M3D-LaMed-Phi-3-4B / modeling_m3d_lamed.py
GoodBaiBai88's picture
Upload LamedPhi3ForCausalLM
531f2d8 verified
from __future__ import annotations
from typing import Union
from transformers import Phi3Config, Phi3Model, Phi3ForCausalLM
from transformers.modeling_outputs import CausalLMOutputWithPast
from transformers.generation.utils import GenerateOutput
from .configuration_m3d_lamed import LamedPhi3Config
from abc import ABC, abstractmethod
from torch import Tensor
import math
from typing import Any, Dict, List
import torch
import torch.nn as nn
from typing import Optional, Tuple, Type
from monai.networks.blocks import PatchEmbed
import numpy as np
import torch.nn.functional as F
from einops import rearrange
from einops.layers.torch import Rearrange
from collections.abc import Sequence
from monai.networks.blocks.patchembedding import PatchEmbeddingBlock
from monai.networks.blocks.transformerblock import TransformerBlock
from monai.networks.nets import ViT
class BinaryDiceLoss(nn.Module):
def __init__(self, smooth=1, p=2, reduction='mean'):
super(BinaryDiceLoss, self).__init__()
self.smooth = smooth
self.p = p
self.reduction = reduction
def forward(self, predict, target):
predict = torch.sigmoid(predict)
target_ = target.clone().float()
target_[target == -1] = 0
assert predict.shape[0] == target.shape[0], "predict & target batch size don't match\n" + str(predict.shape) + '\n' + str(target.shape[0])
predict = predict.contiguous().view(predict.shape[0], -1)
target_ = target_.contiguous().view(target_.shape[0], -1)
num = torch.sum(torch.mul(predict, target_), dim=1)
den = torch.sum(predict, dim=1) + torch.sum(target_, dim=1) + self.smooth
dice_score = 2*num / den
dice_loss = 1 - dice_score
# dice_loss_avg = dice_loss[target[:,0]!=-1].sum() / dice_loss[target[:,0]!=-1].shape[0]
dice_loss_avg = dice_loss.sum() / dice_loss.shape[0]
return dice_loss_avg
class BCELoss(nn.Module):
def __init__(self):
super(BCELoss, self).__init__()
self.criterion = nn.BCEWithLogitsLoss()
def forward(self, predict, target):
assert predict.shape == target.shape, 'predict & target shape do not match\n' + str(predict.shape) + '\n' + str(target.shape)
target_ = target.clone()
target_[target == -1] = 0
ce_loss = self.criterion(predict, target_.float())
return ce_loss
class LayerNorm2d(nn.Module):
def __init__(self, num_channels: int, eps: float = 1e-6) -> None:
super().__init__()
self.weight = nn.Parameter(torch.ones(num_channels))
self.bias = nn.Parameter(torch.zeros(num_channels))
self.eps = eps
def forward(self, x: torch.Tensor) -> torch.Tensor:
u = x.mean(1, keepdim=True)
s = (x - u).pow(2).mean(1, keepdim=True)
x = (x - u) / torch.sqrt(s + self.eps)
x = self.weight[:, None, None] * x + self.bias[:, None, None]
return x
class MLPBlock(nn.Module):
def __init__(
self,
embedding_dim: int,
mlp_dim: int,
act: Type[nn.Module] = nn.GELU,
) -> None:
super().__init__()
self.lin1 = nn.Linear(embedding_dim, mlp_dim)
self.lin2 = nn.Linear(mlp_dim, embedding_dim)
self.act = act()
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.lin2(self.act(self.lin1(x)))
class TwoWayTransformer(nn.Module):
def __init__(
self,
depth: int,
embedding_dim: int,
num_heads: int,
mlp_dim: int,
activation: Type[nn.Module] = nn.ReLU,
attention_downsample_rate: int = 2,
) -> None:
"""
A transformer decoder that attends to an input image using
queries whose positional embedding is supplied.
