Hariprasath28
commited on
Commit
•
585b977
1
Parent(s):
a3144af
Initial commit
Browse files- README.md +1 -1
- a2c-PandaReachDense-v2.zip +2 -2
- a2c-PandaReachDense-v2/data +18 -18
- a2c-PandaReachDense-v2/policy.optimizer.pth +1 -1
- a2c-PandaReachDense-v2/policy.pth +1 -1
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
- vec_normalize.pkl +2 -2
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -0.24 +/- 0.15
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-PandaReachDense-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b3f737dad1b42e9197a30829402325445b78d0e2ade9080b297af363d9f65b8d
|
3 |
+
size 108182
|
a2c-PandaReachDense-v2/data
CHANGED
@@ -4,9 +4,9 @@
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function MultiInputActorCriticPolicy.__init__ at
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
-
"_abc_impl": "<_abc._abc_data object at
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
@@ -19,24 +19,24 @@
|
|
19 |
"weight_decay": 0
|
20 |
}
|
21 |
},
|
22 |
-
"num_timesteps":
|
23 |
-
"_total_timesteps":
|
24 |
"_num_timesteps_at_start": 0,
|
25 |
"seed": null,
|
26 |
"action_noise": null,
|
27 |
-
"start_time":
|
28 |
-
"learning_rate": 0.
|
29 |
"tensorboard_log": null,
|
30 |
"lr_schedule": {
|
31 |
":type:": "<class 'function'>",
|
32 |
-
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+
|
33 |
},
|
34 |
"_last_obs": {
|
35 |
":type:": "<class 'collections.OrderedDict'>",
|
36 |
-
":serialized:": "
|
37 |
-
"achieved_goal": "[[
|
38 |
-
"desired_goal": "[[ 1.
|
39 |
-
"observation": "[[
|
40 |
},
|
41 |
"_last_episode_starts": {
|
42 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -44,9 +44,9 @@
|
|
44 |
},
|
45 |
"_last_original_obs": {
|
46 |
":type:": "<class 'collections.OrderedDict'>",
|
47 |
-
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
48 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
-
"desired_goal": "[[
|
50 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
},
|
52 |
"_episode_num": 0,
|
@@ -56,17 +56,17 @@
|
|
56 |
"_stats_window_size": 100,
|
57 |
"ep_info_buffer": {
|
58 |
":type:": "<class 'collections.deque'>",
|
59 |
-
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
60 |
},
|
61 |
"ep_success_buffer": {
|
62 |
":type:": "<class 'collections.deque'>",
|
63 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
64 |
},
|
65 |
-
"_n_updates":
|
66 |
"n_steps": 5,
|
67 |
-
"gamma": 0.
|
68 |
-
"gae_lambda":
|
69 |
-
"ent_coef": 0
|
70 |
"vf_coef": 0.5,
|
71 |
"max_grad_norm": 0.5,
|
72 |
"normalize_advantage": false,
|
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f88673928c0>",
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f8805e03e40>"
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
|
|
19 |
"weight_decay": 0
|
20 |
}
|
21 |
},
|
22 |
+
"num_timesteps": 2000000,
|
23 |
+
"_total_timesteps": 2000000,
|
24 |
"_num_timesteps_at_start": 0,
|
25 |
"seed": null,
|
26 |
"action_noise": null,
|
27 |
+
"start_time": 1680431221493549003,
|
28 |
+
"learning_rate": 0.0001,
|
29 |
"tensorboard_log": null,
|
30 |
"lr_schedule": {
|
31 |
":type:": "<class 'function'>",
|
32 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8aNuLrHEMthZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
33 |
},
|
34 |
"_last_obs": {
