch": 3.936,
867
+ "grad_norm": 0.7132399678230286,
868
+ "learning_rate": 0.00018096774193548387,
869
+ "loss": 0.4258,
870
+ "step": 123
871
+ },
872
+ {
873
+ "epoch": 3.968,
874
+ "grad_norm": 0.7302684187889099,
875
+ "learning_rate": 0.00017999999999999998,
876
+ "loss": 0.7215,
877
+ "step": 124
878
+ },
879
+ {
880
+ "epoch": 4.0,
881
+ "grad_norm": 1.5244004726409912,
882
+ "learning_rate": 0.00017903225806451613,
883
+ "loss": 0.8544,
884
+ "step": 125
885
+ },
886
+ {
887
+ "epoch": 4.032,
888
+ "grad_norm": 0.6032777428627014,
889
+ "learning_rate": 0.00017806451612903222,
890
+ "loss": 0.4183,
891
+ "step": 126
892
+ },
893
+ {
894
+ "epoch": 4.064,
895
+ "grad_norm": 0.6349691152572632,
896
+ "learning_rate": 0.00017709677419354837,
897
+ "loss": 0.5871,
898
+ "step": 127
899
+ },
900
+ {
901
+ "epoch": 4.096,
902
+ "grad_norm": 0.5730060935020447,
903
+ "learning_rate": 0.00017612903225806449,
904
+ "loss": 0.3786,
905
+ "step": 128
906
+ },
907
+ {
908
+ "epoch": 4.128,
909
+ "grad_norm": 0.6988044381141663,
910
+ "learning_rate": 0.00017516129032258063,
911
+ "loss": 0.3216,
912
+ "step": 129
913
+ },
914
+ {
915
+ "epoch": 4.16,
916
+ "grad_norm": 0.7379153370857239,
917
+ "learning_rate": 0.00017419354838709678,
918
+ "loss": 0.4026,
919
+ "step": 130
920
+ },
921
+ {
922
+ "epoch": 4.192,
923
+ "grad_norm": 0.7058238983154297,
924
+ "learning_rate": 0.00017322580645161287,
925
+ "loss": 0.4328,
926
+ "step": 131
927
+ },
928
+ {
929
+ "epoch": 4.224,
930
+ "grad_norm": 0.80663001537323,
931
+ "learning_rate": 0.00017225806451612901,
932
+ "loss": 0.3849,
933
+ "step": 132
934
+ },
935
+ {
936
+ "epoch": 4.256,
937
+ "grad_norm": 0.899818480014801,
938
+ "learning_rate": 0.00017129032258064513,
939
+ "loss": 0.4191,
940
+ "step": 133
941
+ },
942
+ {
943
+ "epoch": 4.288,
944
+ "grad_norm": 0.8538224697113037,
945
+ "learning_rate": 0.00017032258064516128,
946
+ "loss": 0.3587,
947
+ "step": 134
948
+ },
949
+ {
950
+ "epoch": 4.32,
951
+ "grad_norm": 0.8948169350624084,
952
+ "learning_rate": 0.00016935483870967742,
953
+ "loss": 0.3957,
954
+ "step": 135
955
+ },
956
+ {
957
+ "epoch": 4.352,
958
+ "grad_norm": 0.7195591926574707,
959
+ "learning_rate": 0.00016838709677419354,
960
+ "loss": 0.3361,
961
+ "step": 136
962
+ },
963
+ {
964
+ "epoch": 4.384,
965
+ "grad_norm": 0.7769681215286255,
966
+ "learning_rate": 0.00016741935483870966,
967
+ "loss": 0.3519,
968
+ "step": 137
969
+ },
970
+ {
971
+ "epoch": 4.416,
972
+ "grad_norm": 0.9509867429733276,
973
+ "learning_rate": 0.00016645161290322578,
974
+ "loss": 0.4216,
975
+ "step": 138
976
+ },
977
+ {
978
+ "epoch": 4.448,
979
+ "grad_norm": 0.7923309206962585,
980
+ "learning_rate": 0.00016548387096774193,
981
+ "loss": 0.3999,
982
+ "step": 139
983
+ },
984
+ {
985
+ "epoch": 4.48,
986
+ "grad_norm": 0.8961685299873352,
987
+ "learning_rate": 0.00016451612903225804,
988
+ "loss": 0.5385,
989
+ "step": 140
990
+ },
991
+ {
992
+ "epoch": 4.5120000000000005,
993
+ "grad_norm": 0.7496562004089355,
994
+ "learning_rate": 0.0001635483870967742,
995
+ "loss": 0.341,
996
+ "step": 141
997
+ },
998
+ {
999
+ "epoch": 4.5440000000000005,
1000
+ "grad_norm": 0.8512839674949646,
1001
+ "learning_rate": 0.00016258064516129034,
1002
+ "loss": 0.3847,
1003
+ "step": 142
1004
+ },
1005
+ {
1006
+ "epoch": 4.576,
1007
+ "grad_norm": 0.7487362027168274,
1008
+ "learning_rate": 0.00016161290322580643,
1009
+ "loss": 0.3694,
1010
+ "step": 143
1011
+ },
1012
+ {
1013
+ "epoch": 4.608,
1014
+ "grad_norm": 0.7957774996757507,
1015
+ "learning_rate": 0.00016064516129032257,
1016
+ "loss": 0.3379,
1017
+ "step": 144
1018
+ },
1019
+ {
1020
+ "epoch": 4.64,
1021
+ "grad_norm": 0.7299221754074097,
1022
+ "learning_rate": 0.0001596774193548387,
1023
+ "loss": 0.2989,
1024
+ "step": 145
1025
+ },
1026
+ {
1027
+ "epoch": 4.672,
1028
+ "grad_norm": 0.7909884452819824,
1029
+ "learning_rate": 0.00015870967741935484,
1030
+ "loss": 0.3675,
1031
+ "step": 146
1032
+ },
1033
+ {
1034
+ "epoch": 4.704,
1035
+ "grad_norm": 0.7321597933769226,
1036
+ "learning_rate": 0.00015774193548387093,
1037
+ "loss": 0.3243,
1038
+ "step": 147
1039
+ },
1040
+ {
1041
+ "epoch": 4.736,
1042
+ "grad_norm": 0.7196181416511536,
1043