Args:
depth (int): number of layers in the transformer
embedding_dim (int): the channel dimension for the input embeddings
num_heads (int): the number of heads for multihead attention. Must
divide embedding_dim
mlp_dim (int): the channel dimension internal to the MLP block
activation (nn.Module): the activation to use in the MLP block
"""
super().__init__()
self.depth = depth
self.embedding_dim = embedding_dim
self.num_heads = num_heads
self.mlp_dim = mlp_dim
self.layers = nn.ModuleList()
for i in range(depth):
self.layers.append(
TwoWayAttentionBlock(
embedding_dim=embedding_dim,
num_heads=num_heads,
mlp_dim=mlp_dim,
activation=activation,
attention_downsample_rate=attention_downsample_rate,
skip_first_layer_pe=(i == 0),
)
)
self.final_attn_token_to_image = Attention(
embedding_dim, num_heads, downsample_rate=attention_downsample_rate
)
self.norm_final_attn = nn.LayerNorm(embedding_dim)
def forward(
self,
image_embedding: Tensor,
image_pe: Tensor,
point_embedding: Tensor,
) -> Tuple[Tensor, Tensor]:
"""
Args:
image_embedding (torch.Tensor): image to attend to. Should be shape
B x embedding_dim x h x w for any h and w.
image_pe (torch.Tensor): the positional encoding to add to the image. Must
have the same shape as image_embedding.
point_embedding (torch.Tensor): the embedding to add to the query points.
Must have shape B x N_points x embedding_dim for any N_points.
Returns:
torch.Tensor: the processed point_embedding
torch.Tensor: the processed image_embedding
"""
# BxCxHxW -> BxHWxC == B x N_image_tokens x C
bs, c, h, w, d = image_embedding.shape
image_embedding = image_embedding.flatten(2).permute(0, 2, 1)
image_pe = image_pe.flatten(2).permute(0, 2, 1)
# Prepare queries
queries = point_embedding
keys = image_embedding
# Apply transformer blocks and final layernorm
for layer in self.layers:
queries, keys = layer(
queries=queries,
keys=keys,
query_pe=point_embedding,
key_pe=image_pe,
)
# Apply the final attention layer from the points to the image
q = queries + point_embedding
k = keys + image_pe
attn_out = self.final_attn_token_to_image(q=q, k=k, v=keys)
queries = queries + attn_out
queries = self.norm_final_attn(queries)
return queries, keys
class TwoWayAttentionBlock(nn.Module):
def __init__(
self,
embedding_dim: int,
num_heads: int,
mlp_dim: int = 2048,
activation: Type[nn.Module] = nn.ReLU,
attention_downsample_rate: int = 2,
skip_first_layer_pe: bool = False,
) -> None:
"""
A transformer block with four layers: (1) self-attention of sparse
inputs, (2) cross attention of sparse inputs to dense inputs, (3) mlp
block on sparse inputs, and (4) cross attention of dense inputs to sparse
inputs.
Arguments:
embedding_dim (int): the channel dimension of the embeddings
num_heads (int): the number of heads in the attention layers
mlp_dim (int): the hidden dimension of the mlp block
activation (nn.Module): the activation of the mlp block
skip_first_layer_pe (bool): skip the PE on the first layer
"""
super().__init__()
self.self_attn = Attention(embedding_dim, num_heads)
self.norm1 = nn.LayerNorm(embedding_dim)
self.cross_attn_token_to_image = Attention(
embedding_dim, num_heads, downsample_rate=attention_downsample_rate
)
self.norm2 = nn.LayerNorm(embedding_dim)
self.mlp = MLPBlock(embedding_dim, mlp_dim, activation)
self.norm3 = nn.LayerNorm(embedding_dim)
self.norm4 = nn.LayerNorm(embedding_dim)
self.cross_attn_image_to_token = Attention(
embedding_dim, num_heads, downsample_rate=attention_downsample_rate
)
self.skip_first_layer_pe = skip_first_layer_pe
def forward(
self, queries: Tensor, keys: Tensor, query_pe: Tensor, key_pe: Tensor
) -> Tuple[Tensor, Tensor]:
# Self attention block
if self.skip_first_layer_pe:
queries = self.self_attn(q=queries, k=queries, v=queries)
else:
q = queries + query_pe
attn_out = self.self_attn(q=q, k=q, v=queries)
queries = queries + attn_out
queries = self.norm1(queries)
# Cross attention block, tokens attending to image embedding
q = queries + query_pe
k = keys + key_pe
attn_out = self.cross_attn_token_to_image(q=q, k=k, v=keys)
queries = queries + attn_out
queries = self.norm2(queries)
# MLP block
mlp_out = self.mlp(queries)
queries = queries + mlp_out
queries = self.norm3(queries)
# Cross attention block, image embedding attending to tokens
q = queries + query_pe
k = keys + key_pe
attn_out = self.cross_attn_image_to_token(q=k, k=q, v=queries)
keys = keys + attn_out
keys = self.norm4(keys)
return queries, keys
class Attention(nn.Module):
"""
An attention layer that allows for downscaling the size of the embedding
after projection to queries, keys, and values.
