Hariprasath28 commited on
Commit
56ab3a8
·
1 Parent(s): d83f3f8

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -4.89 +/- 1.22
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:39c84f9d11c1043a430580306b5f6bb85728f91e697f94f302657957b8d0a296
3
+ size 108075
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f4af45277f0>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7f4af4514680>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "num_timesteps": 1000000,
23
+ "_total_timesteps": 1000000,
24
+ "_num_timesteps_at_start": 0,
25
+ "seed": null,
26
+ "action_noise": null,
27
+ "start_time": 1682672069076247637,
28
+ "learning_rate": 0.0007,
29
+ "tensorboard_log": null,
30
+ "lr_schedule": {
31
+ ":type:": "<class 'function'>",
32
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
33
+ },
34
+ "_last_obs": {
35
+ ":type:": "<class 'collections.OrderedDict'>",
36
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA9hLWPhaLvL2U7yY/9hLWPhaLvL2U7yY/9hLWPhaLvL2U7yY/9hLWPhaLvL2U7yY/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAADQbdPwBgBL4iao4/TvWmv8fJir8u/za/0GO9Pc7uw77DHWo/TpGaP21xub/xGbS/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAD2EtY+Fou8vZTvJj/fenM7/D8kvBxYuTz2EtY+Fou8vZTvJj/fenM7/D8kvBxYuTz2EtY+Fou8vZTvJj/fenM7/D8kvBxYuTz2EtY+Fou8vZTvJj/fenM7/D8kvBxYuTyUaA5LBEsGhpRoEnSUUpR1Lg==",
37
+ "achieved_goal": "[[ 0.4181134 -0.09206216 0.6520932 ]\n [ 0.4181134 -0.09206216 0.6520932 ]\n [ 0.4181134 -0.09206216 0.6520932 ]\n [ 0.4181134 -0.09206216 0.6520932 ]]",
38
+ "desired_goal": "[[ 1.7267472 -0.12927246 1.1126139 ]\n [-1.3043611 -1.0842828 -0.71483123]\n [ 0.09247553 -0.3826813 0.9145166 ]\n [ 1.2075593 -1.448774 -1.4070417 ]]",
39
+ "observation": "[[ 0.4181134 -0.09206216 0.6520932 0.00371521 -0.01002502 0.02262502]\n [ 0.4181134 -0.09206216 0.6520932 0.00371521 -0.01002502 0.02262502]\n [ 0.4181134 -0.09206216 0.6520932 0.00371521 -0.01002502 0.02262502]\n [ 0.4181134 -0.09206216 0.6520932 0.00371521 -0.01002502 0.02262502]]"
40
+ },
41
+ "_last_episode_starts": {
42
+ ":type:": "<class 'numpy.ndarray'>",
43
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