+ "learning_rate": 0.00015677419354838708,
1044
+ "loss": 0.2709,
1045
+ "step": 148
1046
+ },
1047
+ {
1048
+ "epoch": 4.768,
1049
+ "grad_norm": 0.7918142676353455,
1050
+ "learning_rate": 0.00015580645161290322,
1051
+ "loss": 0.3934,
1052
+ "step": 149
1053
+ },
1054
+ {
1055
+ "epoch": 4.8,
1056
+ "grad_norm": 0.8657622337341309,
1057
+ "learning_rate": 0.00015483870967741934,
1058
+ "loss": 0.3583,
1059
+ "step": 150
1060
+ },
1061
+ {
1062
+ "epoch": 4.832,
1063
+ "grad_norm": 0.8207722306251526,
1064
+ "learning_rate": 0.00015387096774193549,
1065
+ "loss": 0.412,
1066
+ "step": 151
1067
+ },
1068
+ {
1069
+ "epoch": 4.864,
1070
+ "grad_norm": 0.7206109166145325,
1071
+ "learning_rate": 0.00015290322580645158,
1072
+ "loss": 0.3594,
1073
+ "step": 152
1074
+ },
1075
+ {
1076
+ "epoch": 4.896,
1077
+ "grad_norm": 0.8529183864593506,
1078
+ "learning_rate": 0.00015193548387096772,
1079
+ "loss": 0.512,
1080
+ "step": 153
1081
+ },
1082
+ {
1083
+ "epoch": 4.928,
1084
+ "grad_norm": 0.6895930171012878,
1085
+ "learning_rate": 0.00015096774193548384,
1086
+ "loss": 0.333,
1087
+ "step": 154
1088
+ },
1089
+ {
1090
+ "epoch": 4.96,
1091
+ "grad_norm": 0.7422910332679749,
1092
+ "learning_rate": 0.00015,
1093
+ "loss": 0.2872,
1094
+ "step": 155
1095
+ },
1096
+ {
1097
+ "epoch": 4.992,
1098
+ "grad_norm": 0.7366386651992798,
1099
+ "learning_rate": 0.0001490322580645161,
1100
+ "loss": 0.3415,
1101
+ "step": 156
1102
+ },
1103
+ {
1104
+ "epoch": 5.024,
1105
+ "grad_norm": 2.1416280269622803,
1106
+ "learning_rate": 0.00014806451612903225,
1107
+ "loss": 0.9961,
1108
+ "step": 157
1109
+ },
1110
+ {
1111
+ "epoch": 5.056,
1112
+ "grad_norm": 0.7944900393486023,
1113
+ "learning_rate": 0.00014709677419354837,
1114
+ "loss": 0.3372,
1115
+ "step": 158
1116
+ },
1117
+ {
1118
+ "epoch": 5.088,
1119
+ "grad_norm": 0.7071006298065186,
1120
+ "learning_rate": 0.00014612903225806452,
1121
+ "loss": 0.2732,
1122
+ "step": 159
1123
+ },
1124
+ {
1125
+ "epoch": 5.12,
1126
+ "grad_norm": 0.7874396443367004,
1127
+ "learning_rate": 0.00014516129032258063,
1128
+ "loss": 0.2861,
1129
+ "step": 160
1130
+ },
1131
+ {
1132
+ "epoch": 5.152,
1133
+ "grad_norm": 0.8244249224662781,
1134
+ "learning_rate": 0.00014419354838709675,
1135
+ "loss": 0.3428,
1136
+ "step": 161
1137
+ },
1138
+ {
1139
+ "epoch": 5.184,
1140
+ "grad_norm": 0.81637042760849,
1141
+ "learning_rate": 0.0001432258064516129,
1142
+ "loss": 0.3037,
1143
+ "step": 162
1144
+ },
1145
+ {
1146
+ "epoch": 5.216,
1147
+ "grad_norm": 0.9916559457778931,
1148
+ "learning_rate": 0.00014225806451612902,
1149
+ "loss": 0.3337,
1150
+ "step": 163
1151
+ },
1152
+ {
1153
+ "epoch": 5.248,
1154
+ "grad_norm": 0.9077599048614502,
1155
+ "learning_rate": 0.00014129032258064514,
1156
+ "loss": 0.287,
1157
+ "step": 164
1158
+ },
1159
+ {
1160
+ "epoch": 5.28,
1161
+ "grad_norm": 0.9824132919311523,
1162
+ "learning_rate": 0.00014032258064516128,
1163
+ "loss": 0.3852,
1164
+ "step": 165
1165
+ },
1166
+ {
1167
+ "epoch": 5.312,
1168
+ "grad_norm": 1.0016467571258545,
1169
+ "learning_rate": 0.0001393548387096774,
1170
+ "loss": 0.3234,
1171
+ "step": 166
1172
+ },
1173
+ {
1174
+ "epoch": 5.344,
1175
+ "grad_norm": 0.8697543144226074,
1176
+ "learning_rate": 0.00013838709677419355,
1177
+ "loss": 0.2848,
1178
+ "step": 167
1179
+ },
1180
+ {
1181
+ "epoch": 5.376,
1182
+ "grad_norm": 0.8214029669761658,
1183
+ "learning_rate": 0.00013741935483870966,
1184
+ "loss": 0.3377,
1185
+ "step": 168
1186
+ },
1187
+ {
1188
+ "epoch": 5.408,
1189
+ "grad_norm": 0.9105691313743591,
1190
+ "learning_rate": 0.00013645161290322578,
1191
+ "loss": 0.2944,
1192
+ "step": 169
1193
+ },
1194
+ {
1195
+ "epoch": 5.44,
1196
+ "grad_norm": 0.9642040133476257,
1197
+ "learning_rate": 0.00013548387096774193,
1198
+ "loss": 0.3624,
1199
+ "step": 170
1200
+ },
1201
+ {
1202
+ "epoch": 5.4719999999999995,
1203
+ "grad_norm": 0.9218887686729431,
1204
+ "learning_rate": 0.00013451612903225805,
1205
+ "loss": 0.3938,
1206
+ "step": 171
1207
+ },
1208
+ {
1209
+ "epoch": 5.504,
1210
+ "grad_norm": 0.8704710006713867,
1211
+ "learning_rate": 0.0001335483870967742,
1212
+ "loss": 0.3629,
1213
+ "step": 172
1214
+ },
1215
+ {
1216
+ "epoch": 5.536,
1217
+ "grad_norm": 0.8207693099975586,
