File size: 2,110 Bytes
eed85d2
 
8c0a38f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eed85d2
 
8c0a38f
 
eed85d2
8c0a38f
eed85d2
8c0a38f
 
 
 
eed85d2
8c0a38f
eed85d2
8c0a38f
eed85d2
8c0a38f
eed85d2
8c0a38f
eed85d2
8c0a38f
eed85d2
8c0a38f
eed85d2
8c0a38f
eed85d2
8c0a38f
eed85d2
8c0a38f
 
 
 
 
 
 
 
 
 
 
 
eed85d2
8c0a38f
eed85d2
8c0a38f
 
 
 
 
 
eed85d2
 
8c0a38f
eed85d2
8c0a38f
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
---
library_name: transformers
license: mit
base_model: facebook/w2v-bert-2.0
tags:
- generated_from_trainer
datasets:
- common_voice_16_0
metrics:
- wer
model-index:
- name: w2v-bert-2.0-mn-colab-CV16.0
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: common_voice_16_0
      type: common_voice_16_0
      config: mn
      split: test
      args: mn
    metrics:
    - name: Wer
      type: wer
      value: 0.32368936262780074
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# w2v-bert-2.0-mn-colab-CV16.0

This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the common_voice_16_0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5152
- Wer: 0.3237

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 10
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Wer    |
|:-------------:|:------:|:----:|:---------------:|:------:|
| 1.8121        | 2.3715 | 300  | 0.6300          | 0.5082 |
| 0.3404        | 4.7431 | 600  | 0.5988          | 0.4459 |
| 0.1726        | 7.1146 | 900  | 0.4940          | 0.3769 |
| 0.0708        | 9.4862 | 1200 | 0.5152          | 0.3237 |


### Framework versions

- Transformers 4.46.3
- Pytorch 2.5.1+cu118
- Datasets 3.1.0
- Tokenizers 0.20.3