Gregorio1502
commited on
Create noise.py
Browse files
noise.py
ADDED
@@ -0,0 +1,266 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
import os
|
4 |
+
import sys
|
5 |
+
|
6 |
+
sys.path.insert(0, os.path.join(os.path.dirname(os.path.realpath(__file__)), "CFUI"))
|
7 |
+
|
8 |
+
import CFUI.model_management
|
9 |
+
import CFUI.sample
|
10 |
+
import CFUI.sampler_helpers
|
11 |
+
|
12 |
+
MAX_RESOLUTION=8192
|
13 |
+
|
14 |
+
def prepare_mask(mask, shape):
|
15 |
+
mask = torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(shape[2], shape[3]), mode="bilinear")
|
16 |
+
mask = mask.expand((-1,shape[1],-1,-1))
|
17 |
+
if mask.shape[0] < shape[0]:
|
18 |
+
mask = mask.repeat((shape[0] -1) // mask.shape[0] + 1, 1, 1, 1)[:shape[0]]
|
19 |
+
return mask
|
20 |
+
|
21 |
+
class NoisyLatentImage:
|
22 |
+
@classmethod
|
23 |
+
def INPUT_TYPES(s):
|
24 |
+
return {"required": {
|
25 |
+
"source":(["CPU", "GPU"], ),
|
26 |
+
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
|
27 |
+
"width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
|
28 |
+
"height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
|
29 |
+
"batch_size": ("INT", {"default": 1, "min": 1, "max": 64}),
|
30 |
+
}}
|
31 |
+
RETURN_TYPES = ("LATENT",)
|
32 |
+
FUNCTION = "create_noisy_latents"
|
33 |
+
|
34 |
+
CATEGORY = "latent/noise"
|
35 |
+
|
36 |
+
def create_noisy_latents(self, source, seed, width, height, batch_size):
|
37 |
+
torch.manual_seed(seed)
|
38 |
+
if source == "CPU":
|
39 |
+
device = "cpu"
|
40 |
+
else:
|
41 |
+
device = CFUI.model_management.get_torch_device()
|
42 |
+
noise = torch.randn((batch_size, 4, height // 8, width // 8), dtype=torch.float32, device=device).cpu()
|
43 |
+
return ({"samples":noise}, )
|
44 |
+
|
45 |
+
class DuplicateBatchIndex:
|
46 |
+
@classmethod
|
47 |
+
def INPUT_TYPES(s):
|
48 |
+
return {"required": {
|
49 |
+
"latents":("LATENT",),
|
50 |
+
"batch_index": ("INT", {"default": 0, "min": 0, "max": 63}),
|
51 |
+
"batch_size": ("INT", {"default": 1, "min": 1, "max": 64}),
|
52 |
+
}}
|
53 |
+
|
54 |
+
RETURN_TYPES = ("LATENT",)
|
55 |
+
FUNCTION = "duplicate_index"
|
56 |
+
|
57 |
+
CATEGORY = "latent"
|
58 |
+
|
59 |
+
def duplicate_index(self, latents, batch_index, batch_size):
|
60 |
+
s = latents.copy()
|
61 |
+
batch_index = min(s["samples"].shape[0] - 1, batch_index)
|
62 |
+
target = s["samples"][batch_index:batch_index + 1].clone()
|
63 |
+
target = target.repeat((batch_size,1,1,1))
|
64 |
+
s["samples"] = target
|
65 |
+
return (s,)
|
66 |
+
|
67 |
+
# from https://discuss.pytorch.org/t/help-regarding-slerp-function-for-generative-model-sampling/32475
|
68 |
+
def slerp(val, low, high):
|
69 |
+
dims = low.shape
|
70 |
+
|
71 |
+
#flatten to batches
|
72 |
+
low = low.reshape(dims[0], -1)
|
73 |
+
high = high.reshape(dims[0], -1)
|
74 |
+
|
75 |
+
low_norm = low/torch.norm(low, dim=1, keepdim=True)
|
76 |
+
high_norm = high/torch.norm(high, dim=1, keepdim=True)
|
77 |
+
|
78 |
+
# in case we divide by zero
|
79 |
+
low_norm[low_norm != low_norm] = 0.0
|
80 |
+
high_norm[high_norm != high_norm] = 0.0
|
81 |
+
|
82 |
+
omega = torch.acos((low_norm*high_norm).sum(1))
|
83 |
+
so = torch.sin(omega)
|
84 |
+
res = (torch.sin((1.0-val)*omega)/so).unsqueeze(1)*low + (torch.sin(val*omega)/so).unsqueeze(1) * high
|
85 |
+
return res.reshape(dims)
|
86 |
+
|
87 |
+
class LatentSlerp:
|
88 |
+
@classmethod
|
89 |
+
def INPUT_TYPES(s):
|
90 |
+
return {
|
91 |
+
"required": {
|
92 |
+
"latents1":("LATENT",),
|
93 |
+
"factor": ("FLOAT", {"default": .5, "min": 0.0, "max": 1.0, "step": 0.01}),