1218
+ "learning_rate": 0.0001325806451612903,
1219
+ "loss": 0.3169,
1220
+ "step": 173
1221
+ },
1222
+ {
1223
+ "epoch": 5.568,
1224
+ "grad_norm": 0.9315701127052307,
1225
+ "learning_rate": 0.00013161290322580643,
1226
+ "loss": 0.429,
1227
+ "step": 174
1228
+ },
1229
+ {
1230
+ "epoch": 5.6,
1231
+ "grad_norm": 0.860234260559082,
1232
+ "learning_rate": 0.00013064516129032258,
1233
+ "loss": 0.3842,
1234
+ "step": 175
1235
+ },
1236
+ {
1237
+ "epoch": 5.632,
1238
+ "grad_norm": 0.8927604556083679,
1239
+ "learning_rate": 0.0001296774193548387,
1240
+ "loss": 0.3405,
1241
+ "step": 176
1242
+ },
1243
+ {
1244
+ "epoch": 5.664,
1245
+ "grad_norm": 0.8084587454795837,
1246
+ "learning_rate": 0.0001287096774193548,
1247
+ "loss": 0.306,
1248
+ "step": 177
1249
+ },
1250
+ {
1251
+ "epoch": 5.696,
1252
+ "grad_norm": 0.9102941155433655,
1253
+ "learning_rate": 0.00012774193548387096,
1254
+ "loss": 0.3285,
1255
+ "step": 178
1256
+ },
1257
+ {
1258
+ "epoch": 5.728,
1259
+ "grad_norm": 0.763113796710968,
1260
+ "learning_rate": 0.0001267741935483871,
1261
+ "loss": 0.2729,
1262
+ "step": 179
1263
+ },
1264
+ {
1265
+ "epoch": 5.76,
1266
+ "grad_norm": 0.8704251646995544,
1267
+ "learning_rate": 0.00012580645161290322,
1268
+ "loss": 0.3164,
1269
+ "step": 180
1270
+ },
1271
+ {
1272
+ "epoch": 5.792,
1273
+ "grad_norm": 0.9634932279586792,
1274
+ "learning_rate": 0.00012483870967741934,
1275
+ "loss": 0.2939,
1276
+ "step": 181
1277
+ },
1278
+ {
1279
+ "epoch": 5.824,
1280
+ "grad_norm": 1.1567790508270264,
1281
+ "learning_rate": 0.00012387096774193546,
1282
+ "loss": 0.3076,
1283
+ "step": 182
1284
+ },
1285
+ {
1286
+ "epoch": 5.856,
1287
+ "grad_norm": 0.9096764922142029,
1288
+ "learning_rate": 0.0001229032258064516,
1289
+ "loss": 0.3289,
1290
+ "step": 183
1291
+ },
1292
+ {
1293
+ "epoch": 5.888,
1294
+ "grad_norm": 0.9840425848960876,
1295
+ "learning_rate": 0.00012193548387096773,
1296
+ "loss": 0.2772,
1297
+ "step": 184
1298
+ },
1299
+ {
1300
+ "epoch": 5.92,
1301
+ "grad_norm": 0.725844144821167,
1302
+ "learning_rate": 0.00012096774193548386,
1303
+ "loss": 0.2151,
1304
+ "step": 185
1305
+ },
1306
+ {
1307
+ "epoch": 5.952,
1308
+ "grad_norm": 0.8343638181686401,
1309
+ "learning_rate": 0.00011999999999999999,
1310
+ "loss": 0.3825,
1311
+ "step": 186
1312
+ },
1313
+ {
1314
+ "epoch": 5.984,
1315
+ "grad_norm": 0.8040199279785156,
1316
+ "learning_rate": 0.00011903225806451612,
1317
+ "loss": 0.2571,
1318
+ "step": 187
1319
+ },
1320
+ {
1321
+ "epoch": 6.016,
1322
+ "grad_norm": 1.6932090520858765,
1323
+ "learning_rate": 0.00011806451612903225,
1324
+ "loss": 0.5538,
1325
+ "step": 188
1326
+ },
1327
+ {
1328
+ "epoch": 6.048,
1329
+ "grad_norm": 0.744048535823822,
1330
+ "learning_rate": 0.00011709677419354837,
1331
+ "loss": 0.2335,
1332
+ "step": 189
1333
+ },
1334
+ {
1335
+ "epoch": 6.08,
1336
+ "grad_norm": 0.6974924206733704,
1337
+ "learning_rate": 0.0001161290322580645,
1338
+ "loss": 0.2891,
1339
+ "step": 190
1340
+ },
1341
+ {
1342
+ "epoch": 6.112,
1343
+ "grad_norm": 0.7202953696250916,
1344
+ "learning_rate": 0.00011516129032258062,
1345
+ "loss": 0.2017,
1346
+ "step": 191
1347
+ },
1348
+ {
1349
+ "epoch": 6.144,
1350
+ "grad_norm": 0.8437547087669373,
1351
+ "learning_rate": 0.00011419354838709676,
1352
+ "loss": 0.2175,
1353
+ "step": 192
1354
+ },
1355
+ {
1356
+ "epoch": 6.176,
1357
+ "grad_norm": 1.0741796493530273,
1358
+ "learning_rate": 0.0001132258064516129,
1359
+ "loss": 0.3913,
1360
+ "step": 193
1361
+ },
1362
+ {
1363
+ "epoch": 6.208,
1364
+ "grad_norm": 1.031754493713379,
1365
+ "learning_rate": 0.00011225806451612902,
1366
+ "loss": 0.298,
1367
+ "step": 194
1368
+ },
1369
+ {
1370
+ "epoch": 6.24,
1371
+ "grad_norm": 0.9575178027153015,
1372
+ "learning_rate": 0.00011129032258064515,
1373
+ "loss": 0.3201,
1374
+ "step": 195
1375
+ },
1376
+ {
1377
+ "epoch": 6.272,
1378
+ "grad_norm": 0.9503082633018494,
1379
+ "learning_rate": 0.00011032258064516128,
1380
+ "loss": 0.2005,
1381
+ "step": 196
1382
+ },
1383
+ {
1384
+ "epoch": 6.304,
1385
+ "grad_norm": 1.2572892904281616,
1386
+ "learning_rate": 0.0001093548387096774,
1387
+ "loss": 0.3045,
1388
+ "step": 197
1389
+ },
1390
+ {
1391
+ "epoch": 6.336,
1392
