JordiBayarri commited on
Commit
c652124
verified
1 Parent(s): df9da22

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +388 -0
README.md ADDED
@@ -0,0 +1,388 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-4.0
3
+ datasets:
4
+ - HPAI-BSC/Aloe-Beta-General-Collection
5
+ - HPAI-BSC/chain-of-diagnosis
6
+ - HPAI-BSC/MedS-Ins
7
+ - HPAI-BSC/ultramedical
8
+ - HPAI-BSC/pubmedqa-cot-llama31
9
+ - HPAI-BSC/medqa-cot-llama31
10
+ - HPAI-BSC/medmcqa-cot-llama31
11
+ - HPAI-BSC/headqa-cot-llama31
12
+ - HPAI-BSC/MMLU-medical-cot-llama31
13
+ - HPAI-BSC/Polymed-QA
14
+ - HPAI-BSC/Aloe-Beta-General-Collection
15
+ - HPAI-BSC/Aloe-Beta-General-Collection
16
+ language:
17
+ - en
18
+ library_name: transformers
19
+ tags:
20
+ - biology
21
+ - medical
22
+ - healthcare
23
+ pipeline_tag: question-answering
24
+ ---
25
+ <p align="center">
26
+ <picture>
27
+ <source media="(prefers-color-scheme: dark)" srcset="https://cdn-uploads.huggingface.co/production/uploads/6620f941eba5274b5c12f83d/ARcIVTFxuBMV5DKooCgJH.png">
28
+ <img alt="aloe_beta_7b" src="https://cdn-uploads.huggingface.co/production/uploads/6620f941eba5274b5c12f83d/ARcIVTFxuBMV5DKooCgJH.png" width=50%>
29
+ </picture>
30
+ </p>
31
+ <h1 align="center">
32
+ Aloe: A Family of Fine-tuned Open Healthcare LLMs
33
+ </h1>
34
+
35
+ ---
36
+
37
+
38
+
39
+ Qwen2.5-Aloe-Beta-7B is an **open healthcare LLM** achieving **state-of-the-art performance** on several medical tasks. Aloe Beta is made available in four model sizes: [7B](https://huggingface.co/HPAI-BSC/Qwen2.5-Aloe-Beta-7B/), [8B](https://huggingface.co/HPAI-BSC/Llama3.1-Aloe-Beta-8B), [70B](https://huggingface.co/HPAI-BSC/Llama3.1-Aloe-Beta-70B), and [72B](https://huggingface.co/HPAI-BSC/Qwen2.5-Aloe-Beta-72B). All models are trained using the same recipe, in top of two different family of models: Llama3.1 and Qwen2.5.
40
+
41
+ Aloe is trained on 20 medical tasks, resulting in a robust and versatile healthcare model. Evaluations show Aloe models to be among the best in their class. When combined with a RAG system ([also released](https://github.com/HPAI-BSC/prompt_engine)) the 8B version gets close to the performance of closed models like MedPalm-2, GPT4. With the same RAG system, Aloe-Beta-70B outperforms those private alternatives, producing state-of-the-art results.
42
+
43
+ # Aloe-Beta-7B
44
+
45
+
46
+
47
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/62f7a16192950415b637e201/VUYw4IdANKGrH2VOedwH0.png)
48
+
49
+ **Aloe-Beta** is the latest iteration in the **Aloe family**, building and improving on the success of its predecessor, [Aloe-8B-Alpha](https://huggingface.co/HPAI-BSC/Llama3-Aloe-8B-Alpha).
50
+ Beta more than triples the training data used by Alpha, for a total of **1.8B tokens**, including a wider variety of medical tasks and instructions (e.g., text summarization, explanation, diagnosis, text classification, treatment recommendation, ...).
51
+
52
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/62f7a16192950415b637e201/bCuV5kZUT9H9UECAOWDRc.png)
53
+
54
+ To mitigate catastrophic forgetting and enable the model to effectively learn new capabilities like **function calling**, we incorporated a diverse set of high-quality general-purpose data constituting 20% of the total training set. The curated data includes some of the highest-quality content available across a range of topics, including mathematics, programming, STEM, and very long instructions (> 8k tokens), to enrich the model's adaptability and comprehension across diverse domains.