"""
def __init__(
self,
embedding_dim: int,
num_heads: int,
downsample_rate: int = 1,
) -> None:
super().__init__()
self.embedding_dim = embedding_dim
self.internal_dim = embedding_dim // downsample_rate
self.num_heads = num_heads
assert self.internal_dim % num_heads == 0, "num_heads must divide embedding_dim."
self.q_proj = nn.Linear(embedding_dim, self.internal_dim)
self.k_proj = nn.Linear(embedding_dim, self.internal_dim)
self.v_proj = nn.Linear(embedding_dim, self.internal_dim)
self.out_proj = nn.Linear(self.internal_dim, embedding_dim)
def _separate_heads(self, x: Tensor, num_heads: int) -> Tensor:
b, n, c = x.shape
x = x.reshape(b, n, num_heads, c // num_heads)
return x.transpose(1, 2) # B x N_heads x N_tokens x C_per_head
def _recombine_heads(self, x: Tensor) -> Tensor:
b, n_heads, n_tokens, c_per_head = x.shape
x = x.transpose(1, 2)
return x.reshape(b, n_tokens, n_heads * c_per_head) # B x N_tokens x C
def forward(self, q: Tensor, k: Tensor, v: Tensor) -> Tensor:
# Input projections
q = self.q_proj(q)
k = self.k_proj(k)
v = self.v_proj(v)
# Separate into heads
q = self._separate_heads(q, self.num_heads)
k = self._separate_heads(k, self.num_heads)
v = self._separate_heads(v, self.num_heads)
# Attention
_, _, _, c_per_head = q.shape
attn = q @ k.permute(0, 1, 3, 2) # B x N_heads x N_tokens x N_tokens
attn = attn / math.sqrt(c_per_head)
attn = torch.softmax(attn, dim=-1)
# Get output
out = attn @ v
out = self._recombine_heads(out)
out = self.out_proj(out)
return out
# This class and its supporting functions below lightly adapted from the ViTDet backbone available at: https://github.com/facebookresearch/detectron2/blob/main/detectron2/modeling/backbone/vit.py # noqa
class ImageEncoderViT(nn.Module):
def __init__(
self,
img_size: int = 1024,
patch_size: int = 16,
in_chans: int = 1,
embed_dim: int = 768,
depth: int = 12,
num_heads: int = 12,
mlp_ratio: float = 4.0,
out_chans: int = 256,
qkv_bias: bool = True,
norm_layer: Type[nn.Module] = nn.LayerNorm,
act_layer: Type[nn.Module] = nn.GELU,
use_abs_pos: bool = True,
use_rel_pos: bool = False,
rel_pos_zero_init: bool = True,
window_size: int = 0,
global_attn_indexes: Tuple[int, ...] = (),
) -> None:
"""
Args:
img_size (int): Input image size.
patch_size (int): Patch size.
in_chans (int): Number of input image channels.
embed_dim (int): Patch embedding dimension.
depth (int): Depth of ViT.
num_heads (int): Number of attention heads in each ViT block.