+ "grad_norm": 1.5667368173599243,
1393
+ "learning_rate": 0.00010838709677419353,
1394
+ "loss": 0.4053,
1395
+ "step": 198
1396
+ },
1397
+ {
1398
+ "epoch": 6.368,
1399
+ "grad_norm": 0.9439151883125305,
1400
+ "learning_rate": 0.00010741935483870968,
1401
+ "loss": 0.2721,
1402
+ "step": 199
1403
+ },
1404
+ {
1405
+ "epoch": 6.4,
1406
+ "grad_norm": 1.0985567569732666,
1407
+ "learning_rate": 0.0001064516129032258,
1408
+ "loss": 0.2543,
1409
+ "step": 200
1410
+ },
1411
+ {
1412
+ "epoch": 6.432,
1413
+ "grad_norm": 0.789880633354187,
1414
+ "learning_rate": 0.00010548387096774193,
1415
+ "loss": 0.2148,
1416
+ "step": 201
1417
+ },
1418
+ {
1419
+ "epoch": 6.464,
1420
+ "grad_norm": 0.9937541484832764,
1421
+ "learning_rate": 0.00010451612903225805,
1422
+ "loss": 0.2343,
1423
+ "step": 202
1424
+ },
1425
+ {
1426
+ "epoch": 6.496,
1427
+ "grad_norm": 0.9496509432792664,
1428
+ "learning_rate": 0.00010354838709677418,
1429
+ "loss": 0.2576,
1430
+ "step": 203
1431
+ },
1432
+ {
1433
+ "epoch": 6.5280000000000005,
1434
+ "grad_norm": 0.9214590191841125,
1435
+ "learning_rate": 0.00010258064516129031,
1436
+ "loss": 0.3067,
1437
+ "step": 204
1438
+ },
1439
+ {
1440
+ "epoch": 6.5600000000000005,
1441
+ "grad_norm": 0.8984239101409912,
1442
+ "learning_rate": 0.00010161290322580643,
1443
+ "loss": 0.2471,
1444
+ "step": 205
1445
+ },
1446
+ {
1447
+ "epoch": 6.592,
1448
+ "grad_norm": 0.8055192232131958,
1449
+ "learning_rate": 0.00010064516129032258,
1450
+ "loss": 0.2234,
1451
+ "step": 206
1452
+ },
1453
+ {
1454
+ "epoch": 6.624,
1455
+ "grad_norm": 0.769008219242096,
1456
+ "learning_rate": 9.967741935483871e-05,
1457
+ "loss": 0.1963,
1458
+ "step": 207
1459
+ },
1460
+ {
1461
+ "epoch": 6.656,
1462
+ "grad_norm": 0.7947174310684204,
1463
+ "learning_rate": 9.870967741935483e-05,
1464
+ "loss": 0.2165,
1465
+ "step": 208
1466
+ },
1467
+ {
1468
+ "epoch": 6.688,
1469
+ "grad_norm": 1.0192420482635498,
1470
+ "learning_rate": 9.774193548387096e-05,
1471
+ "loss": 0.2581,
1472
+ "step": 209
1473
+ },
1474
+ {
1475
+ "epoch": 6.72,
1476
+ "grad_norm": 1.0067439079284668,
1477
+ "learning_rate": 9.677419354838708e-05,
1478
+ "loss": 0.2394,
1479
+ "step": 210
1480
+ },
1481
+ {
1482
+ "epoch": 6.752,
1483
+ "grad_norm": 1.0539058446884155,
1484
+ "learning_rate": 9.580645161290321e-05,
1485
+ "loss": 0.2526,
1486
+ "step": 211
1487
+ },
1488
+ {
1489
+ "epoch": 6.784,
1490
+ "grad_norm": 1.130011796951294,
1491
+ "learning_rate": 9.483870967741934e-05,
1492
+ "loss": 0.3339,
1493
+ "step": 212
1494
+ },
1495
+ {
1496
+ "epoch": 6.816,
1497
+ "grad_norm": 0.9603860378265381,
1498
+ "learning_rate": 9.387096774193548e-05,
1499
+ "loss": 0.2808,
1500
+ "step": 213
1501
+ },
1502
+ {
1503
+ "epoch": 6.848,
1504
+ "grad_norm": 1.0667173862457275,
1505
+ "learning_rate": 9.290322580645161e-05,
1506
+ "loss": 0.3025,
1507
+ "step": 214
1508
+ },
1509
+ {
1510
+ "epoch": 6.88,
1511
+ "grad_norm": 0.9093402624130249,
1512
+ "learning_rate": 9.193548387096774e-05,
1513
+ "loss": 0.2698,
1514
+ "step": 215
1515
+ },
1516
+ {
1517
+ "epoch": 6.912,
1518
+ "grad_norm": 0.8621392846107483,
1519
+ "learning_rate": 9.096774193548386e-05,
1520
+ "loss": 0.2259,
1521
+ "step": 216
1522
+ },
1523
+ {
1524
+ "epoch": 6.944,
1525
+ "grad_norm": 1.035175085067749,
1526
+ "learning_rate": 8.999999999999999e-05,
1527
+ "loss": 0.3156,
1528
+ "step": 217
1529
+ },
1530
+ {
1531
+ "epoch": 6.976,
1532
+ "grad_norm": 1.0241689682006836,
1533
+ "learning_rate": 8.903225806451611e-05,
1534
+ "loss": 0.2723,
1535
+ "step": 218
1536
+ },
1537
+ {
1538
+ "epoch": 7.008,
1539
+ "grad_norm": 1.735946536064148,
1540
+ "learning_rate": 8.806451612903224e-05,
1541
+ "loss": 0.411,
1542
+ "step": 219
1543
+ },
1544
+ {
1545
+ "epoch": 7.04,
1546
+ "grad_norm": 0.8678178191184998,
1547
+ "learning_rate": 8.709677419354839e-05,
1548
+ "loss": 0.2415,
1549
+ "step": 220
1550
+ },
1551
+ {
1552
+ "epoch": 7.072,
1553
+ "grad_norm": 0.7134645581245422,
1554
+ "learning_rate": 8.612903225806451e-05,
1555
+ "loss": 0.1509,
1556
+ "step": 221
1557
+ },
1558
+ {
1559
+ "epoch": 7.104,
1560
+ "grad_norm": 0.8543497920036316,
1561
+ "learning_rate": 8.516129032258064e-05,
1562
+ "loss": 0.2459,
1563
+ "step": 222
1564
+ },