44
+ },
45
+ "_last_original_obs": {
46
+ ":type:": "<class 'collections.OrderedDict'>",
47
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAKp6YPUdyQD3Orm8+OgHlPMteFL4zCYI94eL9Pa1YXr0hp1E+5ObFPfInij0CMX4+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
48
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
49
+ "desired_goal": "[[ 0.07452042 0.04698398 0.23406526]\n [ 0.02795469 -0.14489286 0.06349411]\n [ 0.12396789 -0.05428379 0.20473911]\n [ 0.0966318 0.067459 0.24823382]]",
50
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
51
+ },
52
+ "_episode_num": 0,
53
+ "use_sde": false,
54
+ "sde_sample_freq": -1,
55
+ "_current_progress_remaining": 0.0,
56
+ "_stats_window_size": 100,
57
+ "ep_info_buffer": {
58
+ ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIiEfi5encBMCUhpRSlIwBbJRLMowBdJRHQKbnZKSPluF1fZQoaAZoCWgPQwiDFadaCxMNwJSGlFKUaBVLMmgWR0Cm5wh1klNUdX2UKGgGaAloD0MIAmcpWU7iHsCUhpRSlGgVSzJoFkdApuastsenynV9lChoBmgJaA9DCD1fs1w2+hLAlIaUUpRoFUsyaBZHQKbmT3gUDdR1fZQoaAZoCWgPQwj/JD53gt0QwJSGlFKUaBVLMmgWR0Cm6EZ0jkdWdX2UKGgGaAloD0MIjq89sySgD8CUhpRSlGgVSzJoFkdApufqLIgeR3V9lChoBmgJaA9DCMcTQZyHwxbAlIaUUpRoFUsyaBZHQKbnjleWv8t1fZQoaAZoCWgPQwjUSEvl7dgQwJSGlFKUaBVLMmgWR0Cm5zCwSrYHdX2UKGgGaAloD0MIvyoXKv/qEsCUhpRSlGgVSzJoFkdApukxRyfcvnV9lChoBmgJaA9DCDCDMSJRGBzAlIaUUpRoFUsyaBZHQKbo1UEPlMh1fZQoaAZoCWgPQwgNcEG2LC8VwJSGlFKUaBVLMmgWR0Cm6HmU4aP0dX2UKGgGaAloD0MImfOMfckmDMCUhpRSlGgVSzJoFkdApugb9Q40dnV9lChoBmgJaA9DCA+6hENvoRnAlIaUUpRoFUsyaBZHQKbqGu9OARV1fZQoaAZoCWgPQwgqq+l6oksWwJSGlFKUaBVLMmgWR0Cm6b8Djin6dX2UKGgGaAloD0MIvt798V7FFsCUhpRSlGgVSzJoFkdApuljRa5f+nV9lChoBmgJaA9DCNUEUfcBaBHAlIaUUpRoFUsyaBZHQKbpBdweeWh1fZQoaAZoCWgPQwgQXVDfMqcOwJSGlFKUaBVLMmgWR0Cm6wVXNke7dX2UKGgGaAloD0MIp7Io7KIoBcCUhpRSlGgVSzJoFkdApuqpJEpiJHV9lChoBmgJaA9DCOWYLO4/EhTAlIaUUpRoFUsyaBZHQKbqTVghKUV1fZQoaAZoCWgPQwhqEyf3OyQewJSGlFKUaBVLMmgWR0Cm6e+10DEFdX2UKGgGaAloD0MIusDlsWbEA8CUhpRSlGgVSzJoFkdApuvvqkdmx3V9lChoBmgJaA9DCJGYoIZvkRHAlIaUUpRoFUsyaBZHQKbrk4iosI51fZQoaAZoCWgPQwjyttJrsxEVwJSGlFKUaBVLMmgWR0Cm6zfWcz68dX2UKGgGaAloD0MIcJo+O+BiI8CUhpRSlGgVSzJoFkdApuraJdjXnXV9lChoBmgJaA9DCGzrp/+sOR/AlIaUUpRoFUsyaBZHQKbs2mfGuLd1fZQoaAZoCWgPQwg2Ia0x6DQSwJSGlFKUaBVLMmgWR0Cm7H4nv2GqdX2UKGgGaAloD0MIahSSzOo9CcCUhpRSlGgVSzJoFkdApuwi4x1xKnV9lChoBmgJaA9DCNZSQNr/0BXAlIaUUpRoFUsyaBZHQKbrxSXt0FN1fZQoaAZoCWgPQwi4H/DAAKIVwJSGlFKUaBVLMmgWR0Cm7eBpQDV6dX2UKGgGaAloD0MIUrmJWpprEMCUhpRSlGgVSzJoFkdApu2EWM0gsHV9lChoBmgJaA9DCGXHRiBedwPAlIaUUpRoFUsyaBZHQKbtKQtjCpF1fZQoaAZoCWgPQwguymyQSeYdwJSGlFKUaBVLMmgWR0Cm7MvysjmkdX2UKGgGaAloD0MIegCL/PqBC8CUhpRSlGgVSzJoFkdApu7wQvpQlHV9lChoBmgJaA9DCL7ArFCkixrAlIaUUpRoFUsyaBZHQKbulB42S+x1fZQoaAZoCWgPQwilvcEXJqMWwJSGlFKUaBVLMmgWR0Cm7jiMPz4DdX2UKGgGaAloD0MIfh6jPPNSC8CUhpRSlGgVSzJoFkdApu3bUutfX3V9lChoBmgJaA9DCNZYwtoYuw/AlIaUUpRoFUsyaBZHQKbv8eHSF491fZQoaAZoCWgPQwg+ldOektMBwJSGlFKUaBVLMmgWR0Cm75XoC+10dX2UKGgGaAloD0MImgtcHms2GMCUhpRSlGgVSzJoFkdApu86YZ2pynV9lChoBmgJaA9DCG3jT1Q23BPAlIaUUpRoFUsyaBZHQKbu3LOiWVx1fZQoaAZoCWgPQwhYrOEi97QHwJSGlFKUaBVLMmgWR0Cm8NW9L6DXdX2UKGgGaAloD0MIwRw9fm9DEMCUhpRSlGgVSzJoFkdApvB5hfBvaXV9lChoBmgJaA9DCPD6zFmf0hXAlIaUUpRoFUsyaBZHQKbwHbor4Fl1fZQoaAZoCWgPQwj5254gsS0UwJSGlFKUaBVLMmgWR0Cm78AdwNsndX2UKGgGaAloD0MIEywOZ37lFMCUhpRSlGgVSzJoFkdApvINnwob43V9lChoBmgJaA9DCFJDG4ANKBnAlIaUUpRoFUsyaBZHQKbxseii7Cl1fZQoaAZoCWgPQwi0qiUd5WD/v5SGlFKUaBVLMmgWR0Cm8VbBXS0CdX2UKGgGaAloD0MIaqFkcmoHH8CUhpRSlGgVSzJoFkdApvD5tzjm0XV9lChoBmgJaA9DCIzZklUR7hDAlIaUUpRoFUsyaBZHQKbzhcVQAMl1fZQoaAZoCWgPQwjMsieBzZkfwJSGlFKUaBVLMmgWR0Cm8yokzGgjdX2UKGgGaAloD0MIQX42ct2UEcCUhpRSlGgVSzJoFkdApvLPepGWlnV9lChoBmgJaA9DCMXkDTDznRPAlIaUUpRoFUsyaBZHQKbycnR9gF51fZQoaAZoCWgPQwgge737460YwJSGlFKUaBVLMmgWR0Cm9QAUlAu7dX2UKGgGaAloD0MIBHP0+L0NFMCUhpRSlGgVSzJoFkdApvSksz2vjnV9lChoBmgJaA9DCLNdoQ+WwRLAlIaUUpRoFUsyaBZHQKb0SXVsk6d1fZQoaAZoCWgPQwiy9ne2R28FwJSGlFKUaBVLMmgWR0Cm8+w79ycTdX2UKGgGaAloD0MIYHe688TTEcCUhpRSlGgVSzJoFkdApvZx7ojfN3V9lChoBmgJaA9DCFbxRuaRPwrAlIaUUpRoFUsyaBZHQKb2FpztCzF1fZQoaAZoCWgPQwh6qkNuhjsLwJSGlFKUaBVLMmgWR0Cm9bvnSv1UdX2UKGgGaAloD0MI4ltYN969BcCUhpRSlGgVSzJoFkdApvVe6/ZdwHV9lChoBmgJaA9DCL6ECg4v2BDAlIaUUpRoFUsyaBZHQKb4I6ErXlN1fZQoaAZoCWgPQwjMm8O12uMEwJSGlFKUaBVLMmgWR0Cm98hP0qYrdX2UKGgGaAloD0MIcZNRZRg3BsCUhpRSlGgVSzJoFkdApvdtI3BHkXV9lChoBmgJaA9DCOkQOBJoAB7AlIaUUpRoFUsyaBZHQKb3EA4GUwB1fZQoaAZoCWgPQwg6XKs97GUewJSGlFKUaBVLMmgWR0Cm+gglv60qdX2UKGgGaAloD0MI+PpalxoBA8CUhpRSlGgVSzJoFkdApvms5OrQxHV9lChoBmgJaA9DCI2z6QjghhzAlIaUUpRoFUsyaBZHQKb5UdLg4wR1fZQoaAZoCWgPQwh7TQ8KSvEKwJSGlFKUaBVLMmgWR0Cm+PW3azu4dX2UKGgGaAloD0MIukxNgjckFcCUhpRSlGgVSzJoFkdApvvU1EVnEnV9lChoBmgJaA9DCG3n+6nxQhLAlIaUUpRoFUsyaBZHQKb7eULUkOZ1fZQoaAZoCWgPQwimttRBXq8SwJSGlFKUaBVLMmgWR0Cm+x79qDbrdX2UKGgGaAloD0MIezNqvkq+DsCUhpRSlGgVSzJoFkdApvrDVQQ+U3V9lChoBmgJaA9DCMQhG0gXWwnAlIaUUpRoFUsyaBZHQKb81w5NoJ11fZQoaAZoCWgPQwhOJ9nqcgoawJSGlFKUaBVLMmgWR0Cm/HsEJSiudX2UKGgGaAloD0MIzZAqilc5GsCUhpRSlGgVSzJoFkdApvwfY+Sr53V9lChoBmgJaA9DCG4UWWsotQrAlIaUUpRoFUsyaBZHQKb7wdT5wfh1fZQoaAZoCWgPQwiLpUi+EmgVwJSGlFKUaBVLMmgWR0Cm/cRPXTVldX2UKGgGaAloD0MINbIrLSNVH8CUhpRSlGgVSzJoFkdApv1oDJU5uXV9lChoBmgJaA9DCOoFn+bkFRPAlIaUUpRoFUsyaBZHQKb9DHJ9y951fZQoaAZoCWgPQwgT86ykFZ8SwJSGlFKUaBVLMmgWR0Cm/K6+N96UdX2UKGgGaAloD0MI/FI/byoyFcCUhpRSlGgVSzJoFkdApv6t0JWvKXV9lChoBmgJaA9DCD/mAwKdiRLAlIaUUpRoFUsyaBZHQKb+UZ6Uqx11fZQoaAZoCWgPQwgjg9xFmJIRwJSGlFKUaBVLMmgWR0Cm/fXmV7hOdX2UKGgGaAloD0MIy0i9p3J6FMCUhpRSlGgVSzJoFkdApv2YJiRW93V9lChoBmgJaA9DCAzp8BDGHxLAlIaUUpRoFUsyaBZHQKb/hU0elsR1fZQoaAZoCWgPQwga9+Y3TGQRwJSGlFKUaBVLMmgWR0Cm/ykHdGiIdX2UKGgGaAloD0MII7w9CAHZHsCUhpRSlGgVSzJoFkdApv7NN8E3bXV9lChoBmgJaA9DCNbm/1VHfhLAlIaUUpRoFUsyaBZHQKb+b4N7SiN1fZQoaAZoCWgPQwg0LbEyGrkWwJSGlFKUaBVLMmgWR0CnAGXG4qgAdX2UKGgGaAloD0MIsAJ8t3kDC8CUhpRSlGgVSzJoFkdApwAJle4TbnV9lChoBmgJaA9DCA1Uxr/PiBTAlIaUUpRoFUsyaBZHQKb/rd9lVcV1fZQoaAZoCWgPQwi5p6s7FgsUwJSGlFKUaBVLMmgWR0Cm/1AsTWXkdX2UKGgGaAloD0MIZ7gBnx+2FcCUhpRSlGgVSzJoFkdApwFYu/UONHV9lChoBmgJaA9DCIF2hxQDRAPAlIaUUpRoFUsyaBZHQKcA/L9uP3l1fZQoaAZoCWgPQwhkJHuEmoEZwJSGlFKUaBVLMmgWR0CnAKFByCFsdX2UKGgGaAloD0MIsTGvIw75EcCUhpRSlGgVSzJoFkdApwBEcABDHHV9lChoBmgJaA9DCKCLhoxHGRHAlIaUUpRoFUsyaBZHQKcCWZTho/R1fZQoaAZoCWgPQwgNNQpJZjUBwJSGlFKUaBVLMmgWR0CnAf2y1NQCdX2UKGgGaAloD0MIhEnx8QkZA8CUhpRSlGgVSzJoFkdApwGiDsdDIHV9lChoBmgJaA9DCBIvT+eK0g7AlIaUUpRoFUsyaBZHQKcBRHXmNip1ZS4="
60
+ },
61
+ "ep_success_buffer": {
62
+ ":type:": "<class 'collections.deque'>",
63
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
64
+ },
65
+ "_n_updates": 50000,
66
+ "n_steps": 5,
67
+ "gamma": 0.99,
68