55
+
56
+ Beta also boosts the alignment and safety stages with respect to Alpha. This includes a [medical preference dataset](https://huggingface.co/datasets/TsinghuaC3I/UltraMedical-Preference), as well as the red-teaming dataset (available soon).
57
+
58
+ Complete training details, model merging configurations, and all training data (including synthetically generated data) can be found below. This includes [the RAG system](https://github.com/HPAI-BSC/prompt_engine) that was developed to test Aloe Beta in a deployment setup. Aloe comes with a healthcare-specific risk assessment to facilitate to the safe use and deployment of such systems.
59
+
60
+
61
+ ## Model Details
62
+
63
+ ### [](https://huggingface.co/templates/model-card-example#model-description)Model Description
64
+
65
+ - **Developed by:**聽[HPAI](https://hpai.bsc.es/)
66
+ - **Model type:**聽Causal decoder-only transformer language model
67
+ - **Language(s) (NLP):**聽English (capable but not formally evaluated on other languages)
68
+ - **License:**聽This model is based on [Qwen2.5-7B](https://huggingface.co/Qwen/Qwen2.5-7B) which is released with Apache 2.0 license. All our modifications are available with a [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/) license, making the Aloe Beta models **compatible with commercial use**.
69
+ - **Base model :** [Qwen2.5-7B](https://huggingface.co/Qwen/Qwen2.5-7B)
70
+ - **Paper:** (more coming soon)
71
+ - **RAG Repository:**聽https://github.com/HPAI-BSC/prompt_engine
72
+
73
+ ### [](https://huggingface.co/templates/model-card-example#model-sources-optional)Model Sources [optional]
74
+
75
+ ## Model Performance
76
+
77
+ Aloe Beta has been tested on the most popular healthcare QA datasets, with and without Medprompt inference technique. Results show competitive performance, achieving SOTA within models of the same size.
78
+
79
+
80
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6620f941eba5274b5c12f83d/J-PoCeKPRTPFb8wtQCQ07.png)
81
+
82
+ The Beta model has been developed to excel in several different medical tasks. For this reason, we evaluated the model in many different medical tasks:
83
+
84
+
85
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6620f941eba5274b5c12f83d/3wj-aWXnzxR4XNLg9Ffii.png)
86
+
87
+
88
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6620f941eba5274b5c12f83d/W65-vEbPFH2kMl5Jav7hU.png)
89
+
90
+ We also compared the performance of the model in the general domain, using the OpenLLM Leaderboard benchmark. Aloe-Beta gets competitive results with the current SOTA general models in the most used general benchmarks and outperforms the medical models:
91
+
92
+
93
+
94
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6620f941eba5274b5c12f83d/imK19fzyMUvIJaAbSVnGE.png)
95
+
96
+ ## Uses
97
+
98
+ ### Direct Use
99
+
100
+ We encourage the use of Aloe for research purposes, as a stepping stone to build better foundational models for healthcare. In production, Aloe should always be used under the supervision of a human expert.
101
+
102
+ ### Out-of-Scope Use
103
+
104
+ These models are not to be used for clinical practice, medical diagnosis, or any other form of direct or indirect healthcare advice. Models are prone to error and can produce toxic content. The use of Aloe models for activities harmful to individuals, such as spam, fraud, or impersonation, is strictly prohibited. Minors should not be left alone to interact with Aloe without supervision.
105
+
106
+ ## Bias, Risks, and Limitations
107
+
108
+ Aloe can produce toxic content under the appropriate prompts, and it includes multiple undesirable biases. While significant efforts where conducted to mitigate this (see Alignment details below), model safety cannot be fully guaranteed. We avoid the use of all personal data in our training.
109
+
110
+ We identify at least three risk cases specific to healthcare LLMs:
111
+ - Healthcare professional impersonation, a fraudulent behaviour which currently generates billions of dollars in [profit](https://www.justice.gov/opa/pr/justice-department-charges-dozens-12-billion-health-care-fraud). A model such as Aloe could be used to increase the efficacy of such deceiving activities, making them more widespread. The main preventive actions are public literacy on the unreliability of digitised information and the importance of medical registration, and legislation enforcing AI-generated content disclaimers.
