Upload compress.py with huggingface_hub
Browse files- compress.py +93 -0
compress.py
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datasets import load_dataset
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
+
import re
|
4 |
+
|
5 |
+
from llmcompressor.modifiers.quantization import GPTQModifier
|
6 |
+
from llmcompressor.transformers import oneshot
|
7 |
+
|
8 |
+
# Select model and load it.
|
9 |
+
MODEL_ID = "ArliAI/Llama-3.1-70B-ArliAI-RPMax-v1.3"
|
10 |
+
|
11 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
12 |
+
|
13 |
+
# Select calibration dataset.
|
14 |
+
DATASET_ID = "openerotica/erotiquant3"
|
15 |
+
DATASET_SPLIT = "train"
|
16 |
+
|
17 |
+
# Select number of samples. 512 samples is a good place to start.
|
18 |
+
# Increasing the number of samples can improve accuracy.
|
19 |
+
NUM_CALIBRATION_SAMPLES = 512
|
20 |
+
MAX_SEQUENCE_LENGTH = 4096
|
21 |
+
|
22 |
+
# Load dataset and preprocess.
|
23 |
+
ds = load_dataset(DATASET_ID, split=DATASET_SPLIT)
|
24 |
+
|
25 |
+
def preprocess(example):
|
26 |
+
result = []
|
27 |
+
matches = re.findall(r'(SYSTEM|USER|ASSISTANT):\s*((?:(?!SYSTEM|USER|ASSISTANT:).|\n)+)', example['text'], re.DOTALL)
|
28 |
+
|
29 |
+
# Loop through the matches and create a dictionary for each role and its content
|
30 |
+
for role, content in matches:
|
31 |
+
result.append({"role": role.lower(), "content": content.strip()})
|
32 |
+
|
33 |
+
text = tokenizer.apply_chat_template(result, tokenize=False, add_generation_prompt=False)
|
34 |
+
tokens = tokenizer.apply_chat_template(result, tokenize=True, add_generation_prompt=False)
|
35 |
+
|
36 |
+
return {
|
37 |
+
"chat": result,
|
38 |
+
"text": text,
|
39 |
+
"tokens": tokens,
|
40 |
+
}
|
41 |
+
|
42 |
+
ds = ds.map(preprocess)
|
43 |
+
|
44 |
+
def filter_short_rows(example):
|
45 |
+
result = len(example['tokens']) > MAX_SEQUENCE_LENGTH
|
46 |
+
if result == False:
|
47 |
+
print(f"length: {len(example['tokens'])}")
|
48 |
+
return result
|
49 |
+
|
50 |
+
ds = ds.filter(filter_short_rows)
|
51 |
+
|
52 |
+
ds = ds.shuffle(seed=42).select(range(NUM_CALIBRATION_SAMPLES))
|
53 |
+
|
54 |
+
|
55 |
+
# Tokenize inputs.
|
56 |
+
def tokenize(sample):
|
57 |
+
return tokenizer(
|
58 |
+
sample["text"],
|
59 |
+
padding=False,
|
60 |
+
max_length=MAX_SEQUENCE_LENGTH,
|
61 |
+
truncation=True,
|
62 |
+
add_special_tokens=False,
|
63 |
+
)
|
64 |
+
|
65 |
+
ds = ds.map(tokenize, remove_columns=ds.column_names)
|
66 |
+
|
67 |
+
# Configure the quantization algorithm to run.
|
68 |
+
# * quantize the weights to 4 bit with GPTQ with a group size 128
|
69 |
+
recipe = GPTQModifier(targets="Linear", scheme="W4A16", ignore=["lm_head"])
|
70 |
+
|
71 |
+
model = AutoModelForCausalLM.from_pretrained(
|
72 |
+
MODEL_ID,
|
73 |
+
device_map="auto",
|
74 |
+
torch_dtype="auto",
|
75 |
+
)
|
76 |
+
|
77 |
+
# Apply algorithms.
|
78 |
+
oneshot(
|
79 |
+
model=model,
|
80 |
+
dataset=ds,
|
81 |
+
recipe=recipe,
|
82 |
+
max_seq_length=MAX_SEQUENCE_LENGTH,
|
83 |
+
num_calibration_samples=NUM_CALIBRATION_SAMPLES
|
84 |
+
)
|
85 |
+
|
86 |
+
print('SAVING')
|
87 |
+
|
88 |
+
# Save to disk compressed.
|
89 |
+
SAVE_DIR = MODEL_ID.split("/")[1] + "-W4A16-G128"
|
90 |
+
model.save_pretrained(SAVE_DIR, save_compressed=True, skip_compression_stats=True)
|
91 |
+
tokenizer.save_pretrained(SAVE_DIR)
|
92 |
+
|
93 |
+
print('Saved')
|