1565
+ {
1566
+ "epoch": 7.136,
1567
+ "grad_norm": 0.9644029140472412,
1568
+ "learning_rate": 8.419354838709677e-05,
1569
+ "loss": 0.2828,
1570
+ "step": 223
1571
+ },
1572
+ {
1573
+ "epoch": 7.168,
1574
+ "grad_norm": 0.8568740487098694,
1575
+ "learning_rate": 8.322580645161289e-05,
1576
+ "loss": 0.1936,
1577
+ "step": 224
1578
+ },
1579
+ {
1580
+ "epoch": 7.2,
1581
+ "grad_norm": 1.005867600440979,
1582
+ "learning_rate": 8.225806451612902e-05,
1583
+ "loss": 0.2678,
1584
+ "step": 225
1585
+ },
1586
+ {
1587
+ "epoch": 7.232,
1588
+ "grad_norm": 0.9942033290863037,
1589
+ "learning_rate": 8.129032258064517e-05,
1590
+ "loss": 0.2111,
1591
+ "step": 226
1592
+ },
1593
+ {
1594
+ "epoch": 7.264,
1595
+ "grad_norm": 0.9886007905006409,
1596
+ "learning_rate": 8.032258064516129e-05,
1597
+ "loss": 0.2375,
1598
+ "step": 227
1599
+ },
1600
+ {
1601
+ "epoch": 7.296,
1602
+ "grad_norm": 1.0586844682693481,
1603
+ "learning_rate": 7.935483870967742e-05,
1604
+ "loss": 0.2385,
1605
+ "step": 228
1606
+ },
1607
+ {
1608
+ "epoch": 7.328,
1609
+ "grad_norm": 1.026432991027832,
1610
+ "learning_rate": 7.838709677419354e-05,
1611
+ "loss": 0.2139,
1612
+ "step": 229
1613
+ },
1614
+ {
1615
+ "epoch": 7.36,
1616
+ "grad_norm": 1.0039665699005127,
1617
+ "learning_rate": 7.741935483870967e-05,
1618
+ "loss": 0.2211,
1619
+ "step": 230
1620
+ },
1621
+ {
1622
+ "epoch": 7.392,
1623
+ "grad_norm": 1.1125057935714722,
1624
+ "learning_rate": 7.645161290322579e-05,
1625
+ "loss": 0.2725,
1626
+ "step": 231
1627
+ },
1628
+ {
1629
+ "epoch": 7.424,
1630
+ "grad_norm": 0.9078079462051392,
1631
+ "learning_rate": 7.548387096774192e-05,
1632
+ "loss": 0.1965,
1633
+ "step": 232
1634
+ },
1635
+ {
1636
+ "epoch": 7.456,
1637
+ "grad_norm": 0.8247030377388,
1638
+ "learning_rate": 7.451612903225805e-05,
1639
+ "loss": 0.1502,
1640
+ "step": 233
1641
+ },
1642
+ {
1643
+ "epoch": 7.4879999999999995,
1644
+ "grad_norm": 1.1396474838256836,
1645
+ "learning_rate": 7.354838709677418e-05,
1646
+ "loss": 0.37,
1647
+ "step": 234
1648
+ },
1649
+ {
1650
+ "epoch": 7.52,
1651
+ "grad_norm": 0.753663182258606,
1652
+ "learning_rate": 7.258064516129032e-05,
1653
+ "loss": 0.1627,
1654
+ "step": 235
1655
+ },
1656
+ {
1657
+ "epoch": 7.552,
1658
+ "grad_norm": 0.7927701473236084,
1659
+ "learning_rate": 7.161290322580645e-05,
1660
+ "loss": 0.1684,
1661
+ "step": 236
1662
+ },
1663
+ {
1664
+ "epoch": 7.584,
1665
+ "grad_norm": 0.9258756637573242,
1666
+ "learning_rate": 7.064516129032257e-05,
1667
+ "loss": 0.213,
1668
+ "step": 237
1669
+ },
1670
+ {
1671
+ "epoch": 7.616,
1672
+ "grad_norm": 0.8111560940742493,
1673
+ "learning_rate": 6.96774193548387e-05,
1674
+ "loss": 0.1998,
1675
+ "step": 238
1676
+ },
1677
+ {
1678
+ "epoch": 7.648,
1679
+ "grad_norm": 0.8484370708465576,
1680
+ "learning_rate": 6.870967741935483e-05,
1681
+ "loss": 0.1307,
1682
+ "step": 239
1683
+ },
1684
+ {
1685
+ "epoch": 7.68,
1686
+ "grad_norm": 0.9123087525367737,
1687
+ "learning_rate": 6.774193548387096e-05,
1688
+ "loss": 0.2529,
1689
+ "step": 240
1690
+ },
1691
+ {
1692
+ "epoch": 7.712,
1693
+ "grad_norm": 1.0526336431503296,
1694
+ "learning_rate": 6.67741935483871e-05,
1695
+ "loss": 0.2468,
1696
+ "step": 241
1697
+ },
1698
+ {
1699
+ "epoch": 7.744,
1700
+ "grad_norm": 1.0104210376739502,
1701
+ "learning_rate": 6.580645161290322e-05,
1702
+ "loss": 0.23,
1703
+ "step": 242
1704
+ },
1705
+ {
1706
+ "epoch": 7.776,
1707
+ "grad_norm": 0.8749745488166809,
1708
+ "learning_rate": 6.483870967741935e-05,
1709
+ "loss": 0.1973,
1710
+ "step": 243
1711
+ },
1712
+ {
1713
+ "epoch": 7.808,
1714
+ "grad_norm": 0.9921355247497559,
1715
+ "learning_rate": 6.387096774193548e-05,
1716
+ "loss": 0.2144,
1717
+ "step": 244
1718
+ },
1719
+ {
1720
+ "epoch": 7.84,
1721
+ "grad_norm": 0.8243810534477234,
1722
+ "learning_rate": 6.290322580645161e-05,
1723
+ "loss": 0.1531,
1724
+ "step": 245
1725
+ },
1726
+ {
1727
+ "epoch": 7.872,
1728
+ "grad_norm": 1.0764353275299072,
1729
+ "learning_rate": 6.193548387096773e-05,
1730
+ "loss": 0.2763,
1731
+ "step": 246
1732
+ },
1733
+ {
1734
+ "epoch": 7.904,
1735
+ "grad_norm": 1.1754212379455566,
1736
+ "learning_rate": 6.096774193548386e-05,
1737
+ "loss": 0.2249,
1738
+ "step": 247