|
35 |
":type:": "<class 'collections.OrderedDict'>",
|
36 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAivHbPiHsZDuahgw/ivHbPiHsZDuahgw/ivHbPiHsZDuahgw/ivHbPiHsZDuahgw/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA6YauP2Alwz9Xu5C+hBbHP5IKsD/7upq6YEFwPkIBJz/WuY2/UjBMPk/FgL+jPdq+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACK8ds+IexkO5qGDD9Ie/O5us9lutFJEDyK8ds+IexkO5qGDD9Ie/O5us9lutFJEDyK8ds+IexkO5qGDD9Ie/O5us9lutFJEDyK8ds+IexkO5qGDD9Ie/O5us9lutFJEDyUaA5LBEsGhpRoEnSUUpR1Lg==",
|
37 |
+
"achieved_goal": "[[0.42957717 0.00349308 0.54892886]\n [0.42957717 0.00349308 0.54892886]\n [0.42957717 0.00349308 0.54892886]\n [0.42957717 0.00349308 0.54892886]]",
|
38 |
+
"desired_goal": "[[ 1.3634921e+00 1.5245781e+00 -2.8267929e-01]\n [ 1.5553746e+00 1.3753226e+00 -1.1804992e-03]\n [ 2.3462439e-01 6.5236294e-01 -1.1072338e+00]\n [ 1.9940308e-01 -1.0060214e+00 -4.2625150e-01]]",
|
39 |
+
"observation": "[[ 4.2957717e-01 3.4930783e-03 5.4892886e-01 -4.6440423e-04\n -8.7666104e-04 8.8066617e-03]\n [ 4.2957717e-01 3.4930783e-03 5.4892886e-01 -4.6440423e-04\n -8.7666104e-04 8.8066617e-03]\n [ 4.2957717e-01 3.4930783e-03 5.4892886e-01 -4.6440423e-04\n -8.7666104e-04 8.8066617e-03]\n [ 4.2957717e-01 3.4930783e-03 5.4892886e-01 -4.6440423e-04\n -8.7666104e-04 8.8066617e-03]]"
|
40 |
},
|
41 |
"_last_episode_starts": {
|
42 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
44 |
},
|
45 |
"_last_original_obs": {
|
46 |
":type:": "<class 'collections.OrderedDict'>",
|
47 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAMIvmvR3L371DmYs+W9DUvTIHeT37TrI9F+9Au8CXqL3Lj0I+wlCiPS+bAzvkGFA+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
48 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
+
"desired_goal": "[[-0.11257017 -0.10927413 0.27265367]\n [-0.10391303 0.06079788 0.08706471]\n [-0.00294394 -0.08232069 0.19000165]\n [ 0.0792556 0.00200815 0.20321995]]",
|
50 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
},
|
52 |
"_episode_num": 0,
|
|
|
56 |
"_stats_window_size": 100,
|
57 |
"ep_info_buffer": {
|
58 |
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIj/tW68Tl17+UhpRSlIwBbJRLMowBdJRHQK1hvwOvt+l1fZQoaAZoCWgPQwjxK9ZwkXvdv5SGlFKUaBVLMmgWR0CtYaOtfXwtdX2UKGgGaAloD0MIzywJUFPLxL+UhpRSlGgVSzJoFkdArWGHNiYsunV9lChoBmgJaA9DCADhQ4mWPOK/lIaUUpRoFUsyaBZHQK1haumJm/Z1fZQoaAZoCWgPQwh2Ul+WdmrIv5SGlFKUaBVLMmgWR0CtYnmNipeedX2UKGgGaAloD0MIw5rKorCL2r+UhpRSlGgVSzJoFkdArWJeOOsDGXV9lChoBmgJaA9DCLXeb7Tjhs+/lIaUUpRoFUsyaBZHQK1iQcwQDmt1fZQoaAZoCWgPQwhwXwfOGVHWv5SGlFKUaBVLMmgWR0CtYiUdilSCdX2UKGgGaAloD0MITwXc8/xp1L+UhpRSlGgVSzJoFkdArWM0580DU3V9lChoBmgJaA9DCNc07zhFR86/lIaUUpRoFUsyaBZHQK1jGajvd/J1fZQoaAZoCWgPQwj8q8d9q3XSv5SGlFKUaBVLMmgWR0CtYv00m+j/dX2UKGgGaAloD0MIbsDnhxHC1r+UhpRSlGgVSzJoFkdArWLgkeIVM3V9lChoBmgJaA9DCNpWs874vtO/lIaUUpRoFUsyaBZHQK1j8gqVhTh1fZQoaAZoCWgPQwiDp5Ar9SzZv5SGlFKUaBVLMmgWR0CtY9bDEWIodX2UKGgGaAloD0MIjpPCvMeZ0r+UhpRSlGgVSzJoFkdArWO6OvMbFXV9lChoBmgJaA9DCHHIBtLFpt+/lIaUUpRoFUsyaBZHQK1jnZV4oql1fZQoaAZoCWgPQwiCOuXRjbDWv5SGlFKUaBVLMmgWR0CtZK9t/FzddX2UKGgGaAloD0MI6lp7n6pCyb+UhpRSlGgVSzJoFkdArWSUI/qxDHV9lChoBmgJaA9DCNldoKTAAs6/lIaUUpRoFUsyaBZHQK1kd6Rhc7h1fZQoaAZoCWgPQwi366UpApzAv5SGlFKUaBVLMmgWR0CtZFr9ETg3dX2UKGgGaAloD0MIceZXc4Bg2L+UhpRSlGgVSzJoFkdArWVpxLkCFXV9lChoBmgJaA9DCOusFthjIsG/lIaUUpRoFUsyaBZHQK