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
qkv_bias (bool): If True, add a learnable bias to query, key, value.
norm_layer (nn.Module): Normalization layer.
act_layer (nn.Module): Activation layer.
use_abs_pos (bool): If True, use absolute positional embeddings.
use_rel_pos (bool): If True, add relative positional embeddings to the attention map.
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
window_size (int): Window size for window attention blocks.
global_attn_indexes (list): Indexes for blocks using global attention.
"""
super().__init__()
self.img_size = img_size
# self.patch_embed = PatchEmbed(
# kernel_size=(patch_size, patch_size),
# stride=(patch_size, patch_size),
# in_chans=in_chans,
# embed_dim=embed_dim,
# )
self.patch_embed = PatchEmbed(
patch_size=patch_size,
in_chans=in_chans,
embed_dim=embed_dim,
spatial_dims=3,
)
self.pos_embed: Optional[nn.Parameter] = None
if use_abs_pos:
# Initialize absolute positional embedding with pretrain image size.
self.pos_embed = nn.Parameter(
torch.zeros(1, img_size // patch_size, img_size // patch_size, img_size // patch_size, embed_dim)
)
self.blocks = nn.ModuleList()
for i in range(depth):
block = Block(
dim=embed_dim,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
norm_layer=norm_layer,
act_layer=act_layer,
use_rel_pos=use_rel_pos,
rel_pos_zero_init=rel_pos_zero_init,
window_size=window_size if i not in global_attn_indexes else 0,
input_size=(img_size // patch_size, img_size // patch_size),
)
self.blocks.append(block)
self.neck = nn.Sequential(
nn.Conv2d(
embed_dim,
out_chans,
kernel_size=1,
bias=False,
),
LayerNorm2d(out_chans),
nn.Conv2d(
out_chans,
out_chans,
kernel_size=3,
padding=1,
bias=False,
),
LayerNorm2d(out_chans),
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.patch_embed(x)
print('patch embedded shape: ', x.shape) # embedded: [8, 768, 6, 6, 6]
if self.pos_embed is not None:
x = x + self.pos_embed
for blk in self.blocks:
x = blk(x)
x = self.neck(x.permute(0, 3, 1, 2))
return x
class Block(nn.Module):
"""Transformer blocks with support of window attention and residual propagation blocks"""
def __init__(
self,
dim: int,
num_heads: int,
mlp_ratio: float = 4.0,
qkv_bias: bool = True,
norm_layer: Type[nn.Module] = nn.LayerNorm,
act_layer: Type[nn.Module] = nn.GELU,
use_rel_pos: bool = False,
rel_pos_zero_init: bool = True,
window_size: int = 0,
input_size: Optional[Tuple[int, int]] = None,
) -> None:
"""
Args:
dim (int): Number of input channels.
num_heads (int): Number of attention heads in each ViT block.
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
qkv_bias (bool): If True, add a learnable bias to query, key, value.
norm_layer (nn.Module): Normalization layer.
act_layer (nn.Module): Activation layer.
use_rel_pos (bool): If True, add relative positional embeddings to the attention map.
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
window_size (int): Window size for window attention blocks. If it equals 0, then
use global attention.
input_size (tuple(int, int) or None): Input resolution for calculating the relative
positional parameter size.
"""
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = Attention2(
dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
use_rel_pos=use_rel_pos,
rel_pos_zero_init=rel_pos_zero_init,
input_size=input_size if window_size == 0 else (window_size, window_size),
)
self.norm2 = norm_layer(dim)
self.mlp = MLPBlock(embedding_dim=dim, mlp_dim=int(dim * mlp_ratio), act=act_layer)
self.window_size = window_size
def forward(self, x: torch.Tensor) -> torch.Tensor:
shortcut = x
x = self.norm1(x)
# Window partition
if self.window_size > 0:
H, W = x.shape[1], x.shape[2]
x, pad_hw = window_partition(x, self.window_size)
x = self.attn(x)
# Reverse window partition
if self.window_size > 0:
x = window_unpartition(x, self.window_size, pad_hw, (H, W))
x = shortcut + x
x = x + self.mlp(self.norm2(x))
return x
class Attention2(nn.Module):
"""Multi-head Attention block with relative position embeddings."""