1739
+ },
1740
+ {
1741
+ "epoch": 7.936,
1742
+ "grad_norm": 0.8588422536849976,
1743
+ "learning_rate": 5.9999999999999995e-05,
1744
+ "loss": 0.1782,
1745
+ "step": 248
1746
+ },
1747
+ {
1748
+ "epoch": 7.968,
1749
+ "grad_norm": 1.045143961906433,
1750
+ "learning_rate": 5.903225806451613e-05,
1751
+ "loss": 0.2789,
1752
+ "step": 249
1753
+ },
1754
+ {
1755
+ "epoch": 8.0,
1756
+ "grad_norm": 1.9824038743972778,
1757
+ "learning_rate": 5.806451612903225e-05,
1758
+ "loss": 0.3057,
1759
+ "step": 250
1760
+ },
1761
+ {
1762
+ "epoch": 8.032,
1763
+ "grad_norm": 0.9252362847328186,
1764
+ "learning_rate": 5.709677419354838e-05,
1765
+ "loss": 0.2221,
1766
+ "step": 251
1767
+ },
1768
+ {
1769
+ "epoch": 8.064,
1770
+ "grad_norm": 0.8381021022796631,
1771
+ "learning_rate": 5.612903225806451e-05,
1772
+ "loss": 0.2639,
1773
+ "step": 252
1774
+ },
1775
+ {
1776
+ "epoch": 8.096,
1777
+ "grad_norm": 0.9777012467384338,
1778
+ "learning_rate": 5.516129032258064e-05,
1779
+ "loss": 0.1533,
1780
+ "step": 253
1781
+ },
1782
+ {
1783
+ "epoch": 8.128,
1784
+ "grad_norm": 0.8053516745567322,
1785
+ "learning_rate": 5.419354838709677e-05,
1786
+ "loss": 0.1883,
1787
+ "step": 254
1788
+ },
1789
+ {
1790
+ "epoch": 8.16,
1791
+ "grad_norm": 0.8703336119651794,
1792
+ "learning_rate": 5.32258064516129e-05,
1793
+ "loss": 0.2079,
1794
+ "step": 255
1795
+ },
1796
+ {
1797
+ "epoch": 8.192,
1798
+ "grad_norm": 0.8113718032836914,
1799
+ "learning_rate": 5.2258064516129025e-05,
1800
+ "loss": 0.1609,
1801
+ "step": 256
1802
+ },
1803
+ {
1804
+ "epoch": 8.224,
1805
+ "grad_norm": 1.0667418241500854,
1806
+ "learning_rate": 5.129032258064516e-05,
1807
+ "loss": 0.2544,
1808
+ "step": 257
1809
+ },
1810
+ {
1811
+ "epoch": 8.256,
1812
+ "grad_norm": 0.7853135466575623,
1813
+ "learning_rate": 5.032258064516129e-05,
1814
+ "loss": 0.1391,
1815
+ "step": 258
1816
+ },
1817
+ {
1818
+ "epoch": 8.288,
1819
+ "grad_norm": 0.9970865845680237,
1820
+ "learning_rate": 4.9354838709677415e-05,
1821
+ "loss": 0.2305,
1822
+ "step": 259
1823
+ },
1824
+ {
1825
+ "epoch": 8.32,
1826
+ "grad_norm": 12.063047409057617,
1827
+ "learning_rate": 4.838709677419354e-05,
1828
+ "loss": 0.189,
1829
+ "step": 260
1830
+ },
1831
+ {
1832
+ "epoch": 8.352,
1833
+ "grad_norm": 1.2325772047042847,
1834
+ "learning_rate": 4.741935483870967e-05,
1835
+ "loss": 0.2308,
1836
+ "step": 261
1837
+ },
1838
+ {
1839
+ "epoch": 8.384,
1840
+ "grad_norm": 1.1118851900100708,
1841
+ "learning_rate": 4.6451612903225805e-05,
1842
+ "loss": 0.2009,
1843
+ "step": 262
1844
+ },
1845
+ {
1846
+ "epoch": 8.416,
1847
+ "grad_norm": 1.0783390998840332,
1848
+ "learning_rate": 4.548387096774193e-05,
1849
+ "loss": 0.2276,
1850
+ "step": 263
1851
+ },
1852
+ {
1853
+ "epoch": 8.448,
1854
+ "grad_norm": 1.2127933502197266,
1855
+ "learning_rate": 4.4516129032258055e-05,
1856
+ "loss": 0.2046,
1857
+ "step": 264
1858
+ },
1859
+ {
1860
+ "epoch": 8.48,
1861
+ "grad_norm": 1.1135843992233276,
1862
+ "learning_rate": 4.3548387096774194e-05,
1863
+ "loss": 0.1791,
1864
+ "step": 265
1865
+ },
1866
+ {
1867
+ "epoch": 8.512,
1868
+ "grad_norm": 0.8666661381721497,
1869
+ "learning_rate": 4.258064516129032e-05,
1870
+ "loss": 0.1287,
1871
+ "step": 266
1872
+ },
1873
+ {
1874
+ "epoch": 8.544,
1875
+ "grad_norm": 0.8430101275444031,
1876
+ "learning_rate": 4.1612903225806445e-05,
1877
+ "loss": 0.1475,
1878
+ "step": 267
1879
+ },
1880
+ {
1881
+ "epoch": 8.576,
1882
+ "grad_norm": 0.7744110822677612,
1883
+ "learning_rate": 4.0645161290322584e-05,
1884
+ "loss": 0.1458,
1885
+ "step": 268
1886
+ },
1887
+ {
1888
+ "epoch": 8.608,
1889
+ "grad_norm": 1.4067776203155518,
1890
+ "learning_rate": 3.967741935483871e-05,
1891
+ "loss": 0.2189,
1892
+ "step": 269
1893
+ },
1894
+ {
1895
+ "epoch": 8.64,
1896
+ "grad_norm": 0.8347670435905457,
1897
+ "learning_rate": 3.8709677419354835e-05,
1898
+ "loss": 0.1602,
1899
+ "step": 270
1900
+ },
1901
+ {
1902
+ "epoch": 8.672,
1903
+ "grad_norm": 0.7643276453018188,
1904
+ "learning_rate": 3.774193548387096e-05,
1905
+ "loss": 0.1363,
1906
+ "step": 271
1907
+ },
1908
+ {
1909
+ "epoch": 8.704,
1910
+ "grad_norm": 0.898059606552124,
1911
+ "learning_rate": 3.677419354838709e-05,
1912
+ "loss": 0.156,
