xcodec2 / vq /codec_encoder.py
yezhen
Initial commit
574a515
raw
history blame contribute delete
9.98 kB
import sys
import torch
from torch import nn
import numpy as np
from vq.module import WNConv1d, EncoderBlock, ResLSTM
from vq.alias_free_torch import *
from vq import activations
from vq.bs_roformer5 import TransformerBlock
from torchtune.modules import RotaryPositionalEmbeddings
import vq.blocks as blocks
from torch.nn import utils
def init_weights(m):
if isinstance(m, nn.Conv1d):
nn.init.trunc_normal_(m.weight, std=0.02)
nn.init.constant_(m.bias, 0)
class CodecEncoder(nn.Module):
def __init__(self,
ngf=48,
use_rnn=True,
rnn_bidirectional=False,
rnn_num_layers=2,
up_ratios=(2, 2, 4, 4, 5),
dilations=(1, 3, 9),
out_channels=1024):
super().__init__()
self.hop_length = np.prod(up_ratios)
self.ngf = ngf
self.up_ratios = up_ratios
# Create first convolution
d_model = ngf
self.block = [WNConv1d(1, d_model, kernel_size=7, padding=3)]
# Create EncoderBlocks that double channels as they downsample by `stride`
for i, stride in enumerate(up_ratios):
d_model *= 2
self.block += [EncoderBlock(d_model, stride=stride, dilations=dilations)]
# RNN
if use_rnn:
self.block += [
ResLSTM(d_model,
num_layers=rnn_num_layers,
bidirectional=rnn_bidirectional
)
]
# Create last convolution
self.block += [
Activation1d(activation=activations.SnakeBeta(d_model, alpha_logscale=True)),
WNConv1d(d_model, out_channels, kernel_size=3, padding=1),
]
# Wrap black into nn.Sequential
self.block = nn.Sequential(*self.block)
self.enc_dim = d_model
self.reset_parameters()
def forward(self, x):
out = self.block(x)
return out
def inference(self, x):
return self.block(x)
def remove_weight_norm(self):
"""Remove weight normalization module from all of the layers."""
def _remove_weight_norm(m):
try:
torch.nn.utils.remove_weight_norm(m)
except ValueError: # this module didn't have weight norm
return
self.apply(_remove_weight_norm)
def apply_weight_norm(self):
"""Apply weight normalization module from all of the layers."""
def _apply_weight_norm(m):
if isinstance(m, nn.Conv1d):
torch.nn.utils.weight_norm(m)
self.apply(_apply_weight_norm)
def reset_parameters(self):
self.apply(init_weights)
class Transpose(nn.Module):
def __init__(self, dim1, dim2):
super(Transpose, self).__init__()
self.dim1 = dim1
self.dim2 = dim2
def forward(self, x):
return x.transpose(self.dim1, self.dim2)
class CodecEncoder_Transformer(nn.Module):
def __init__(self,
ngf=48,
up_ratios=[2, 2, 4, 4, 5],
dilations=(1, 3, 9),
hidden_dim=1024,
depth=12,
heads=12,
pos_meb_dim=64,
):
super().__init__()
self.hop_length = np.prod(up_ratios)
self.ngf =ngf
self.up_ratios = up_ratios
d_model = ngf
self.conv_blocks = [WNConv1d(1, d_model, kernel_size=7, padding=3)]
for i, stride in enumerate(up_ratios):
d_model *= 2
self.conv_blocks += [EncoderBlock(d_model, stride=stride, dilations=dilations)]
self.conv_blocks = nn.Sequential(*self.conv_blocks)
# time_rotary_embed = RotaryPositionalEmbeddings(dim=pos_meb_dim)
# transformer_blocks = [
# TransformerBlock(dim=hidden_dim, n_heads=heads, rotary_embed=time_rotary_embed)
# for _ in range(depth)
# ]
# self.transformers = nn.Sequential(*transformer_blocks)
# self.final_layer_norm = nn.LayerNorm(hidden_dim, eps=1e-6)
self.conv_final_block = [
Activation1d(activation=activations.SnakeBeta(d_model, alpha_logscale=True)),
WNConv1d(d_model, hidden_dim, kernel_size=3, padding=1),
]
self.conv_final_block = nn.Sequential(*self.conv_final_block)
self.reset_parameters()
def forward(self, x):
x = self.conv_blocks(x)
# x = x.permute(0, 2, 1)
# x= self.transformers(x)
# x = self.final_layer_norm(x)
# x = x.permute(0, 2, 1)
x = self.conv_final_block (x)
x = x.permute(0, 2, 1)
return x
def inference(self, x):
return self.block(x)
def remove_weight_norm(self):
"""Remove weight normalization module from all of the layers."""