1lTnnuAqd1fZQoaAZoCWgPQwj68CxBRkDLv5SGlFKUaBVLMmgWR0CtZTIClrM1dX2UKGgGaAloD0MIf9sTJLa70L+UhpRSlGgVSzJoFkdArWUVVYISlHV9lChoBmgJaA9DCIvAWN/A5L6/lIaUUpRoFUsyaBZHQK1mNNzr/sF1fZQoaAZoCWgPQwhuxJPdzGjiv5SGlFKUaBVLMmgWR0CtZhoH1OCYdX2UKGgGaAloD0MI3/3xXrUy2b+UhpRSlGgVSzJoFkdArWX9k6Lfk3V9lChoBmgJaA9DCOIC0Chd+su/lIaUUpRoFUsyaBZHQK1l4PDHfdh1fZQoaAZoCWgPQwiJXkax3NLMv5SGlFKUaBVLMmgWR0CtZve4kNWmdX2UKGgGaAloD0MI3Xh3ZKw227+UhpRSlGgVSzJoFkdArWbcXLvCuXV9lChoBmgJaA9DCIf7yK1Jt9i/lIaUUpRoFUsyaBZHQK1mv+irT6V1fZQoaAZoCWgPQwimSL4SSIncv5SGlFKUaBVLMmgWR0CtZqNDMNc4dX2UKGgGaAloD0MIat5xio7kwL+UhpRSlGgVSzJoFkdArWe3P1L8JnV9lChoBmgJaA9DCC0GD9O+udO/lIaUUpRoFUsyaBZHQK1nm/oJRfp1fZQoaAZoCWgPQwgjaTf6mA/av5SGlFKUaBVLMmgWR0CtZ3+F10T2dX2UKGgGaAloD0MI4biMmxpo0r+UhpRSlGgVSzJoFkdArWdi5byH23V9lChoBmgJaA9DCMTuO4bHfta/lIaUUpRoFUsyaBZHQK1oj90ihWZ1fZQoaAZoCWgPQwjQRxlxAWjXv5SGlFKUaBVLMmgWR0CtaHSIHkcTdX2UKGgGaAloD0MIWd/A5EaR3b+UhpRSlGgVSzJoFkdArWhYEyLyc3V9lChoBmgJaA9DCK2kFd9Q+Mq/lIaUUpRoFUsyaBZHQK1oO3G4qgB1fZQoaAZoCWgPQwiAgSBAho7Hv5SGlFKUaBVLMmgWR0CtaVJmmLtNdX2UKGgGaAloD0MIPZl/9E2azL+UhpRSlGgVSzJoFkdArWk3E/B3zXV9lChoBmgJaA9DCMhESrN5HNC/lIaUUpRoFUsyaBZHQK1pGqLjxTd1fZQoaAZoCWgPQwjYRjzZzYzcv5SGlFKUaBVLMmgWR0CtaP34Kx9odX2UKGgGaAloD0MIokYhyaze0b+UhpRSlGgVSzJoFkdArWoPcQAdXHV9lChoBmgJaA9DCFCKVu4FZti/lIaUUpRoFUsyaBZHQK1p9Bk7Oml1fZQoaAZoCWgPQwh3EDtT6LzIv5SGlFKUaBVLMmgWR0Ctadeii7CjdX2UKGgGaAloD0MIR3U6kPXU0b+UhpRSlGgVSzJoFkdArWm6/GlyinV9lChoBmgJaA9DCJlH/mDgucO/lIaUUpRoFUsyaBZHQK1qzp4bCJp1fZQoaAZoCWgPQwh7Lei9MQTVv5SGlFKUaBVLMmgWR0CtarNIK+i8dX2UKGgGaAloD0MIo1cDlIYax7+UhpRSlGgVSzJoFkdArWqWzyBkJHV9lChoBmgJaA9DCDJyFva0w8e/lIaUUpRoFUsyaBZHQK1qeixFAml1fZQoaAZoCWgPQwiKVYMwt3vbv5SGlFKUaBVLMmgWR0Cta4fP5YYBdX2UKGgGaAloD0MI8MLWbOUl1b+UhpRSlGgVSzJoFkdArWtsf1YhdXV9lChoBmgJaA9DCCTwh5//HsC/lIaUUpRoFUsyaBZHQK1rT/d69kB1fZQoaAZoCWgPQwgWMlcG1Qbbv5SGlFKUaBVLMmgWR0CtazNQKrq/dX2UKGgGaAloD0MIZyYYzjXM2r+UhpRSlGgVSzJoFkdArWxCxiXpn3V9lChoBmgJaA9DCOF/K9mxEdK/lIaUUpRoFUsyaBZHQK1sJ3Tuv2Z1fZQoaAZoCWgPQwid8uhGWFTSv5SGlFKUaBVLMmgWR0CtbAsCkoF3dX2UKGgGaAloD0MIxEFClC9o3L+UhpRSlGgVSzJoFkdArWvuWv8qF3V9lChoBmgJaA9DCJz6QPLOod+/lIaUUpRoFUsyaBZHQK1tCjQAuI11fZQoaAZoCWgPQwiiDcAGRIjQv5SGlFKUaBVLMmgWR0CtbO7aRISUdX2UKGgGaAloD0MIv2VOl8XE4L+UhpRSlGgVSzJoFkdArWzSa1Cw8nV9lChoBmgJaA9DCC/6CtKMRd6/lIaUUpRoFUsyaBZHQK1staTwDvF1fZQoaAZoCWgPQwhOY3st6L3Uv5SGlFKUaBVLMmgWR0CtbcRl6JIldX2UKGgGaAloD0MI/rW8cr1t0r+UhpRSlGgVSzJoFkdArW2pGKAJ9nV9lChoBmgJaA9DCIRkARO4deG/lIaUUpRoFUsyaBZHQK1tjJlrdnF1fZQoaAZoCWgPQwhNFYxK6gTZv5SGlFKUaBVLMmgWR0CtbW/29L6DdX2UKGgGaAloD0MI/I123PC717+UhpRSlGgVSzJoFkdArW5/fl6qsHV9lChoBmgJaA9DCI+qJoi6D86/lIaUUpRoFUsyaBZHQK1uZCKrJbN1fZQoaAZoCWgPQwj/dtmvO93Tv5SGlFKUaBVLMmgWR0Ctbket8uzydX2UKGgGaAloD0MIuyU5YFeT1r+UhpRSlGgVSzJoFkdArW4rDZUT+XV9lChoBmgJaA9DCP0RhgFLruC/lIaUUpRoFUsyaBZHQK1vOcS5AhV1fZQoaAZoCWgPQwid1QJ7TKTMv5SGlFKUaBVLMmgWR0Ctbx6AOJ+EdX2UKGgGaAloD0MIDJV/La9c0L+UhpRSlGgVSzJoFkdArW8CAe7tiXV9lChoBmgJaA9DCFDIztvY7Ne/lIaUUpRoFUsyaBZHQK1u5Vd5Y5l1fZQoaAZoCWgPQwgyWdx/ZDrTv5SGlFKUaBVLMmgWR0Ctb/T7/GVBdX2UKGgGaAloD0MIrkfhehSu0b+UhpRSlGgVSzJoFkdArW/ZnSOR1XV9lChoBmgJaA9DCPEQxk/j3sy/lIaUUpRoFUsyaBZHQK1vvS1maph1fZQoaAZoCWgPQwgw9IjRcwvXv5SGlFKUaBVLMmgWR0Ctb6CIUJv6dX2UKGgGaAloD0MIDVNb6iCv2r+UhpRSlGgVSzJoFkdArXCxY5ksjHV9lChoBmgJaA9DCIPCoEyjycm/lIaUUpRoFUsyaBZHQK1wlgCOmzl1fZQoaAZoCWgPQwhWSs/0EmPcv5SGlFKUaBVLMmgWR0CtcHmLDQ7cdX2UKGgGaAloD