112
+ - Medical decision-making without professional supervision. While this is already an issue in modern societies (eg self-medication) a model such as Aloe, capable of producing high-quality conversational data, can facilitate self-delusion, particularly in the presence of sycophancy. By producing tailored responses, it can also be used to generate actionable answers. Public literacy on the dangers of self-diagnosis is one of the main defenses, together with the introduction of disclaimers and warnings on the models' outputs.
113
+ - Access to information on dangerous substances or procedures. While the literature on sensitive content can already be found on different sources (eg libraries, the internet, dark web), LLMs can centralize such access, making it nearly impossible to control the flow of such information. Model alignment can help in that regard, but so far the effects remain insufficient, as jailbreaking methods still overcome it.
114
+
115
+
116
+ <!---
117
+ Table below shows the performance of Aloe at several AI safety tasks:
118
+
119
+ TO BE UPDATED
120
+
121
+ <img src="https://cdn-uploads.huggingface.co/production/uploads/62972c4979f193515da1d38e/T6Jblpf1kmTkM04K716rM.png" width="95%">
122
+
123
+
124
+ We analyzed the safety and robustness of the model using red teaming techniques. We designed a benchmark using different types of attacks and analyzed the performance of Aloe and some extra models, and we confirm that our model is aligned properly and successfully resisting most attacks:
125
+
126
+
127
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6620f941eba5274b5c12f83d/KS3yrHan1l1W0cYiXGG-G.png)
128
+
129
+
130
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6620f941eba5274b5c12f83d/SYC0qljpLGLmMgx0a623W.png)
131
+
132
+ -->
133
+
134
+ ## How to Get Started with the Model
135
+
136
+ Use the code below to get started with the model. You can run conversational inference using the Transformers pipeline abstraction, or by leveraging the Auto classes with the `generate()` function. Let's see examples for both.
137
+
138
+ #### Transformers pipeline
139
+
140
+ ```python
141
+ import transformers
142
+ import torch
143
+
144
+ model_id = "HPAI-BSC/Qwen2.5-Aloe-Beta-7B"
145
+
146
+ pipeline = transformers.pipeline(
147
+ "text-generation",
148
+ model=model_id,
149
+ model_kwargs={"torch_dtype": torch.bfloat16},
150
+ device_map="auto",
151
+ )
152
+
153
+ messages = [
154
+ {"role": "system", "content": "You are an expert medical assistant named Aloe, developed by the High Performance Artificial Intelligence Group at Barcelona Supercomputing Center(BSC). You are to be a helpful, respectful, and honest assistant."},
155
+ {"role": "user", "content": "Hello."},
156
+ ]
157
+
158
+ prompt = pipeline.tokenizer.apply_chat_template(
159
+ messages,
160
+ tokenize=False,
161
+ add_generation_prompt=True
162
+ )
163
+
164
+ terminators = [
165
+ pipeline.tokenizer.eos_token_id,
166
+ pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>")
167
+ ]
168
+
169
+ outputs = pipeline(
170
+ prompt,
171
+ max_new_tokens=256,
172
+ eos_token_id=terminators,
173
+ do_sample=True,
174
+ temperature=0.6,
175
+ top_p=0.9,
176
+ )
177
+ print(outputs[0]["generated_text"][len(prompt):])
178
+ ```
179
+
180
+ #### Transformers AutoModelForCausalLM
181
+