def __init__(
self,
dim: int,
num_heads: int = 8,
qkv_bias: bool = True,
use_rel_pos: bool = False,
rel_pos_zero_init: bool = True,
input_size: Optional[Tuple[int, int]] = None,
) -> None:
"""
Args:
dim (int): Number of input channels.
num_heads (int): Number of attention heads.
qkv_bias (bool): If True, add a learnable bias to query, key, value.
rel_pos (bool): If True, add relative positional embeddings to the attention map.
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
input_size (tuple(int, int) or None): Input resolution for calculating the relative
positional parameter size.
"""
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = head_dim ** -0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.proj = nn.Linear(dim, dim)
self.use_rel_pos = use_rel_pos
if self.use_rel_pos:
assert (
input_size is not None
), "Input size must be provided if using relative positional encoding."
# initialize relative positional embeddings
self.rel_pos_h = nn.Parameter(torch.zeros(2 * input_size[0] - 1, head_dim))
self.rel_pos_w = nn.Parameter(torch.zeros(2 * input_size[1] - 1, head_dim))
def forward(self, x: torch.Tensor) -> torch.Tensor:
B, H, W, _ = x.shape
# qkv with shape (3, B, nHead, H * W, C)
qkv = self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
# q, k, v with shape (B * nHead, H * W, C)
q, k, v = qkv.reshape(3, B * self.num_heads, H * W, -1).unbind(0)
attn = (q * self.scale) @ k.transpose(-2, -1)
if self.use_rel_pos:
attn = add_decomposed_rel_pos(attn, q, self.rel_pos_h, self.rel_pos_w, (H, W), (H, W))
attn = attn.softmax(dim=-1)
x = (attn @ v).view(B, self.num_heads, H, W, -1).permute(0, 2, 3, 1, 4).reshape(B, H, W, -1)
x = self.proj(x)
return x
def window_partition(x: torch.Tensor, window_size: int) -> Tuple[torch.Tensor, Tuple[int, int]]:
"""
Partition into non-overlapping windows with padding if needed.
Args:
x (tensor): input tokens with [B, H, W, C].
window_size (int): window size.
Returns:
windows: windows after partition with [B * num_windows, window_size, window_size, C].
(Hp, Wp): padded height and width before partition
"""
B, H, W, C = x.shape
pad_h = (window_size - H % window_size) % window_size
pad_w = (window_size - W % window_size) % window_size
if pad_h > 0 or pad_w > 0:
x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h))
Hp, Wp = H + pad_h, W + pad_w
x = x.view(B, Hp // window_size, window_size, Wp // window_size, window_size, C)
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
return windows, (Hp, Wp)
def window_unpartition(
windows: torch.Tensor, window_size: int, pad_hw: Tuple[int, int], hw: Tuple[int, int]
) -> torch.Tensor:
"""
Window unpartition into original sequences and removing padding.
Args:
windows (tensor): input tokens with [B * num_windows, window_size, window_size, C].
window_size (int): window size.
pad_hw (Tuple): padded height and width (Hp, Wp).
hw (Tuple): original height and width (H, W) before padding.
Returns:
x: unpartitioned sequences with [B, H, W, C].
"""
Hp, Wp = pad_hw
H, W = hw
B = windows.shape[0] // (Hp * Wp // window_size // window_size)
x = windows.view(B, Hp // window_size, Wp // window_size, window_size, window_size, -1)
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, Hp, Wp, -1)
if Hp > H or Wp > W:
x = x[:, :H, :W, :].contiguous()
return x
def get_rel_pos(q_size: int, k_size: int, rel_pos: torch.Tensor) -> torch.Tensor:
"""
Get relative positional embeddings according to the relative positions of
query and key sizes.