0MI9nzNctno0L+UhpRSlGgVSzJoFkdArXBc6FM7EHV9lChoBmgJaA9DCBx4tdyZCde/lIaUUpRoFUsyaBZHQK1xa14Pf9B1fZQoaAZoCWgPQwipvvOLEvTSv5SGlFKUaBVLMmgWR0CtcVAE+xGEdX2UKGgGaAloD0MIs0XSbvSx4L+UhpRSlGgVSzJoFkdArXEzeGfwqnV9lChoBmgJaA9DCC4gtB6+TNK/lIaUUpRoFUsyaBZHQK1xFtrKvFF1fZQoaAZoCWgPQwjoE3mSdM3Av5SGlFKUaBVLMmgWR0Ctcie1jRUndX2UKGgGaAloD0MIIQN5dvnWyb+UhpRSlGgVSzJoFkdArXIMZR8+inV9lChoBmgJaA9DCMMoCB7f3sO/lIaUUpRoFUsyaBZHQK1x7+2mYSh1fZQoaAZoCWgPQwi5jJsaaD7Vv5SGlFKUaBVLMmgWR0CtcdNAC4jKdX2UKGgGaAloD0MI/BwfLc4Y3b+UhpRSlGgVSzJoFkdArXLnazu4PXV9lChoBmgJaA9DCF9/Ep87wdq/lIaUUpRoFUsyaBZHQK1yzBInSfF1fZQoaAZoCWgPQwi+3CdHAaLGv5SGlFKUaBVLMmgWR0Ctcq+NtIkJdX2UKGgGaAloD0MIai+i7Zi64L+UhpRSlGgVSzJoFkdArXKS6BiCrnV9lChoBmgJaA9DCNCc9SnHZNu/lIaUUpRoFUsyaBZHQK1zpPoFFDx1fZQoaAZoCWgPQwhAM4gP7PjYv5SGlFKUaBVLMmgWR0Ctc4mkN4JNdX2UKGgGaAloD0MIWg2Jeyx9yr+UhpRSlGgVSzJoFkdArXNtHWjGk3V9lChoBmgJaA9DCE9Y4gFlU9y/lIaUUpRoFUsyaBZHQK1zUHoHLRt1ZS4="
|
60 |
},
|
61 |
"ep_success_buffer": {
|
62 |
":type:": "<class 'collections.deque'>",
|
63 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
64 |
},
|
65 |
+
"_n_updates": 100000,
|
66 |
"n_steps": 5,
|
67 |
+
"gamma": 0.9,
|
68 |
+
"gae_lambda": 0.98,
|
69 |
+
"ent_coef": 0,
|
70 |
"vf_coef": 0.5,
|
71 |
"max_grad_norm": 0.5,
|
72 |
"normalize_advantage": false,
|
a2c-PandaReachDense-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 44734
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:44406fc5bc587316bdfd0c1a0e8eaffa272381280f885ed474f10b466ea633d8
|
3 |
size 44734
|
a2c-PandaReachDense-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 46014
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:52905800897388f67dd7bb7d4dd2e5e500464614131b93c059d159650ad4ff57
|
3 |
size 46014
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f4af45277f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f4af4514680>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1682672069076247637, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA9hLWPhaLvL2U7yY/9hLWPhaLvL2U7yY/9hLWPhaLvL2U7yY/9hLWPhaLvL2U7yY/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAADQbdPwBgBL4iao4/TvWmv8fJir8u/za/0GO9Pc7uw77DHWo/TpGaP21xub/xGbS/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAD2EtY+Fou8vZTvJj/fenM7/D8kvBxYuTz2EtY+Fou8vZTvJj/fenM7/D8kvBxYuTz2EtY+Fou8vZTvJj/fenM7/D8kvBxYuTz2EtY+Fou8vZTvJj/fenM7/D8kvBxYuTyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.4181134 -0.09206216 0.6520932 ]\n [ 0.4181134 -0.09206216 0.6520932 ]\n [ 0.4181134 -0.09206216 0.6520932 ]\n [ 0.4181134 -0.09206216 0.6520932 ]]", "desired_goal": "[[ 1.7267472 -0.12927246 1.1126139 ]\n [-1.3043611 -1.0842828 -0.71483123]\n [ 0.09247553 -0.3826813 0.9145166 ]\n [ 1.2075593 -1.448774 -1.4070417 ]]", "observation": "[[ 0.4181134 -0.09206216 0.6520932 0.00371521 -0.01002502 0.02262502]\n [ 0.4181134 -0.09206216 0.6520932 0.00371521 -0.01002502 0.02262502]\n [ 0.4181134 -0.09206216 0.6520932 0.00371521 -0.01002502 0.02262502]\n [ 0.4181134 -0.09206216 0.6520932 0.00371521 -0.01002502 0.02262502]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAKp6YPUdyQD3Orm8+OgHlPMteFL4zCYI94eL9Pa1YXr0hp1E+5ObFPfInij0CMX4+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.07452042 0.04698398 0.23406526]\n [ 0.02795469 -0.14489286 0.06349411]\n [ 0.12396789 -0.05428379 