182
+ ```python
183
+ from transformers import AutoTokenizer, AutoModelForCausalLM
184
+ import torch
185
+
186
+ model_id = "HPAI-BSC/Qwen2.5-Aloe-Beta-7B"
187
+
188
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
189
+ model = AutoModelForCausalLM.from_pretrained(
190
+ model_id,
191
+ torch_dtype=torch.bfloat16,
192
+ device_map="auto",
193
+ )
194
+
195
+ messages = [
196
+ {"role": "system", "content": "You are an expert medical assistant named Aloe, developed by the High Performance Artificial Intelligence Group at Barcelona Supercomputing Center(BSC). You are to be a helpful, respectful, and honest assistant."},
197
+ {"role": "user", "content": "Hello"},
198
+ ]
199
+
200
+ input_ids = tokenizer.apply_chat_template(
201
+ messages,
202
+ add_generation_prompt=True,
203
+ return_tensors="pt"
204
+ ).to(model.device)
205
+
206
+ terminators = [
207
+ tokenizer.eos_token_id,
208
+ tokenizer.convert_tokens_to_ids("<|eot_id|>")
209
+ ]
210
+
211
+ outputs = model.generate(
212
+ input_ids,
213
+ max_new_tokens=256,
214
+ eos_token_id=terminators,
215
+ do_sample=True,
216
+ temperature=0.6,
217
+ top_p=0.9,
218
+ )
219
+ response = outputs[0][input_ids.shape[-1]:]
220
+ print(tokenizer.decode(response, skip_special_tokens=True))
221
+ ```
222
+
223
+ ## Training Details
224
+
225
+ ### Supervised fine-tuning
226
+ SFT on top of Qwen2.5-7B using axolotl (https://github.com/axolotl-ai-cloud/axolotl).
227
+
228
+ We used Deepspeed's Zero-3 distributed training using the following hardware:
229
+
230
+ * 7B: 32x NVIDIA Hopper H100 64GB of the *Marenostrum 5*.
231
+ * 8B: 32x NVIDIA Hopper H100 64GB of the *Marenostrum 5*.
232
+ * 70B: 64x NVIDIA Hopper H100 64GB of the *Marenostrum 5*.
233
+ * 72B: 92x NVIDIA Hopper H100 64GB of the *Marenostrum 5*.
234
+
235
+
236
+ <!---
237
+ ^^^ TO BE COMPLETED AND DETAILED ^^^
238
+ -->
239
+
240
+
241
+
242
+ #### Training Data
243
+
244
+ The training set consists of around 1.8B tokens, having 3 different types of data:
245
+
246
+ - Medical domain datasets. Includes data from 20 different medical tasks.
247
+ - [HPAI-BSC/Aloe-Beta-General-Collection](https://huggingface.co/datasets/HPAI-BSC/Aloe-Beta-General-Collection)
248
+ - [HPAI-BSC/chain-of-diagnosis](https://huggingface.co/datasets/HPAI-BSC/chain-of-diagnosis)
249
+ - [HPAI-BSC/MedS-Ins](https://huggingface.co/datasets/HPAI-BSC/MedS-Ins)
250
+ - [HPAI-BSC/ultramedica](https://huggingface.co/datasets/HPAI-BSC/ultramedical)
251
+ - Synthetic data. We expanded our training data by generating high-quality answers using Llama3.1-70B.
252
+ - [HPAI-BSC/pubmedqa-cot-llama31](https://huggingface.co/datasets/HPAI-BSC/pubmedqa-cot-llama31)
253
+ - [HPAI-BSC/medqa-cot-llama31](https://huggingface.co/datasets/HPAI-BSC/medqa-cot-llama31)
254
+ - [HPAI-BSC/medmcqa-cot-llama31](https://huggingface.co/datasets/HPAI-BSC/medmcqa-cot-llama31)
255
+ - [HPAI-BSC/headqa-cot-llama31](https://huggingface.co/datasets/HPAI-BSC/headqa-cot-llama31)
256
+ - [HPAI-BSC/MMLU-medical-cot-llama31](https://huggingface.co/datasets/HPAI-BSC/MMLU-medical-cot-llama31)
257
+ - [HPAI-BSC/Polymed-QA](https://huggingface.co/datasets/HPAI-BSC/Polymed-QA)
258
+ - Genstruct data (coming soon)
259
+ - General data. It includes maths, STEM, code, function calling, and instructions with a very long context.