1913
+ "step": 272
1914
+ },
1915
+ {
1916
+ "epoch": 8.736,
1917
+ "grad_norm": 0.8416333198547363,
1918
+ "learning_rate": 3.5806451612903225e-05,
1919
+ "loss": 0.1754,
1920
+ "step": 273
1921
+ },
1922
+ {
1923
+ "epoch": 8.768,
1924
+ "grad_norm": 0.8691906929016113,
1925
+ "learning_rate": 3.483870967741935e-05,
1926
+ "loss": 0.1808,
1927
+ "step": 274
1928
+ },
1929
+ {
1930
+ "epoch": 8.8,
1931
+ "grad_norm": 1.062111496925354,
1932
+ "learning_rate": 3.387096774193548e-05,
1933
+ "loss": 0.2559,
1934
+ "step": 275
1935
+ },
1936
+ {
1937
+ "epoch": 8.832,
1938
+ "grad_norm": 0.881698727607727,
1939
+ "learning_rate": 3.290322580645161e-05,
1940
+ "loss": 0.1732,
1941
+ "step": 276
1942
+ },
1943
+ {
1944
+ "epoch": 8.864,
1945
+ "grad_norm": 0.8446074724197388,
1946
+ "learning_rate": 3.193548387096774e-05,
1947
+ "loss": 0.1833,
1948
+ "step": 277
1949
+ },
1950
+ {
1951
+ "epoch": 8.896,
1952
+ "grad_norm": 0.9393475651741028,
1953
+ "learning_rate": 3.0967741935483865e-05,
1954
+ "loss": 0.2165,
1955
+ "step": 278
1956
+ },
1957
+ {
1958
+ "epoch": 8.928,
1959
+ "grad_norm": 0.8838346004486084,
1960
+ "learning_rate": 2.9999999999999997e-05,
1961
+ "loss": 0.146,
1962
+ "step": 279
1963
+ },
1964
+ {
1965
+ "epoch": 8.96,
1966
+ "grad_norm": 0.8380343914031982,
1967
+ "learning_rate": 2.9032258064516126e-05,
1968
+ "loss": 0.1721,
1969
+ "step": 280
1970
+ },
1971
+ {
1972
+ "epoch": 8.992,
1973
+ "grad_norm": 0.8561931252479553,
1974
+ "learning_rate": 2.8064516129032255e-05,
1975
+ "loss": 0.1519,
1976
+ "step": 281
1977
+ },
1978
+ {
1979
+ "epoch": 9.024,
1980
+ "grad_norm": 1.6088253259658813,
1981
+ "learning_rate": 2.7096774193548384e-05,
1982
+ "loss": 0.2658,
1983
+ "step": 282
1984
+ },
1985
+ {
1986
+ "epoch": 9.056,
1987
+ "grad_norm": 0.8154093027114868,
1988
+ "learning_rate": 2.6129032258064513e-05,
1989
+ "loss": 0.1693,
1990
+ "step": 283
1991
+ },
1992
+ {
1993
+ "epoch": 9.088,
1994
+ "grad_norm": 0.7722072005271912,
1995
+ "learning_rate": 2.5161290322580645e-05,
1996
+ "loss": 0.1853,
1997
+ "step": 284
1998
+ },
1999
+ {
2000
+ "epoch": 9.12,
2001
+ "grad_norm": 0.8294870257377625,
2002
+ "learning_rate": 2.419354838709677e-05,
2003
+ "loss": 0.1736,
2004
+ "step": 285
2005
+ },
2006
+ {
2007
+ "epoch": 9.152,
2008
+ "grad_norm": 0.7481442093849182,
2009
+ "learning_rate": 2.3225806451612902e-05,
2010
+ "loss": 0.1544,
2011
+ "step": 286
2012
+ },
2013
+ {
2014
+ "epoch": 9.184,
2015
+ "grad_norm": 0.923413872718811,
2016
+ "learning_rate": 2.2258064516129028e-05,
2017
+ "loss": 0.2162,
2018
+ "step": 287
2019
+ },
2020
+ {
2021
+ "epoch": 9.216,
2022
+ "grad_norm": 0.8326953053474426,
2023
+ "learning_rate": 2.129032258064516e-05,
2024
+ "loss": 0.1926,
2025
+ "step": 288
2026
+ },
2027
+ {
2028
+ "epoch": 9.248,
2029
+ "grad_norm": 0.7642485499382019,
2030
+ "learning_rate": 2.0322580645161292e-05,
2031
+ "loss": 0.1555,
2032
+ "step": 289
2033
+ },
2034
+ {
2035
+ "epoch": 9.28,
2036
+ "grad_norm": 0.7902241945266724,
2037
+ "learning_rate": 1.9354838709677417e-05,
2038
+ "loss": 0.1459,
2039
+ "step": 290
2040
+ },
2041
+ {
2042
+ "epoch": 9.312,
2043
+ "grad_norm": 0.7414844036102295,
2044
+ "learning_rate": 1.8387096774193546e-05,
2045
+ "loss": 0.1425,
2046
+ "step": 291
2047
+ },
2048
+ {
2049
+ "epoch": 9.344,
2050
+ "grad_norm": 0.7870174646377563,
2051
+ "learning_rate": 1.7419354838709675e-05,
2052
+ "loss": 0.1853,
2053
+ "step": 292
2054
+ },
2055
+ {
2056
+ "epoch": 9.376,
2057
+ "grad_norm": 0.9091981649398804,
2058
+ "learning_rate": 1.6451612903225804e-05,
2059
+ "loss": 0.1666,
2060
+ "step": 293
2061
+ },
2062
+ {
2063
+ "epoch": 9.408,
2064
+ "grad_norm": 0.8651584386825562,
2065
+ "learning_rate": 1.5483870967741933e-05,
2066
+ "loss": 0.174,
2067
+ "step": 294
2068
+ },
2069
+ {
2070
+ "epoch": 9.44,
2071
+ "grad_norm": 0.7866891622543335,
2072
+ "learning_rate": 1.4516129032258063e-05,
2073
+ "loss": 0.1478,
2074
+ "step": 295
2075
+ },
2076
+ {
2077
+ "epoch": 9.472,
2078
+ "grad_norm": 0.717932403087616,
2079
+ "learning_rate": 1.3548387096774192e-05,
2080
+ "loss": 0.1425,
2081
+ "step": 296
2082
+ },
2083
+ {
2084
+ "epoch": 9.504,
2085
+ "grad_norm": 1.0217758417129517,
2086
+ "learning_rate": 1.2580645161290322e-05,