0.20473911]\n [ 0.0966318 0.067459 0.24823382]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIiEfi5encBMCUhpRSlIwBbJRLMowBdJRHQKbnZKSPluF1fZQoaAZoCWgPQwiDFadaCxMNwJSGlFKUaBVLMmgWR0Cm5wh1klNUdX2UKGgGaAloD0MIAmcpWU7iHsCUhpRSlGgVSzJoFkdApuastsenynV9lChoBmgJaA9DCD1fs1w2+hLAlIaUUpRoFUsyaBZHQKbmT3gUDdR1fZQoaAZoCWgPQwj/JD53gt0QwJSGlFKUaBVLMmgWR0Cm6EZ0jkdWdX2UKGgGaAloD0MIjq89sySgD8CUhpRSlGgVSzJoFkdApufqLIgeR3V9lChoBmgJaA9DCMcTQZyHwxbAlIaUUpRoFUsyaBZHQKbnjleWv8t1fZQoaAZoCWgPQwjUSEvl7dgQwJSGlFKUaBVLMmgWR0Cm5zCwSrYHdX2UKGgGaAloD0MIvyoXKv/qEsCUhpRSlGgVSzJoFkdApukxRyfcvnV9lChoBmgJaA9DCDCDMSJRGBzAlIaUUpRoFUsyaBZHQKbo1UEPlMh1fZQoaAZoCWgPQwgNcEG2LC8VwJSGlFKUaBVLMmgWR0Cm6HmU4aP0dX2UKGgGaAloD0MImfOMfckmDMCUhpRSlGgVSzJoFkdApugb9Q40dnV9lChoBmgJaA9DCA+6hENvoRnAlIaUUpRoFUsyaBZHQKbqGu9OARV1fZQoaAZoCWgPQwgqq+l6oksWwJSGlFKUaBVLMmgWR0Cm6b8Djin6dX2UKGgGaAloD0MIvt798V7FFsCUhpRSlGgVSzJoFkdApuljRa5f+nV9lChoBmgJaA9DCNUEUfcBaBHAlIaUUpRoFUsyaBZHQKbpBdweeWh1fZQoaAZoCWgPQwgQXVDfMqcOwJSGlFKUaBVLMmgWR0Cm6wVXNke7dX2UKGgGaAloD0MIp7Io7KIoBcCUhpRSlGgVSzJoFkdApuqpJEpiJHV9lChoBmgJaA9DCOWYLO4/EhTAlIaUUpRoFUsyaBZHQKbqTVghKUV1fZQoaAZoCWgPQwhqEyf3OyQewJSGlFKUaBVLMmgWR0Cm6e+10DEFdX2UKGgGaAloD0MIusDlsWbEA8CUhpRSlGgVSzJoFkdApuvvqkdmx3V9lChoBmgJaA9DCJGYoIZvkRHAlIaUUpRoFUsyaBZHQKbrk4iosI51fZQoaAZoCWgPQwjyttJrsxEVwJSGlFKUaBVLMmgWR0Cm6zfWcz68dX2UKGgGaAloD0MIcJo+O+BiI8CUhpRSlGgVSzJoFkdApuraJdjXnXV9lChoBmgJaA9DCGzrp/+sOR/AlIaUUpRoFUsyaBZHQKbs2mfGuLd1fZQoaAZoCWgPQwg2Ia0x6DQSwJSGlFKUaBVLMmgWR0Cm7H4nv2GqdX2UKGgGaAloD0MIahSSzOo9CcCUhpRSlGgVSzJoFkdApuwi4x1xKnV9lChoBmgJaA9DCNZSQNr/0BXAlIaUUpRoFUsyaBZHQKbrxSXt0FN1fZQoaAZoCWgPQwi4H/DAAKIVwJSGlFKUaBVLMmgWR0Cm7eBpQDV6dX2UKGgGaAloD0MIUrmJWpprEMCUhpRSlGgVSzJoFkdApu2EWM0gsHV9lChoBmgJaA9DCGXHRiBedwPAlIaUUpRoFUsyaBZHQKbtKQtjCpF1fZQoaAZoCWgPQwguymyQSeYdwJSGlFKUaBVLMmgWR0Cm7MvysjmkdX2UKGgGaAloD0MIegCL/PqBC8CUhpRSlGgVSzJoFkdApu7wQvpQlHV9lChoBmgJaA9DCL7ArFCkixrAlIaUUpRoFUsyaBZHQKbulB42S+x1fZQoaAZoCWgPQwilvcEXJqMWwJSGlFKUaBVLMmgWR0Cm7jiMPz4DdX2UKGgGaAloD0MIfh6jPPNSC8CUhpRSlGgVSzJoFkdApu3bUutfX3V9lChoBmgJaA9DCNZYwtoYuw/AlIaUUpRoFUsyaBZHQKbv8eHSF491fZQoaAZoCWgPQwg+ldOektMBwJSGlFKUaBVLMmgWR0Cm75XoC+10dX2UKGgGaAloD0MImgtcHms2GMCUhpRSlGgVSzJoFkdApu86YZ2pynV9lChoBmgJaA9DCG3jT1Q23BPAlIaUUpRoFUsyaBZHQKbu3LOiWVx1fZQoaAZoCWgPQwhYrOEi97QHwJSGlFKUaBVLMmgWR0Cm8NW9L6DXdX2UKGgGaAloD0MIwRw9fm9DEMCUhpRSlGgVSzJoFkdApvB5hfBvaXV9lChoBmgJaA9DCPD6zFmf0hXAlIaUUpRoFUsyaBZHQKbwHbor4Fl1fZQoaAZoCWgPQwj5254gsS0UwJSGlFKUaBVLMmgWR0Cm78AdwNsndX2UKGgGaAloD0MIEywOZ37lFMCUhpRSlGgVSzJoFkdApvINnwob43V9lChoBmgJaA9DCFJDG4ANKBnAlIaUUpRoFUsyaBZHQKbxseii7Cl1fZQoaAZoCWgPQwi0qiUd5WD/v5SGlFKUaBVLMmgWR0Cm8VbBXS0CdX2UKGgGaAloD0MIaqFkcmoHH8CUhpRSlGgVSzJoFkdApvD5tzjm0XV9lChoBmgJaA9DCIzZklUR7hDAlIaUUpRoFUsyaBZHQKbzhcVQAMl1fZQoaAZoCWgPQwjMsieBzZkfwJSGlFKUaBVLMmgWR0Cm8yokzGgjdX2UKGgGaAloD0MIQX42ct2UEcCUhpRSlGgVSzJoFkdApvLPepGWlnV9lChoBmgJaA9DCMXkDTDznRPAlIaUUpRoFUsyaBZHQKbycnR9gF51fZQoaAZoCWgPQwgge737460YwJSGlFKUaBVLMmgWR0Cm9QAUlAu7dX2UKGgGaAloD0MIBHP0+L0NFMCUhpRSlGgVSzJoFkdApvSksz2vjnV9lChoBmgJaA9DCLNdoQ+WwRLAlIaUUpRoFUsyaBZHQKb0SXVsk6d1fZQoaAZoCWgPQwiy9ne2R28FwJSGlFKUaBVLMmgWR0Cm8+w79ycTdX2UKGgGaAloD0MIYHe688TTEcCUhpRSlGgVSzJoFkdApvZx7ojfN3V9lChoBmgJaA9DCFbxRuaRPwrAlIaUUpRoFUsyaBZHQKb2FpztCzF1fZQoaAZoCWgPQwh6qkNuhjsLwJSGlFKUaBVLMmgWR0Cm9bvnSv1UdX2UKGgGaAloD0MI4ltYN969BcCUhpRSlGgVSzJoFkdApvVe6/ZdwHV9lChoBmgJaA9DCL6ECg4v2BDAlIaUUpRoFUsyaBZHQKb4I6ErXlN1fZQoaAZoCWgPQwjMm8O12uMEwJSGlFKUaBVLMmgWR0Cm98hP0qYrdX2UKGgGaAloD0MIcZNRZRg3BsCUhpRSlGgVSzJoFkdApvdtI3BHkXV9lChoBmgJaA9DCOkQOBJoAB7AlIaUUpRoFUsyaBZHQKb3EA4GUwB1fZQoaAZoCWgPQwg6XKs97GUewJSGlFKUaBVLMmgWR0Cm+gglv60qdX2UKGgGaAloD0MI+PpalxoBA8CUhpRSlGgVSzJoFkdApvms5OrQxHV9lChoBmgJaA9DCI2z6QjghhzAlIaUUpRoFUsyaBZHQKb5UdLg4wR1fZQoaAZoCWgPQwh7TQ8KSvEKwJSGlFKUaBVLMmgWR0Cm+PW3azu4dX2UKGgGaAloD0MIukxNgjckFcCUhpRSlGgVSzJoFkdApvvU1EVnEnV9lChoBmgJaA9DCG3n+6nxQhLAlIaUUpRoFUsyaBZHQKb7eULUkOZ1fZQoaAZoCWgPQwimttRBXq8SwJSGlFKUaBVLMmgWR0Cm+x79qDbrdX2UKGgGaAloD0MIezNqvkq+DsCUhpRSlGgVSzJoFkdApvrDVQQ+U3V9lChoBmgJaA9DCMQhG0gXWwnAlIaUUpRoFUsyaBZHQKb81w5NoJ11fZQoaAZoCWgPQwhOJ9nqcgoawJSGlFKUaBVLMmgWR0Cm/HsEJSiudX2UKGgGaAloD0MIzZAqilc5GsCUhpRSlGgVSzJoFkdApvwfY+Sr53V9lChoBmgJaA9DCG4UWWsotQrAlIaUUpRoFUsyaBZHQKb7wdT5wfh1fZQoaAZoCWgPQwiLpUi+EmgVwJSGlFKUaBVLMmgWR0Cm/cRPXTVldX2UKGgGaAloD0MINbIrLSNVH8CUhpRSlGgVSzJoFkdApv1oDJU5uXV9lChoBmgJaA9DCOoFn+bkFRPAlIaUUpRoFUsyaBZHQKb9DHJ9y951fZQoaAZoCWgPQwgT86ykFZ8SwJSGlFKUaBVLMmgWR0Cm/K6+N96UdX2UKGgGaAloD0MI/FI/byoyFcCUhpRSlGgVSzJoFkdApv6t0JWvKXV9lChoBmgJaA9DCD/mAwKdiRLAlIaUUpRoFUsyaBZHQKb+UZ6Uqx11fZQoaAZoCWgPQwgjg9xFmJIRwJSGlFKUaBVLMmgWR0Cm/fXmV7hOdX2UKGgGaAloD0MIy0i9p3J6FMCUhpRSlGgVSzJoFkdApv2YJiRW93V9lChoBmgJaA9DCAzp8BDGHxLAlIaUUpRoFUsyaBZHQKb/hU0elsR1fZQoaAZoCWgPQwga9+Y3TGQRwJSGlFKUaBVLMmgWR0Cm/ykHdGiIdX2UKGgGaAloD0MII7w9CAHZHsCUhpRSlGgVSzJoFkdApv7NN8E3bXV9lChoBmgJaA9DCNbm/1VHfhLAlIaUUpRoFUsyaBZHQKb+b4N7SiN1fZQoaAZoCWgPQwg0LbEyGrkWwJSGlFKUaBVLMmgWR0CnAGXG4qgAdX2UKGgGaAloD0MIsAJ8t3kDC8CUhpRSlGgVSzJoFkdApwAJle4TbnV9lChoBmgJaA9DCA1Uxr/PiBTAlIaUUpRoFUsyaBZHQKb/rd9lVcV1fZQoaAZoCWgPQwi5p6s7FgsUwJSGlFKUaBVLMmgWR0Cm/1AsTWXkdX2UKGgGaAloD0MIZ7gBnx+2FcCUhpRSlGgVSzJoFkdApwFYu/UONHV9lChoBmgJaA9DCIF2hxQDRAPAlIaUUpRoFUsyaBZHQKcA/L9uP3l1fZQoaAZoCWgPQwhkJHuEmoEZwJSGlFKUaBVLMmgWR0CnAKFByCFsdX2UKGgGaAloD0MIsTGvIw75EcCUhpRSlGgVSzJoFkdApwBEcABDHHV9lChoBmgJaA9DCKCLhoxHGRHAlIaUUpRoFUsyaBZHQKcCWZTho/R1fZQoaAZoCWgPQwgNNQpJZjUBwJSGlFKUaBVLMmgWR0CnAf2y1NQCdX2UKGgGaAloD0MIhEnx8QkZA8CUhpRSlGgVSzJoFkdApwGiDsdDIHV9lChoBmgJaA9DCBIvT+eK0g7AlIaUUpRoFUsyaBZHQKcBRHXmNip1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f88673928c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f8805e03e40>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1680431221493549003, "learning_rate": 0.0001, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8aNuLrHEMthZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAivHbPiHsZDuahgw/ivHbPiHsZDuahgw/ivHbPiHsZDuahgw/ivHbPiHsZDuahgw/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA6YauP2Alwz9Xu5C+hBbHP5IKsD/7upq6YEFwPkIBJz/WuY2/UjBMPk/FgL+jPdq+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACK8ds+IexkO5qGDD9Ie/O5us9lutFJEDyK8ds+IexkO5qGDD9Ie/O5us9lutFJEDyK8ds+IexkO5qGDD9Ie/O5us9lutFJEDyK8ds+IexkO5qGDD9Ie/O5us9lutFJEDyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.42957717 0.00349308 0.54892886]\n [0.42957717 0.00349308 0.54892886]\n [0.42957717 0.00349308 0.54892886]\n [0.42957717 0.00349308 0.54892886]]", "desired_goal": "[[ 1.3634921e+00 1.5245781e+00 -2.8267929e-01]\n [ 1.5553746e+00 1.3753226e+00 -1.1804992e-03]\n [ 2.3462439e-01 6.5236294e-01 -1.1072338e+00]\n [ 1.9940308e-01 -1.0060214e+00 -4.2625150e-01]]", "observation": "[[ 