def _remove_weight_norm(m):
try:
torch.nn.utils.remove_weight_norm(m)
except ValueError: # this module didn't have weight norm
return
self.apply(_remove_weight_norm)
def apply_weight_norm(self):
"""Apply weight normalization module from all of the layers."""
def _apply_weight_norm(m):
if isinstance(m, nn.Conv1d):
torch.nn.utils.weight_norm(m)
self.apply(_apply_weight_norm)
def reset_parameters(self):
self.apply(init_weights)
class Codec_oobleck_Transformer(nn.Module):
def __init__(self,
ngf=32,
up_ratios=(2, 2,4,4, 5),
dilations=(1, 3, 9),
hidden_dim=1024,
depth=12,
heads=16,
pos_meb_dim=64,
):
super().__init__()
self.hop_length = np.prod(up_ratios)
self.ngf =ngf
self.up_ratios = up_ratios
self.hidden_dim = hidden_dim
self.conv_blocks = blocks.DilatedResidualEncoder(
capacity=ngf,
dilated_unit=self.dilated_unit,
downsampling_unit=self.downsampling_unit,
ratios=up_ratios,
dilations=dilations,
pre_network_conv=self.pre_conv,
post_network_conv=self.post_conv,
)
time_rotary_embed = RotaryPositionalEmbeddings(dim=pos_meb_dim)
transformer_blocks = [
TransformerBlock(dim=hidden_dim, n_heads=heads, rotary_embed=time_rotary_embed)
for _ in range(depth)
]
self.transformers = nn.Sequential(*transformer_blocks)
self.final_layer_norm = nn.LayerNorm(hidden_dim, eps=1e-6)
self.reset_parameters()
def forward(self, x):
x = self.conv_blocks(x)
x = x.permute(0, 2, 1)
x= self.transformers(x)
x = self.final_layer_norm(x)
return x
def inference(self, x):
return self.block(x)
def remove_weight_norm(self):
"""Remove weight normalization module from all of the layers."""
def _remove_weight_norm(m):
try:
torch.nn.utils.remove_weight_norm(m)
except ValueError: # this module didn't have weight norm
return
self.apply(_remove_weight_norm)
def apply_weight_norm(self):
"""Apply weight normalization module from all of the layers."""
def _apply_weight_norm(m):
if isinstance(m, nn.Conv1d):
torch.nn.utils.weight_norm(m)
self.apply(_apply_weight_norm)
def reset_parameters(self):
self.apply(init_weights)
def dilated_unit(self,hidden_dim, dilation):
return blocks.DilatedConvolutionalUnit(hidden_dim,
dilation,
kernel_size=3,
activation=nn.ReLU,
normalization=utils.weight_norm)
def downsampling_unit(self, input_dim: int, output_dim: int, stride: int):
return blocks.DownsamplingUnit(input_dim,
output_dim,
stride,
nn.ReLU,
normalization=utils.weight_norm)
def pre_conv(self,out_channels):
return nn.Conv1d(1, out_channels, 1)
def post_conv(self,in_channels):
return nn.Conv1d(in_channels, self.hidden_dim, 1)
class CodecEncoder_only_Transformer(nn.Module):
def __init__(self,hidden_dim=1024,depth=12,heads=16,pos_meb_dim=64):
super().__init__()
# self.embed = nn.Linear(input_dim, hidden_dim )input_dim=300,
depth = depth
time_rotary_embed = RotaryPositionalEmbeddings(dim=pos_meb_dim)
transformer_blocks = [
TransformerBlock(dim=hidden_dim, n_heads=heads, rotary_embed=time_rotary_embed)
for _ in range(depth)
]
self.transformers = nn.Sequential(*transformer_blocks)
self.final_layer_norm = nn.LayerNorm(hidden_dim, eps=1e-6)
def forward(self, x: torch.Tensor ) -> torch.Tensor:
# x = self.embed(x)
x= self.transformers(x)
x = self.final_layer_norm(x)
return x
def get_model_size(model):
# 计算总参数数
total_params = sum(p.numel() for p in model.parameters())
# 假设每个参数都是32位浮点数,计算模型大小(以字节为单位)
model_size_bytes = total_params # 每个参数4字节
# 转换为更易读的单位(例如,MB)
model_size_mb = model_size_bytes / (1024 ** 2)
return total_params, model_size_mb
if __name__ == '__main__':
model = Codec_oobleck_Transformer()
x = torch.randn(1, 1, 16000) # example input tensor
output = model(x)
print("Output shape:", output.shape)