+ "gae_lambda": 1.0,
69
+ "ent_coef": 0.0,
70
+ "vf_coef": 0.5,
71
+ "max_grad_norm": 0.5,
72
+ "normalize_advantage": false,
73
+ "observation_space": {
74
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
75
+ ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu",
76
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
77
+ "_shape": null,
78
+ "dtype": null,
79
+ "_np_random": null
80
+ },
81
+ "action_space": {
82
+ ":type:": "<class 'gym.spaces.box.Box'>",
83
+ ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==",
84
+ "dtype": "float32",
85
+ "_shape": [
86
+ 3
87
+ ],
88
+ "low": "[-1. -1. -1.]",
89
+ "high": "[1. 1. 1.]",
90
+ "bounded_below": "[ True True True]",
91
+ "bounded_above": "[ True True True]",
92
+ "_np_random": null
93
+ },
94
+ "n_envs": 4
95
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:87ff6f5b55d2ffb1074ff6f8445291367bd58d0377737dea0133430e2b77d676
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:db2e9c9f2a3678eb3eef6b6ad3ff1ac50f0cff5c93666bebf35e1a3825090597
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.10.11
3
+ - Stable-Baselines3: 1.8.0
4
+ - PyTorch: 2.0.0+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f4af45277f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f4af4514680>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1682672069076247637, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA9hLWPhaLvL2U7yY/9hLWPhaLvL2U7yY/9hLWPhaLvL2U7yY/9hLWPhaLvL2U7yY/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAADQbdPwBgBL4iao4/TvWmv8fJir8u/za/0GO9Pc7uw77DHWo/TpGaP21xub/xGbS/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAD2EtY+Fou8vZTvJj/fenM7/D8kvBxYuTz2EtY+Fou8vZTvJj/fenM7/D8kvBxYuTz2EtY+Fou8vZTvJj/fenM7/D8kvBxYuTz2EtY+Fou8vZTvJj/fenM7/D8kvBxYuTyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.4181134 -0.09206216 0.6520932 ]\n [ 0.4181134 -0.09206216 0.6520932 ]\n [ 0.4181134 -0.09206216 0.6520932 ]\n [ 0.4181134 -0.09206216 0.6520932 ]]", "desired_goal": "[[ 1.7267472 -0.12927246 1.1126139 ]\n [-1.3043611 -1.0842828 -0.71483123]\n [ 0.09247553 -0.3826813 0.9145166 ]\n [ 1.2075593 -1.448774 -1.4070417 ]]", "observation": "[[ 0.4181134 -0.09206216 0.6520932 0.00371521 -0.01002502 0.02262502]\n [ 0.4181134 -0.09206216 0.6520932 0.00371521 -0.01002502 0.02262502]\n [ 0.4181134 -0.09206216 0.6520932 0.00371521 -0.01002502 0.02262502]\n [ 0.4181134 -0.09206216 0.6520932 0.00371521 -0.01002502 0.02262502]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAKp6YPUdyQD3Orm8+OgHlPMteFL4zCYI94eL9Pa1YXr0hp1E+5ObFPfInij0CMX4+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.07452042 0.04698398 0.23406526]\n [ 0.02795469 -0.14489286 0.06349411]\n [ 0.12396789 -0.05428379 0.20473911]\n [ 0.0966318 0.067459 0.24823382]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIiEfi5encBMCUhpRSlIwBbJRLMowBdJRHQKbnZKSPluF1fZQoaAZoCWgPQwiDFadaCxMNwJSGlFKUaBVLMmgWR0Cm5wh1klNUdX2UKGgGaAloD0MIAmcpWU7iHsCUhpRSlGgVSzJoFkdApuastsenynV9lChoBmgJaA9DCD1fs1w2+hLAlIaUUpRoFUsyaBZHQKbmT3gUDdR1fZQoaAZoCWgPQwj/JD53gt0QwJSGlFKUaBVLMmgWR0Cm6EZ0jkdWdX2UKGgGaAloD0MIjq89sySgD8CUhpRSlGgVSzJoFkdApufqLIgeR3V9lChoBmgJaA9DCMcTQZyHwxbAlIaUUpRoFUsyaBZHQKbnjleWv8t1fZQoaAZoCWgPQwjUSEvl7dgQwJSGlFKUaBVLMmgWR0Cm5zCwSrYHdX2UKGgGaAloD0MIvyoXKv/qEsCUhpRSlGgVSzJoFkdApukxRyfcvnV9lChoBmgJaA9DCDCDMSJRGBzAlIaUUpRoFUsyaBZHQKbo1UEPlMh1fZQoaAZoCWgPQwgNcEG2LC8VwJSGlFKUaBVLMmgWR0Cm6HmU4aP0dX2UKGgGaAloD0MImfOMfckmDMCUhpRSlGgVSzJoFkdApugb9Q40dnV9lChoBmgJaA9DCA+6hENvoRnAlIaUUpRoFUsyaBZHQKbqGu9OARV1fZQoaAZoCWgPQwgqq+l6oksWwJSGlFKUaBVLMmgWR0Cm6b8Djin6dX2UKGgGaAloD0MIvt798V7FFsCUhpRSlGgVSzJoFkdApuljRa5f+nV9lChoBmgJaA9DCNUEUfcBaBHAlIaUUpRoFUsyaBZHQKbpBdweeWh1fZQoaAZoCWgPQwgQXVDfMqcOwJSGlFKUaBVLMmgWR0Cm6wVXNke7dX2UKGgGaAloD0MIp7Io7KIoBcCUhpRSlGgVSzJoFkdApuqpJEpiJHV9lChoBmgJaA9DCOWYLO4/EhTAlIaUUpRoFUsyaBZHQKbqTVghKUV1fZQoaAZoCWgPQwhqEyf3OyQewJSGlFKUaBVLMmgWR0Cm6e+10DEFdX2UKGgGaAloD0MIusDlsWbEA8CUhpRSlGgVSzJoFkdApuvvqkdmx3V9lChoBmgJaA9DCJGYoIZvkRHAlIaUUpRoFUsyaBZHQKbrk4iosI51fZQoaAZoCWgPQwjyttJrsxEVwJSGlFKUaBVLMmgWR0Cm6zfWcz68dX2UKGgGaAloD0MIcJo+O+BiI8CUhpRSlGgVSzJoFkdApuraJdjXnXV9lChoBmgJaA9DCGzrp/+sOR/AlIaUUpRoFUsyaBZHQKbs2mfGuLd1fZQoaAZoCWgPQwg2Ia0x6DQSwJSGlFKUaBVLMmgWR0Cm7H4nv2GqdX2UKGgGaAloD0MIahSSzOo9CcCUhpRSlGgVSzJoFkdApuwi4x1xKnV9lChoBmgJaA9DCNZSQNr