4.2957717e-01 3.4930783e-03 5.4892886e-01 -4.6440423e-04\n -8.7666104e-04 8.8066617e-03]\n [ 4.2957717e-01 3.4930783e-03 5.4892886e-01 -4.6440423e-04\n -8.7666104e-04 8.8066617e-03]\n [ 4.2957717e-01 3.4930783e-03 5.4892886e-01 -4.6440423e-04\n -8.7666104e-04 8.8066617e-03]\n [ 4.2957717e-01 3.4930783e-03 5.4892886e-01 -4.6440423e-04\n -8.7666104e-04 8.8066617e-03]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAMIvmvR3L371DmYs+W9DUvTIHeT37TrI9F+9Au8CXqL3Lj0I+wlCiPS+bAzvkGFA+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.11257017 -0.10927413 0.27265367]\n [-0.10391303 0.06079788 0.08706471]\n [-0.00294394 -0.08232069 0.19000165]\n [ 0.0792556 0.00200815 0.20321995]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIj/tW68Tl17+UhpRSlIwBbJRLMowBdJRHQK1hvwOvt+l1fZQoaAZoCWgPQwjxK9ZwkXvdv5SGlFKUaBVLMmgWR0CtYaOtfXwtdX2UKGgGaAloD0MIzywJUFPLxL+UhpRSlGgVSzJoFkdArWGHNiYsunV9lChoBmgJaA9DCADhQ4mWPOK/lIaUUpRoFUsyaBZHQK1haumJm/Z1fZQoaAZoCWgPQwh2Ul+WdmrIv5SGlFKUaBVLMmgWR0CtYnmNipeedX2UKGgGaAloD0MIw5rKorCL2r+UhpRSlGgVSzJoFkdArWJeOOsDGXV9lChoBmgJaA9DCLXeb7Tjhs+/lIaUUpRoFUsyaBZHQK1iQcwQDmt1fZQoaAZoCWgPQwhwXwfOGVHWv5SGlFKUaBVLMmgWR0CtYiUdilSCdX2UKGgGaAloD0MITwXc8/xp1L+UhpRSlGgVSzJoFkdArWM0580DU3V9lChoBmgJaA9DCNc07zhFR86/lIaUUpRoFUsyaBZHQK1jGajvd/J1fZQoaAZoCWgPQwj8q8d9q3XSv5SGlFKUaBVLMmgWR0CtYv00m+j/dX2UKGgGaAloD0MIbsDnhxHC1r+UhpRSlGgVSzJoFkdArWLgkeIVM3V9lChoBmgJaA9DCNpWs874vtO/lIaUUpRoFUsyaBZHQK1j8gqVhTh1fZQoaAZoCWgPQwiDp5Ar9SzZv5SGlFKUaBVLMmgWR0CtY9bDEWIodX2UKGgGaAloD0MIjpPCvMeZ0r+UhpRSlGgVSzJoFkdArWO6OvMbFXV9lChoBmgJaA9DCHHIBtLFpt+/lIaUUpRoFUsyaBZHQK1jnZV4oql1fZQoaAZoCWgPQwiCOuXRjbDWv5SGlFKUaBVLMmgWR0CtZK9t/FzddX2UKGgGaAloD0MI6lp7n6pCyb+UhpRSlGgVSzJoFkdArWSUI/qxDHV9lChoBmgJaA9DCNldoKTAAs6/lIaUUpRoFUsyaBZHQK1kd6Rhc7h1fZQoaAZoCWgPQwi366UpApzAv5SGlFKUaBVLMmgWR0CtZFr9ETg3dX2UKGgGaAloD0MIceZXc4Bg2L+UhpRSlGgVSzJoFkdArWVpxLkCFXV9lChoBmgJaA9DCOusFthjIsG/lIaUUpRoFUsyaBZHQK1lTnnuAqd1fZQoaAZoCWgPQwj68CxBRkDLv5SGlFKUaBVLMmgWR0CtZTIClrM1dX2UKGgGaAloD0MIf9sTJLa70L+UhpRSlGgVSzJoFkdArWUVVYISlHV9lChoBmgJaA9DCIvAWN/A5L6/lIaUUpRoFUsyaBZHQK1mNNzr/sF1fZQoaAZoCWgPQwhuxJPdzGjiv5SGlFKUaBVLMmgWR0CtZhoH1OCYdX2UKGgGaAloD0MI3/3xXrUy2b+UhpRSlGgVSzJoFkdArWX9k6Lfk3V9lChoBmgJaA9DCOIC0Chd+su/lIaUUpRoFUsyaBZHQK1l4PDHfdh1fZQoaAZoCWgPQwiJXkax3NLMv5SGlFKUaBVLMmgWR0CtZve4kNWmdX2UKGgGaAloD0MI3Xh3ZKw227+UhpRSlGgVSzJoFkdArWbcXLvCuXV9lChoBmgJaA9DCIf7yK1Jt9i/lIaUUpRoFUsyaBZHQK1mv+irT6V1fZQoaAZoCWgPQwimSL4SSIncv5SGlFKUaBVLMmgWR0CtZqNDMNc4dX2UKGgGaAloD0MIat5xio7kwL+UhpRSlGgVSzJoFkdArWe3P1L8JnV9lChoBmgJaA9DCC0GD9O+udO/lIaUUpRoFUsyaBZHQK1nm/oJRfp1fZQoaAZoCWgPQwgjaTf6mA/av5SGlFKUaBVLMmgWR0CtZ3+F10T2dX2UKGgGaAloD0MI4biMmxpo0r+UhpRSlGgVSzJoFkdArWdi5byH23V9lChoBmgJaA9DCMTuO4bHfta/lIaUUpRoFUsyaBZHQK1oj90ihWZ1fZQoaAZoCWgPQwjQRxlxAWjXv5SGlFKUaBVLMmgWR0CtaHSIHkcTdX2UKGgGaAloD0MIWd/A5EaR3b+UhpRSlGgVSzJoFkdArWhYEyLyc3V9lChoBmgJaA9DCK2kFd9Q+Mq/lIaUUpRoFUsyaBZHQK1oO3G4qgB1fZQoaAZoCWgPQwiAgSBAho7Hv5SGlFKUaBVLMmgWR0CtaVJmmLtNdX2UKGgGaAloD0MIPZl/9E2azL+UhpRSlGgVSzJoFkdArWk3E/B3zXV9lChoBmgJaA9DCMhESrN5HNC/lIaUUpRoFUsyaBZHQK1pGqLjxTd1fZQoaAZoCWgPQwjYRjzZzYzcv5SGlFKUaBVLMmgWR0CtaP34Kx9odX2UKGgGaAloD0MIokYhyaze0b+UhpRSlGgVSzJoFkdArWoPcQAdXHV9lChoBmgJaA9DCFCKVu4FZti/lIaUUpRoFUsyaBZHQK1p9Bk7Oml1fZQoaAZoCWgPQwh3EDtT6LzIv5SGlFKUaBVLMmgWR0Ctadeii7CjdX2UKGgGaAloD0MIR3U6kPXU0b+