|
import os |
|
import cv2 |
|
import time |
|
import numpy as np |
|
import numexpr as ne |
|
from multiprocessing.dummy import Process, Queue |
|
from options.hifi_test_options import HifiTestOptions |
|
from HifiFaceAPI_parallel_base import Consumer0Base, Consumer2Base, Consumer1BaseONNX |
|
|
|
|
|
def np_norm(x): |
|
return (x - np.average(x)) / np.std(x) |
|
|
|
|
|
def reverse2wholeimage_hifi_trt_roi(swaped_img, mat_rev, img_mask, frame, roi_img, roi_box): |
|
target_image = cv2.warpAffine(swaped_img, mat_rev, roi_img.shape[:2][::-1], borderMode=cv2.BORDER_REPLICATE)[ |
|
..., |
|
::-1] |
|
|
|
local_dict = { |
|
'img_mask': img_mask, |
|
'target_image': target_image, |
|
'roi_img': roi_img, |
|
} |
|
img = ne.evaluate('img_mask * (target_image * 255)+(1 - img_mask) * roi_img', local_dict=local_dict, |
|
global_dict=None) |
|
img = img.astype(np.uint8) |
|
frame[roi_box[1]:roi_box[3], roi_box[0]:roi_box[2]] = img |
|
return frame |
|
|
|
|
|
def get_max_face(np_rois): |
|
roi_areas = [] |
|
for index in range(np_rois.shape[0]): |
|
roi_areas.append((np_rois[index, 2] - np_rois[index, 0]) * (np_rois[index, 3] - np_rois[index, 1])) |
|
return np.argmax(np.array(roi_areas)) |
|
|
|
|
|
class Consumer0(Consumer0Base): |
|
def __init__(self, opt, frame_queue_in, queue_list: list, block=True, fps_counter=False): |
|
super().__init__(opt, frame_queue_in, None, queue_list, block, fps_counter) |
|
|
|
def run(self): |
|
counter = 0 |
|
start_time = time.time() |
|
kpss_old = None |
|
rois_old = faces_old = Ms_old = masks_old = None |
|
|
|
while True: |
|
frame = self.frame_queue_in.get() |
|
if frame is None: |
|
break |
|
try: |
|
_, bboxes, kpss = self.scrfd_detector.get_bboxes(frame, max_num=0) |
|
rois, faces, Ms, masks = self.face_alignment.forward( |
|
frame, bboxes, kpss, limit=5, min_face_size=30, |
|
crop_size=(self.crop_size, self.crop_size), apply_roi=True |
|
) |
|
|
|
except (TypeError, IndexError, ValueError) as e: |
|
self.queue_list[0].put([None, frame]) |
|
continue |
|
|
|
if len(faces)==0: |
|
self.queue_list[0].put([None, frame]) |
|
continue |
|
elif len(faces)==1: |
|
face = np.array(faces[0]) |
|
mat = Ms[0] |
|
roi_box = rois[0] |
|
else: |
|
max_index = get_max_face(np.array(rois)) |
|
face = np.array(faces[max_index]) |
|
mat = Ms[max_index] |
|
roi_box = rois[max_index] |
|
roi_img = frame[roi_box[1]:roi_box[3], roi_box[0]:roi_box[2]] |
|
|
|
|
|
face = cv2.cvtColor(face, cv2.COLOR_BGR2RGB) |
|
|
|
self.queue_list[0].put([face, mat, [], frame, roi_img, roi_box]) |
|
|
|
if self.fps_counter: |
|
counter += 1 |
|
if (time.time() - start_time) > 10: |
|
print("Consumer0 FPS: {}".format(counter / (time.time() - start_time))) |
|
counter = 0 |
|
start_time = time.time() |
|
self.queue_list[0].put(None) |
|
print('co stop') |
|
|
|
|
|
class Consumer1(Consumer1BaseONNX): |
|
def __init__(self, opt, feature_list, queue_list: list, block=True, fps_counter=False): |
|
super().__init__(opt, feature_list, queue_list, block, fps_counter) |
|
|
|
def run(self): |
|
counter = 0 |
|
start_time = time.time() |
|
|
|
while True: |
|
something_in = self.queue_list[0].get() |
|
if something_in is None: |
|
break |
|
elif len(something_in) == 2: |
|
self.queue_list[1].put([None, something_in[1]]) |
|
continue |
|
|
|
|
|
if len(self.feature_list) > 1: |
|
self.feature_list.pop(0) |
|
|
|
image_latent = self.feature_list[0][0] |
|
|
|
mask_out, swap_face_out = self.predict(something_in[0], image_latent[0].reshape(1, -1)) |
|
|
|
mask = cv2.warpAffine(mask_out[0][0].astype(np.float32), something_in[1], |
|
something_in[4].shape[:2][::-1]) |
|
mask[mask > 0.2] = 1 |
|
mask = mask[:, :, np.newaxis].astype(np.uint8) |
|
swap_face = swap_face_out[0].transpose((1, 2, 0)).astype(np.float32) |
|
|
|
self.queue_list[1].put( |
|
[swap_face, something_in[1], mask, something_in[3], something_in[4], something_in[5]]) |
|
|
|
if self.fps_counter: |
|
counter += 1 |
|
if (time.time() - start_time) > 10: |
|
print("Consumer1 FPS: {}".format(counter / (time.time() - start_time))) |
|
counter = 0 |
|
start_time = time.time() |
|
self.queue_list[1].put(None) |
|
print('c1 stop') |
|
|
|
|
|
class Consumer2(Consumer2Base): |
|
def __init__(self, queue_list: list, frame_queue_out, block=True, fps_counter=False): |
|
super().__init__(queue_list, frame_queue_out, block, fps_counter) |
|
self.face_detect_flag = True |
|
|
|
def forward_func(self, something_in): |
|
|
|
|
|
if len(something_in) == 2: |
|
self.face_detect_flag = False |
|
frame = something_in[1] |
|
frame_out = frame.astype(np.uint8) |
|
else: |
|
self.face_detect_flag = True |
|
|
|
swap_face = ((something_in[0] + 1) / 2) |
|
frame_out = reverse2wholeimage_hifi_trt_roi( |
|
swap_face, something_in[1], something_in[2], |
|
something_in[3], something_in[4], something_in[5] |
|
) |
|
self.frame_queue_out.put([frame_out, self.face_detect_flag]) |
|
|
|
|
|
|
|
|
|
class HifiFaceRealTime: |
|
|
|
def __init__(self, feature_dict_list_, frame_queue_in, frame_queue_out, gpu=True, model_name=''): |
|
self.opt = HifiTestOptions().parse() |
|
if model_name != '': |
|
self.opt.model_name = model_name |
|
self.opt.input_size = 256 |
|
self.feature_dict_list = feature_dict_list_ |
|
self.frame_queue_in = frame_queue_in |
|
self.frame_queue_out = frame_queue_out |
|
|
|
self.gpu = gpu |
|
|
|
def forward(self): |
|
self.q0 = Queue(2) |
|
self.q1 = Queue(2) |
|
|
|
self.c0 = Consumer0(self.opt, self.frame_queue_in, [self.q0], fps_counter=False) |
|
self.c1 = Consumer1(self.opt, self.feature_dict_list, [self.q0, self.q1], fps_counter=False) |
|
self.c2 = Consumer2([self.q1], self.frame_queue_out, fps_counter=False) |
|
|
|
self.c0.start() |
|
self.c1.start() |
|
self.c2.start() |
|
|
|
self.c0.join() |
|
self.c1.join() |
|
self.c2.join() |
|
return |
|
|