/0BXAlIaUUpRoFUsyaBZHQKbrxSXt0FN1fZQoaAZoCWgPQwi4H/DAAKIVwJSGlFKUaBVLMmgWR0Cm7eBpQDV6dX2UKGgGaAloD0MIUrmJWpprEMCUhpRSlGgVSzJoFkdApu2EWM0gsHV9lChoBmgJaA9DCGXHRiBedwPAlIaUUpRoFUsyaBZHQKbtKQtjCpF1fZQoaAZoCWgPQwguymyQSeYdwJSGlFKUaBVLMmgWR0Cm7MvysjmkdX2UKGgGaAloD0MIegCL/PqBC8CUhpRSlGgVSzJoFkdApu7wQvpQlHV9lChoBmgJaA9DCL7ArFCkixrAlIaUUpRoFUsyaBZHQKbulB42S+x1fZQoaAZoCWgPQwilvcEXJqMWwJSGlFKUaBVLMmgWR0Cm7jiMPz4DdX2UKGgGaAloD0MIfh6jPPNSC8CUhpRSlGgVSzJoFkdApu3bUutfX3V9lChoBmgJaA9DCNZYwtoYuw/AlIaUUpRoFUsyaBZHQKbv8eHSF491fZQoaAZoCWgPQwg+ldOektMBwJSGlFKUaBVLMmgWR0Cm75XoC+10dX2UKGgGaAloD0MImgtcHms2GMCUhpRSlGgVSzJoFkdApu86YZ2pynV9lChoBmgJaA9DCG3jT1Q23BPAlIaUUpRoFUsyaBZHQKbu3LOiWVx1fZQoaAZoCWgPQwhYrOEi97QHwJSGlFKUaBVLMmgWR0Cm8NW9L6DXdX2UKGgGaAloD0MIwRw9fm9DEMCUhpRSlGgVSzJoFkdApvB5hfBvaXV9lChoBmgJaA9DCPD6zFmf0hXAlIaUUpRoFUsyaBZHQKbwHbor4Fl1fZQoaAZoCWgPQwj5254gsS0UwJSGlFKUaBVLMmgWR0Cm78AdwNsndX2UKGgGaAloD0MIEywOZ37lFMCUhpRSlGgVSzJoFkdApvINnwob43V9lChoBmgJaA9DCFJDG4ANKBnAlIaUUpRoFUsyaBZHQKbxseii7Cl1fZQoaAZoCWgPQwi0qiUd5WD/v5SGlFKUaBVLMmgWR0Cm8VbBXS0CdX2UKGgGaAloD0MIaqFkcmoHH8CUhpRSlGgVSzJoFkdApvD5tzjm0XV9lChoBmgJaA9DCIzZklUR7hDAlIaUUpRoFUsyaBZHQKbzhcVQAMl1fZQoaAZoCWgPQwjMsieBzZkfwJSGlFKUaBVLMmgWR0Cm8yokzGgjdX2UKGgGaAloD0MIQX42ct2UEcCUhpRSlGgVSzJoFkdApvLPepGWlnV9lChoBmgJaA9DCMXkDTDznRPAlIaUUpRoFUsyaBZHQKbycnR9gF51fZQoaAZoCWgPQwgge737460YwJSGlFKUaBVLMmgWR0Cm9QAUlAu7dX2UKGgGaAloD0MIBHP0+L0NFMCUhpRSlGgVSzJoFkdApvSksz2vjnV9lChoBmgJaA9DCLNdoQ+WwRLAlIaUUpRoFUsyaBZHQKb0SXVsk6d1fZQoaAZoCWgPQwiy9ne2R28FwJSGlFKUaBVLMmgWR0Cm8+w79ycTdX2UKGgGaAloD0MIYHe688TTEcCUhpRSlGgVSzJoFkdApvZx7ojfN3V9lChoBmgJaA9DCFbxRuaRPwrAlIaUUpRoFUsyaBZHQKb2FpztCzF1fZQoaAZoCWgPQwh6qkNuhjsLwJSGlFKUaBVLMmgWR0Cm9bvnSv1UdX2UKGgGaAloD0MI4ltYN969BcCUhpRSlGgVSzJoFkdApvVe6/ZdwHV9lChoBmgJaA9DCL6ECg4v2BDAlIaUUpRoFUsyaBZHQKb4I6ErXlN1fZQoaAZoCWgPQwjMm8O12uMEwJSGlFKUaBVLMmgWR0Cm98hP0qYrdX2UKGgGaAloD0MIcZNRZRg3BsCUhpRSlGgVSzJoFkdApvdtI3BHkXV9lChoBmgJaA9DCOkQOBJoAB7AlIaUUpRoFUsyaBZHQKb3EA4GUwB1fZQoaAZoCWgPQwg6XKs97GUewJSGlFKUaBVLMmgWR0Cm+gglv60qdX2UKGgGaAloD0MI+PpalxoBA8CUhpRSlGgVSzJoFkdApvms5OrQxHV9lChoBmgJaA9DCI2z6QjghhzAlIaUUpRoFUsyaBZHQKb5UdLg4wR1fZQoaAZoCWgPQwh7TQ8KSvEKwJSGlFKUaBVLMmgWR0Cm+PW3azu4dX2UKGgGaAloD0MIukxNgjckFcCUhpRSlGgVSzJoFkdApvvU1EVnEnV9lChoBmgJaA9DCG3n+6nxQhLAlIaUUpRoFUsyaBZHQKb7eULUkOZ1fZQoaAZoCWgPQwimttRBXq8SwJSGlFKUaBVLMmgWR0Cm+x79qDbrdX2UKGgGaAloD0MIezNqvkq+DsCUhpRSlGgVSzJoFkdApvrDVQQ+U3V9lChoBmgJaA9DCMQhG0gXWwnAlIaUUpRoFUsyaBZHQKb81w5NoJ11fZQoaAZoCWgPQwhOJ9nqcgoawJSGlFKUaBVLMmgWR0Cm/HsEJSiudX2UKGgGaAloD0MIzZAqilc5GsCUhpRSlGgVSzJoFkdApvwfY+Sr53V9lChoBmgJaA9DCG4UWWsotQrAlIaUUpRoFUsyaBZHQKb7wdT5wfh1fZQoaAZoCWgPQwiLpUi+EmgVwJSGlFKUaBVLMmgWR0Cm/cRPXTVldX2UKGgGaAloD0MINbIrLSNVH8CUhpRSlGgVSzJoFkdApv1oDJU5uXV9lChoBmgJaA9DCOoFn+bkFRPAlIaUUpRoFUsyaBZHQKb9DHJ9y951fZQoaAZoCWgPQwgT86ykFZ8SwJSGlFKUaBVLMmgWR0Cm/K6+N96UdX2UKGgGaAloD0MI/FI/byoyFcCUhpRSlGgVSzJoFkdApv6t0JWvKXV9lChoBmgJaA9DCD/mAwKdiRLAlIaUUpRoFUsyaBZHQKb+UZ6Uqx11fZQoaAZoCWgPQwgjg9xFmJIRwJSGlFKUaBVLMmgWR0Cm/fXmV7hOdX2UKGgGaAloD0MIy0i9p3J6FMCUhpRSlGgVSzJoFkdApv2YJiRW93V9lChoBmgJaA9DCAzp8BDGHxLAlIaUUpRoFUsyaBZHQKb/hU0elsR1fZQoaAZoCWgPQwga9+Y3TGQRwJSGlFKUaBVLMmgWR0Cm/ykHdGiIdX2UKGgGaAloD0MII7w9CAHZHsCUhpRSlGgVSzJoFkdApv7NN8E3bXV9lChoBmgJaA9DCNbm/1VHfhLAlIaUUpRoFUsyaBZHQKb+b4N7SiN1fZQoaAZoCWgPQwg0LbEyGrkWwJSGlFKUaBVLMmgWR0CnAGXG4qgAdX2UKGgGaAloD0MIsAJ8t3kDC8CUhpRSlGgVSzJoFkdApwAJle4TbnV9lChoBmgJaA9DCA1Uxr/PiBTAlIaUUpRoFUsyaBZHQKb/rd9lVcV1fZQoaAZoCWgPQwi5p6s7FgsUwJSGlFKUaBVLMmgWR0Cm/1AsTWXkdX2UKGgGaAloD0MIZ7gBnx+2FcCUhpRSlGgVSzJoFkdApwFYu/UONHV9lChoBmgJaA9DCIF2hxQDRAPAlIaUUpRoFUsyaBZHQKcA/L9uP3l1fZQoaAZoCWgPQwhkJHuEmoEZwJSGlFKUaBVLMmgWR0CnAKFByCFsdX2UKGgGaAloD0MIsTGvIw75EcCUhpRSlGgVSzJoFkdApwBEcABDHHV9lChoBmgJaA9DCKCLhoxHGRHAlIaUUpRoFUsyaBZHQKcCWZTho/R1fZQoaAZoCWgPQwgNNQpJZjUBwJSGlFKUaBVLMmgWR0CnAf2y1NQCdX2UKGgGaAloD0MIhEnx8QkZA8CUhpRSlGgVSzJoFkdApwGiDsdDIHV9lChoBmgJaA9DCBIvT+eK0g7AlIaUUpRoFUsyaBZHQKcBRHXmNip1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (836 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -4.890018575266003, "std_reward": 1.2189934929637787, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-28T09:43:38.907463"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8834c42ac97ed7eabd48aaf45a5fd26747e0d43de0c1e9b529bf54e3537b1bb5
3
+ size 2387