2087
+ "loss": 0.1574,
2088
+ "step": 297
2089
+ },
2090
+ {
2091
+ "epoch": 9.536,
2092
+ "grad_norm": 0.8149961829185486,
2093
+ "learning_rate": 1.1612903225806451e-05,
2094
+ "loss": 0.1422,
2095
+ "step": 298
2096
+ },
2097
+ {
2098
+ "epoch": 9.568,
2099
+ "grad_norm": 0.9206218719482422,
2100
+ "learning_rate": 1.064516129032258e-05,
2101
+ "loss": 0.1809,
2102
+ "step": 299
2103
+ },
2104
+ {
2105
+ "epoch": 9.6,
2106
+ "grad_norm": 0.6865082383155823,
2107
+ "learning_rate": 9.677419354838709e-06,
2108
+ "loss": 0.133,
2109
+ "step": 300
2110
+ },
2111
+ {
2112
+ "epoch": 9.632,
2113
+ "grad_norm": 0.7960584759712219,
2114
+ "learning_rate": 8.709677419354838e-06,
2115
+ "loss": 0.1289,
2116
+ "step": 301
2117
+ },
2118
+ {
2119
+ "epoch": 9.664,
2120
+ "grad_norm": 1.4710181951522827,
2121
+ "learning_rate": 7.741935483870966e-06,
2122
+ "loss": 0.1844,
2123
+ "step": 302
2124
+ },
2125
+ {
2126
+ "epoch": 9.696,
2127
+ "grad_norm": 0.7321292757987976,
2128
+ "learning_rate": 6.774193548387096e-06,
2129
+ "loss": 0.1356,
2130
+ "step": 303
2131
+ },
2132
+ {
2133
+ "epoch": 9.728,
2134
+ "grad_norm": 0.9279872179031372,
2135
+ "learning_rate": 5.8064516129032256e-06,
2136
+ "loss": 0.1842,
2137
+ "step": 304
2138
+ },
2139
+ {
2140
+ "epoch": 9.76,
2141
+ "grad_norm": 0.790213942527771,
2142
+ "learning_rate": 4.838709677419354e-06,
2143
+ "loss": 0.1341,
2144
+ "step": 305
2145
+ },
2146
+ {
2147
+ "epoch": 9.792,
2148
+ "grad_norm": 0.7292400598526001,
2149
+ "learning_rate": 3.870967741935483e-06,
2150
+ "loss": 0.1287,
2151
+ "step": 306
2152
+ },
2153
+ {
2154
+ "epoch": 9.824,
2155
+ "grad_norm": 0.8236159682273865,
2156
+ "learning_rate": 2.9032258064516128e-06,
2157
+ "loss": 0.1721,
2158
+ "step": 307
2159
+ },
2160
+ {
2161
+ "epoch": 9.856,
2162
+ "grad_norm": 1.0054924488067627,
2163
+ "learning_rate": 1.9354838709677416e-06,
2164
+ "loss": 0.19,
2165
+ "step": 308
2166
+ },
2167
+ {
2168
+ "epoch": 9.888,
2169
+ "grad_norm": 0.8466821312904358,
2170
+ "learning_rate": 9.677419354838708e-07,
2171
+ "loss": 0.1742,
2172
+ "step": 309
2173
+ },
2174
+ {
2175
+ "epoch": 9.92,
2176
+ "grad_norm": 0.7754448652267456,
2177
+ "learning_rate": 0.0,
2178
+ "loss": 0.1368,
2179
+ "step": 310
2180
+ }
2181
+ ],
2182
+ "logging_steps": 1,
2183
+ "max_steps": 310,
2184
+ "num_input_tokens_seen": 0,
2185
+ "num_train_epochs": 10,
2186
+ "save_steps": 100,
2187
+ "stateful_callbacks": {
2188
+ "TrainerControl": {
2189
+ "args": {
2190
+ "should_epoch_stop": false,
2191
+ "should_evaluate": false,
2192
+ "should_log": false,
2193
+ "should_save": true,
2194
+ "should_training_stop": true
2195
+ },
2196
+ "attributes": {}
2197
+ }
2198
+ },
2199
+ "total_flos": 7.34728855486464e+16,
2200
+ "train_batch_size": 3,
2201
+ "trial_name": null,
2202
+ "trial_params": null
2203
+ }
checkpoint-310/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:457c697b05fd5daa3c83df8920300c4940c26fb78ace5b5428b7c95d133a0ef4
3
+ size 5560
special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
tokenizer_config.json ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": null,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ }
30
+ },
31
+ "bos_token": "<s>",
32
+ "chat_template": "{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% else %}{% set loop_messages = messages %}{% set system_message = false %}{% endif %}{% for message in loop_messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if loop.index0 == 0 and system_message != false %}{% set content = '<<SYS>>\\n' + system_message + '\\n<</SYS>>\\n\\n' + message['content'] %}{% else %}{% set content = message['content'] %}{% endif %}{% if message['role'] == 'user' %}{{ bos_token + '[INST] ' + content.strip() + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ ' ' + content.strip() + ' ' + eos_token }}{% endif %}{% endfor %}",
33
+ "clean_up_tokenization_spaces": false,
34
+ "eos_token": "</s>",
35
+ "legacy": false,
36
+ "model_max_length": 1000000000000000019884624838656,
37
+ "pad_token": "</s>",
38
+ "padding_side": "right",
39
+ "sp_model_kwargs": {},
40
+ "spaces_between_special_tokens": false,
41
+ "tokenizer_class": "LlamaTokenizer",
42
+ "unk_token": "<unk>",
43
+ "use_default_system_prompt": false
44
+ }