260
+ - [HPAI-BSC/Aloe-Beta-General-Collection](https://huggingface.co/datasets/HPAI-BSC/Aloe-Beta-General-Collection)
261
+
262
+ #### Training parameters
263
+ - Epochs: 3
264
+ - Sequence length: 16384
265
+ - Optimizer: adamw_torch
266
+ - Learning rate: 1e-5
267
+ - Learning rate scheduler: cosine
268
+ - Warmup steps: 100
269
+ - Weight decay: 0
270
+ - Gradient checkpointing
271
+ - Zero 3
272
+ - Total batch size: 128
273
+ - Batch size per device: 1
274
+ - Gradient accumulation steps: 4
275
+
276
+ ### Model Merging
277
+ The model trained was merged with the Qwen2.5-7B-Instruct model using the DARE_TIES technique. [Mergekit](https://github.com/arcee-ai/mergekit) was used to conduct the merging.
278
+
279
+ ### Model Alignment
280
+ The model is aligned using the Direct Preference Optimization (DPO) technique through a two-step process:
281
+
282
+ 1. General DPO Alignment: This step uses a dataset combining medical, general preference, and safety data. We used our dataset [HPAI-BSC/Aloe-Beta-DPO](https://huggingface.co/datasets/HPAI-BSC/Aloe-Beta-DPO). We split the dataset into five parts, and the model was trained iteratively for one epoch on each chunk. We used a learning rate of 2e-7.
283
+ 2. Red-Teaming Alignment: This step further fine-tunes the model to resist a variety of potential attacks, enhancing its robustness and security. Dataset will be shared soon. In this stage, we set the learning rate to 1e-7.
284
+
285
+ <!---
286
+ ^^^ LINKS TO DPO DATA (DPO added, missing the RT^^^
287
+ -->
288
+
289
+
290
+ We used [OpenRLHF](https://github.com/OpenRLHF/OpenRLHF) library. We aligned the model using 16x NVIDA HOOPER H100 64GB of the *Marenostrum 5*. Common hyperparameters:
291
+
292
+ - Sequence length: 4096
293
+ - Optimizer: Fused adam
294
+ - Total batch size 128
295
+ - Batch size per device: 1
296
+ - Gradient accumulation steps: 8
297
+ - Beta: 0.1
298
+
299
+
300
+
301
+ ## Evaluation
302
+
303
+ ### Testing Data, Factors & Metrics
304
+
305
+ #### Testing Data
306
+
307
+
308
+ - [ACI-BENCH](https://github.com/wyim/aci-bench)
309
+ - [MTS-Dialog](https://github.com/abachaa/MTS-Dialog)
310
+ - [MedText](https://huggingface.co/datasets/BI55/MedText)
311
+ - [Medical Text classification](https://www.kaggle.com/datasets/chaitanyakck/medical-text/data)
312
+ - [OLAPH](https://github.com/dmis-lab/OLAPH)
313
+ - CareQA Open
314
+ - [MedDialog](https://huggingface.co/datasets/bigbio/meddialog)
315
+ - [MEDIQA QA](https://huggingface.co/datasets/bigbio/mediqa_qa)
316
+ - [Meddialog Qsumm](https://huggingface.co/datasets/lighteval/med_dialog)
317
+ - [Biored](https://huggingface.co/datasets/YufeiHFUT/BioRED_all_info)
318
+ - [MIMIC-III](https://huggingface.co/datasets/dmacres/mimiciii-hospitalcourse-meta)
319
+ - [Medical Prescription](https://huggingface.co/datasets/devlocalhost/prescription-full)
320
+ - [MedQA (USMLE)](https://huggingface.co/datasets/bigbio/med_qa)
321
+ - [MedMCQA](https://huggingface.co/datasets/medmcqa)
322
+ - [PubMedQA](https://huggingface.co/datasets/bigbio/pubmed_qa)
323
+ - [MMLU-Medical](https://huggingface.co/datasets/lukaemon/mmlu)
324
+ - [MedQA-4-Option](https://huggingface.co/datasets/GBaker/MedQA-USMLE-4-options)
325
+ - [CareQA](https://huggingface.co/datasets/HPAI-BSC/CareQA)
326
+ - [Open LLM Leaderboard 2](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
327
+
328
+ <!---
329
+ ^^^ CAREQA Open link MISSING ^^^
330
+ -->
331
+
332
+ #### Metrics
333
+
334
+ - Accuracy: suite the evaluation of multiple-choice question-answering tasks.
