llama3.2-1b-tamil / training_args.yaml
HARISHSENTHIL
finetuning with llamafactory using H100 epoch over 30
89de10b
raw
history blame contribute delete
770 Bytes
bf16: true
cutoff_len: 2048
dataset: openledger
dataset_dir: data
ddp_timeout: 180000000
do_train: true
eval_steps: 100
eval_strategy: steps
finetuning_type: lora
flash_attn: auto
gradient_accumulation_steps: 8
learning_rate: 0.0002
logging_steps: 5
lora_alpha: 32
lora_dropout: 0.05
lora_rank: 16
lora_target: all
lr_scheduler_type: cosine
max_grad_norm: 1.0
max_samples: 100000
model_name_or_path: meta-llama/Llama-3.2-1B
num_train_epochs: 30.0
optim: adamw_torch
output_dir: saves/Llama-3.2-1B/lora/openledger-18-12-2024--try-01
packing: false
per_device_eval_batch_size: 2
per_device_train_batch_size: 2
plot_loss: true
preprocessing_num_workers: 16
report_to: none
save_steps: 100
stage: sft
template: default
trust_remote_code: true
val_size: 0.05
warmup_steps: 0