|
94 |
+
},
|
95 |
+
"optional" :{
|
96 |
+
"latents2":("LATENT",),
|
97 |
+
"mask": ("MASK", ),
|
98 |
+
}}
|
99 |
+
|
100 |
+
RETURN_TYPES = ("LATENT",)
|
101 |
+
FUNCTION = "slerp_latents"
|
102 |
+
|
103 |
+
CATEGORY = "latent"
|
104 |
+
|
105 |
+
def slerp_latents(self, latents1, factor, latents2=None, mask=None):
|
106 |
+
s = latents1.copy()
|
107 |
+
if latents2 is None:
|
108 |
+
return (s,)
|
109 |
+
if latents1["samples"].shape != latents2["samples"].shape:
|
110 |
+
print("warning, shapes in LatentSlerp not the same, ignoring")
|
111 |
+
return (s,)
|
112 |
+
slerped = slerp(factor, latents1["samples"].clone(), latents2["samples"].clone())
|
113 |
+
if mask is not None:
|
114 |
+
mask = prepare_mask(mask, slerped.shape)
|
115 |
+
slerped = mask * slerped + (1-mask) * latents1["samples"]
|
116 |
+
s["samples"] = slerped
|
117 |
+
return (s,)
|
118 |
+
|
119 |
+
class GetSigma:
|
120 |
+
@classmethod
|
121 |
+
def INPUT_TYPES(s):
|
122 |
+
return {"required": {
|
123 |
+
"model": ("MODEL",),
|
124 |
+
"sampler_name": (CFUI.samplers.KSampler.SAMPLERS, ),
|
125 |
+
"scheduler": (CFUI.samplers.KSampler.SCHEDULERS, ),
|
126 |
+
"steps": ("INT", {"default": 10000, "min": 0, "max": 10000}),
|
127 |
+
"start_at_step": ("INT", {"default": 0, "min": 0, "max": 10000}),
|
128 |
+
"end_at_step": ("INT", {"default": 10000, "min": 1, "max": 10000}),
|
129 |
+
}}
|
130 |
+
|
131 |
+
RETURN_TYPES = ("FLOAT",)
|
132 |
+
FUNCTION = "calc_sigma"
|
133 |
+
|
134 |
+
CATEGORY = "latent/noise"
|
135 |
+
|
136 |
+
def calc_sigma(self, model, sampler_name, scheduler, steps, start_at_step, end_at_step):
|
137 |
+
device = CFUI.model_management.get_torch_device()
|
138 |
+
end_at_step = min(steps, end_at_step)
|
139 |
+
start_at_step = min(start_at_step, end_at_step)
|
140 |
+
CFUI.model_management.load_model_gpu(model)
|
141 |
+
sampler = CFUI.samplers.KSampler(model, steps=steps, device=device, sampler=sampler_name, scheduler=scheduler, denoise=1.0, model_options=model.model_options)
|
142 |
+
sigmas = sampler.sigmas
|
143 |
+
sigma = sigmas[start_at_step] - sigmas[end_at_step]
|
144 |
+
sigma /= model.model.latent_format.scale_factor
|
145 |
+
return (sigma.cpu().numpy(),)
|
146 |
+
|
147 |
+
class InjectNoise:
|
148 |
+
@classmethod
|
149 |
+
def INPUT_TYPES(s):
|
150 |
+
return {"required": {
|
151 |
+
"latents":("LATENT",),
|
152 |
+
|
153 |
+
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 200.0, "step": 0.01}),
|
154 |
+
},
|
155 |
+
"optional":{
|
156 |
+
"noise": ("LATENT",),
|
157 |
+
"mask": ("MASK", ),
|
158 |
+
}}
|
159 |
+
|
160 |
+
RETURN_TYPES = ("LATENT",)
|
161 |
+
FUNCTION = "inject_noise"
|
162 |
+
|
163 |
+
CATEGORY = "latent/noise"
|
164 |
+
|
165 |
+
def inject_noise(self, latents, strength, noise=None, mask=None):
|
166 |
+
s = latents.copy()
|
167 |
+
if noise is None:
|
168 |
+
return (s,)
|
169 |
+
if latents["samples"].shape != noise["samples"].shape:
|
170 |
+
print("warning, shapes in InjectNoise not the same, ignoring")
|
171 |
+
return (s,)
|
172 |
+
noised = s["samples"].clone() + noise["samples"].clone() * strength
|
173 |
+
if mask is not None:
|
174 |
+
mask = prepare_mask(mask, noised.shape)
|
175 |
+
noised = mask * noised + (1-mask) * latents["samples"]
|
176 |
+
s["samples"] = noised
|
177 |
+
return (s,)
|
178 |
+
|
179 |
+
class Unsampler:
|
180 |
+
@classmethod
|
181 |
+
def INPUT_TYPES(s):
|
182 |
+
return {"required":
|
183 |
+
{"model": ("MODEL",),
|
184 |
+
"steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
|
185 |
+