335
+ - Rouge1: refers to the overlap of unigrams between the system and the gold standard.
336
+
337
+
338
+ <!---
339
+ ^^^ MORE METRICS MISSING ^^^
340
+ -->
341
+
342
+ #### Summary
343
+
344
+ To compare Aloe with the most competitive open models (both general purpose and healthcare-specific) we use popular healthcare datasets (PubMedQA, MedMCQA, MedQA and MMLU for six medical tasks only), together with the new and highly reliable CareQA. However, while MCQA benchmarks provide valuable insights into a model's ability to handle structured queries, they fall short in representing the full range of challenges faced in medical practice. Building upon this idea, Aloe-Beta represents the next step in the evolution of the Aloe Family, designed to broaden the scope beyond the multiple-choice question-answering tasks that defined Aloe-Alpha.
345
+
346
+
347
+ Benchmark results indicate the training conducted on Aloe has boosted its performance above all other open models within the same model size. Both Qwen2.5-Aloe-Beta-7B and Llama3.1-Aloe-Beta-8B also outperforms other medical models like Llama3-OpenBioLLM and Llama3-Med42. All these results make Aloe-Beta the best healthcare LLM of its size.
348
+
349
+ With the help of prompting techniques the performance of Qwen2.5-Aloe-Beta-7B is significantly improved. Medprompting in particular provides a 7% increase in reported accuracy, after which Qwen2.5-Aloe-7B-Beta only lags behind much bigger models like Llama-3.1-70B-Instruct or MedPalm-2. This improvement is mostly consistent across the OpenLLM Leaderboard and the other medical tasks.
350
+
351
+ ## Environmental Impact
352
+
353
+ - **Hardware Type:**聽32xH100
354
+ - **Hours used (8B):**聽544 GPU hours
355
+ - **Hours used (70B):**聽4500 GPU hours
356
+ - **Hardware Provider:**聽Barcelona Supercomputing Center (BSC)
357
+ - **Compute Region:**聽Spain
358
+ - **Carbon Emitted:**聽34.1 kg of CO2
359
+
360
+ <!---
361
+ ^^^ ARE CARBON EMISSIONS FOR BOTH? ^^^
362
+ -->
363
+
364
+
365
+ ## Authors
366
+ Aloe Beta has been developed by the [High Performance Artificial Intelligence](https://hpai.bsc.es/) research group, from the [Barcelona Supercomping Center - BSC](https://www.bsc.es/). Main authors are [Jordi Bayarri Planas](https://huggingface.co/JordiBayarri), [Ashwin Kumar Gururajan](https://huggingface.co/G-AshwinKumar) and [Dario Garcia-Gasulla](https://huggingface.co/dariog). Red teaming efforts lead by Adrian Tormos.
367
+
368
369
+
370
+ ## Citations
371
+
372
+
373
+ <!---
374
+ Add the prompt engine paper below
375
+ -->
376
+
377
+ If you use this repository in a published work, please cite the corresponding papers as source:
378
+
379
+ ```
380
+ @misc{gururajan2024aloe,
381
+ title={Aloe: A Family of Fine-tuned Open Healthcare LLMs},
382
+ author={Ashwin Kumar Gururajan and Enrique Lopez-Cuena and Jordi Bayarri-Planas and Adrian Tormos and Daniel Hinjos and Pablo Bernabeu-Perez and Anna Arias-Duart and Pablo Agustin Martin-Torres and Lucia Urcelay-Ganzabal and Marta Gonzalez-Mallo and Sergio Alvarez-Napagao and Eduard Ayguad茅-Parra and Ulises Cort茅s Dario Garcia-Gasulla},
383
+ year={2024},
384
+ eprint={2405.01886},
385
+ archivePrefix={arXiv},
386
+ primaryClass={cs.CL}
387
+ }
388
+ ```