UhpRSlGgVSzJoFkdArWm6/GlyinV9lChoBmgJaA9DCJlH/mDgucO/lIaUUpRoFUsyaBZHQK1qzp4bCJp1fZQoaAZoCWgPQwh7Lei9MQTVv5SGlFKUaBVLMmgWR0CtarNIK+i8dX2UKGgGaAloD0MIo1cDlIYax7+UhpRSlGgVSzJoFkdArWqWzyBkJHV9lChoBmgJaA9DCDJyFva0w8e/lIaUUpRoFUsyaBZHQK1qeixFAml1fZQoaAZoCWgPQwiKVYMwt3vbv5SGlFKUaBVLMmgWR0Cta4fP5YYBdX2UKGgGaAloD0MI8MLWbOUl1b+UhpRSlGgVSzJoFkdArWtsf1YhdXV9lChoBmgJaA9DCCTwh5//HsC/lIaUUpRoFUsyaBZHQK1rT/d69kB1fZQoaAZoCWgPQwgWMlcG1Qbbv5SGlFKUaBVLMmgWR0CtazNQKrq/dX2UKGgGaAloD0MIZyYYzjXM2r+UhpRSlGgVSzJoFkdArWxCxiXpn3V9lChoBmgJaA9DCOF/K9mxEdK/lIaUUpRoFUsyaBZHQK1sJ3Tuv2Z1fZQoaAZoCWgPQwid8uhGWFTSv5SGlFKUaBVLMmgWR0CtbAsCkoF3dX2UKGgGaAloD0MIxEFClC9o3L+UhpRSlGgVSzJoFkdArWvuWv8qF3V9lChoBmgJaA9DCJz6QPLOod+/lIaUUpRoFUsyaBZHQK1tCjQAuI11fZQoaAZoCWgPQwiiDcAGRIjQv5SGlFKUaBVLMmgWR0CtbO7aRISUdX2UKGgGaAloD0MIv2VOl8XE4L+UhpRSlGgVSzJoFkdArWzSa1Cw8nV9lChoBmgJaA9DCC/6CtKMRd6/lIaUUpRoFUsyaBZHQK1staTwDvF1fZQoaAZoCWgPQwhOY3st6L3Uv5SGlFKUaBVLMmgWR0CtbcRl6JIldX2UKGgGaAloD0MI/rW8cr1t0r+UhpRSlGgVSzJoFkdArW2pGKAJ9nV9lChoBmgJaA9DCIRkARO4deG/lIaUUpRoFUsyaBZHQK1tjJlrdnF1fZQoaAZoCWgPQwhNFYxK6gTZv5SGlFKUaBVLMmgWR0CtbW/29L6DdX2UKGgGaAloD0MI/I123PC717+UhpRSlGgVSzJoFkdArW5/fl6qsHV9lChoBmgJaA9DCI+qJoi6D86/lIaUUpRoFUsyaBZHQK1uZCKrJbN1fZQoaAZoCWgPQwj/dtmvO93Tv5SGlFKUaBVLMmgWR0Ctbket8uzydX2UKGgGaAloD0MIuyU5YFeT1r+UhpRSlGgVSzJoFkdArW4rDZUT+XV9lChoBmgJaA9DCP0RhgFLruC/lIaUUpRoFUsyaBZHQK1vOcS5AhV1fZQoaAZoCWgPQwid1QJ7TKTMv5SGlFKUaBVLMmgWR0Ctbx6AOJ+EdX2UKGgGaAloD0MIDJV/La9c0L+UhpRSlGgVSzJoFkdArW8CAe7tiXV9lChoBmgJaA9DCFDIztvY7Ne/lIaUUpRoFUsyaBZHQK1u5Vd5Y5l1fZQoaAZoCWgPQwgyWdx/ZDrTv5SGlFKUaBVLMmgWR0Ctb/T7/GVBdX2UKGgGaAloD0MIrkfhehSu0b+UhpRSlGgVSzJoFkdArW/ZnSOR1XV9lChoBmgJaA9DCPEQxk/j3sy/lIaUUpRoFUsyaBZHQK1vvS1maph1fZQoaAZoCWgPQwgw9IjRcwvXv5SGlFKUaBVLMmgWR0Ctb6CIUJv6dX2UKGgGaAloD0MIDVNb6iCv2r+UhpRSlGgVSzJoFkdArXCxY5ksjHV9lChoBmgJaA9DCIPCoEyjycm/lIaUUpRoFUsyaBZHQK1wlgCOmzl1fZQoaAZoCWgPQwhWSs/0EmPcv5SGlFKUaBVLMmgWR0CtcHmLDQ7cdX2UKGgGaAloD0MI9nzNctno0L+UhpRSlGgVSzJoFkdArXBc6FM7EHV9lChoBmgJaA9DCBx4tdyZCde/lIaUUpRoFUsyaBZHQK1xa14Pf9B1fZQoaAZoCWgPQwipvvOLEvTSv5SGlFKUaBVLMmgWR0CtcVAE+xGEdX2UKGgGaAloD0MIs0XSbvSx4L+UhpRSlGgVSzJoFkdArXEzeGfwqnV9lChoBmgJaA9DCC4gtB6+TNK/lIaUUpRoFUsyaBZHQK1xFtrKvFF1fZQoaAZoCWgPQwjoE3mSdM3Av5SGlFKUaBVLMmgWR0Ctcie1jRUndX2UKGgGaAloD0MIIQN5dvnWyb+UhpRSlGgVSzJoFkdArXIMZR8+inV9lChoBmgJaA9DCMMoCB7f3sO/lIaUUpRoFUsyaBZHQK1x7+2mYSh1fZQoaAZoCWgPQwi5jJsaaD7Vv5SGlFKUaBVLMmgWR0CtcdNAC4jKdX2UKGgGaAloD0MI/BwfLc4Y3b+UhpRSlGgVSzJoFkdArXLnazu4PXV9lChoBmgJaA9DCF9/Ep87wdq/lIaUUpRoFUsyaBZHQK1yzBInSfF1fZQoaAZoCWgPQwi+3CdHAaLGv5SGlFKUaBVLMmgWR0Ctcq+NtIkJdX2UKGgGaAloD0MIai+i7Zi64L+UhpRSlGgVSzJoFkdArXKS6BiCrnV9lChoBmgJaA9DCNCc9SnHZNu/lIaUUpRoFUsyaBZHQK1zpPoFFDx1fZQoaAZoCWgPQwhAM4gP7PjYv5SGlFKUaBVLMmgWR0Ctc4mkN4JNdX2UKGgGaAloD0MIWg2Jeyx9yr+UhpRSlGgVSzJoFkdArXNtHWjGk3V9lChoBmgJaA9DCE9Y4gFlU9y/lIaUUpRoFUsyaBZHQK1zUHoHLRt1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 100000, "n_steps": 5, "gamma": 0.9, "gae_lambda": 0.98, "ent_coef": 0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -
|
|
|
1 |
+
{"mean_reward": -0.24241319026477867, "std_reward": 0.14587301395019844, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-29T02:50:10.403316"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:21d16bf691ce956300d3565f4d720df39c0bcce9029927a2df05751315062b82
|
3 |
+
size 3144
|