"end_at_step": ("INT", {"default": 0, "min": 0, "max": 10000}),
|
186 |
+
"cfg": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0}),
|
187 |
+
"sampler_name": (CFUI.samplers.KSampler.SAMPLERS, ),
|
188 |
+
"scheduler": (CFUI.samplers.KSampler.SCHEDULERS, ),
|
189 |
+
"normalize": (["disable", "enable"], ),
|
190 |
+
"positive": ("CONDITIONING", ),
|
191 |
+
"negative": ("CONDITIONING", ),
|
192 |
+
"latent_image": ("LATENT", ),
|
193 |
+
}}
|
194 |
+
|
195 |
+
RETURN_TYPES = ("LATENT",)
|
196 |
+
FUNCTION = "unsampler"
|
197 |
+
|
198 |
+
CATEGORY = "sampling"
|
199 |
+
|
200 |
+
def unsampler(self, model, cfg, sampler_name, steps, end_at_step, scheduler, normalize, positive, negative, latent_image):
|
201 |
+
normalize = normalize == "enable"
|
202 |
+
device = CFUI.model_management.get_torch_device()
|
203 |
+
latent = latent_image
|
204 |
+
latent_image = latent["samples"]
|
205 |
+
|
206 |
+
end_at_step = min(end_at_step, steps-1)
|
207 |
+
end_at_step = steps - end_at_step
|
208 |
+
|
209 |
+
noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu")
|
210 |
+
noise_mask = None
|
211 |
+
if "noise_mask" in latent:
|
212 |
+
noise_mask = CFUI.sampler_helpers.prepare_mask(latent["noise_mask"], noise.shape, device)
|
213 |
+
|
214 |
+
noise = noise.to(device)
|
215 |
+
latent_image = latent_image.to(device)
|
216 |
+
|
217 |
+
conds0 = \
|
218 |
+
{"positive": CFUI.sampler_helpers.convert_cond(positive),
|
219 |
+
"negative": CFUI.sampler_helpers.convert_cond(negative)}
|
220 |
+
|
221 |
+
conds = {}
|
222 |
+
for k in conds0:
|
223 |
+
conds[k] = list(map(lambda a: a.copy(), conds0[k]))
|
224 |
+
|
225 |
+
models, inference_memory = CFUI.sampler_helpers.get_additional_models(conds, model.model_dtype())
|
226 |
+
|
227 |
+
CFUI.model_management.load_models_gpu([model] + models, model.memory_required(noise.shape) + inference_memory)
|
228 |
+
|
229 |
+
sampler = CFUI.samplers.KSampler(model, steps=steps, device=device, sampler=sampler_name, scheduler=scheduler, denoise=1.0, model_options=model.model_options)
|
230 |
+
|
231 |
+
sigmas = sampler.sigmas.flip(0) + 0.0001
|
232 |
+
|
233 |
+
pbar = CFUI.utils.ProgressBar(steps)
|
234 |
+
def callback(step, x0, x, total_steps):
|
235 |
+
pbar.update_absolute(step + 1, total_steps)
|
236 |
+
|
237 |
+
samples = sampler.sample(noise, positive, negative, cfg=cfg, latent_image=latent_image, force_full_denoise=False, denoise_mask=noise_mask, sigmas=sigmas, start_step=0, last_step=end_at_step, callback=callback)
|
238 |
+
if normalize:
|
239 |
+
#technically doesn't normalize because unsampling is not guaranteed to end at a std given by the schedule
|
240 |
+
samples -= samples.mean()
|
241 |
+
samples /= samples.std()
|
242 |
+
samples = samples.cpu()
|
243 |
+
|
244 |
+
CFUI.sampler_helpers.cleanup_additional_models(models)
|
245 |
+
|
246 |
+
out = latent.copy()
|
247 |
+
out["samples"] = samples
|
248 |
+
return (out, )
|
249 |
+
|
250 |
+
NODE_CLASS_MAPPINGS = {
|
251 |
+
"BNK_NoisyLatentImage": NoisyLatentImage,
|
252 |
+
#"BNK_DuplicateBatchIndex": DuplicateBatchIndex,
|
253 |
+
"BNK_SlerpLatent": LatentSlerp,
|
254 |
+
"BNK_GetSigma": GetSigma,
|
255 |
+
"BNK_InjectNoise": InjectNoise,
|
256 |
+
"BNK_Unsampler": Unsampler,
|
257 |
+
}
|
258 |
+
|
259 |
+
NODE_DISPLAY_NAME_MAPPINGS = {
|
260 |
+
"BNK_NoisyLatentImage": "Noisy Latent Image",
|
261 |
+
#"BNK_DuplicateBatchIndex": "Duplicate Batch Index",
|
262 |
+
"BNK_SlerpLatent": "Slerp Latents",
|
263 |
+
"BNK_GetSigma": "Get Sigma",
|
264 |
+
"BNK_InjectNoise": "Inject Noise",
|
265 |
+
"BNK_Unsampler": "Unsampler",
|
266 |
+
}
|