Args:
q_size (int): size of query q.
k_size (int): size of key k.
rel_pos (Tensor): relative position embeddings (L, C).
Returns:
Extracted positional embeddings according to relative positions.
"""
max_rel_dist = int(2 * max(q_size, k_size) - 1)
# Interpolate rel pos if needed.
if rel_pos.shape[0] != max_rel_dist:
# Interpolate rel pos.
rel_pos_resized = F.interpolate(
rel_pos.reshape(1, rel_pos.shape[0], -1).permute(0, 2, 1),
size=max_rel_dist,
mode="linear",
)
rel_pos_resized = rel_pos_resized.reshape(-1, max_rel_dist).permute(1, 0)
else:
rel_pos_resized = rel_pos
# Scale the coords with short length if shapes for q and k are different.
q_coords = torch.arange(q_size)[:, None] * max(k_size / q_size, 1.0)
k_coords = torch.arange(k_size)[None, :] * max(q_size / k_size, 1.0)
relative_coords = (q_coords - k_coords) + (k_size - 1) * max(q_size / k_size, 1.0)
return rel_pos_resized[relative_coords.long()]
def add_decomposed_rel_pos(
attn: torch.Tensor,
q: torch.Tensor,
rel_pos_h: torch.Tensor,
rel_pos_w: torch.Tensor,
q_size: Tuple[int, int],
k_size: Tuple[int, int],
) -> torch.Tensor:
"""
Calculate decomposed Relative Positional Embeddings from :paper:`mvitv2`.
https://github.com/facebookresearch/mvit/blob/19786631e330df9f3622e5402b4a419a263a2c80/mvit/models/attention.py # noqa B950
Args:
attn (Tensor): attention map.
q (Tensor): query q in the attention layer with shape (B, q_h * q_w, C).
rel_pos_h (Tensor): relative position embeddings (Lh, C) for height axis.
rel_pos_w (Tensor): relative position embeddings (Lw, C) for width axis.
q_size (Tuple): spatial sequence size of query q with (q_h, q_w).
k_size (Tuple): spatial sequence size of key k with (k_h, k_w).
Returns:
attn (Tensor): attention map with added relative positional embeddings.
"""
q_h, q_w = q_size
k_h, k_w = k_size
Rh = get_rel_pos(q_h, k_h, rel_pos_h)
Rw = get_rel_pos(q_w, k_w, rel_pos_w)
B, _, dim = q.shape
r_q = q.reshape(B, q_h, q_w, dim)
rel_h = torch.einsum("bhwc,hkc->bhwk", r_q, Rh)
rel_w = torch.einsum("bhwc,wkc->bhwk", r_q, Rw)
attn = (
attn.view(B, q_h, q_w, k_h, k_w) + rel_h[:, :, :, :, None] + rel_w[:, :, :, None, :]
).view(B, q_h * q_w, k_h * k_w)
return attn
class PromptEncoder(nn.Module):
def __init__(
self,
embed_dim: int,
image_embedding_size: Tuple[int, int, int],
input_image_size: Tuple[int, int, int],
mask_in_chans: int,
activation: Type[nn.Module] = nn.GELU,
) -> None:
"""
Encodes prompts for input to SAM's mask decoder.
Arguments:
embed_dim (int): The prompts' embedding dimension
image_embedding_size (tuple(int, int)): The spatial size of the
image embedding, as (H, W).
input_image_size (int): The padded size of the image as input
to the image encoder, as (H, W).
mask_in_chans (int): The number of hidden channels used for
encoding input masks.
activation (nn.Module): The activation to use when encoding
input masks.
"""
super().__init__()
self.embed_dim = embed_dim
self.input_image_size = input_image_size
self.image_embedding_size = image_embedding_size
self.pe_layer = PositionEmbeddingRandom(embed_dim // 2)
self.num_point_embeddings: int = 4 # pos/neg point + 2 box corners
point_embeddings = [nn.Embedding(1, embed_dim) for i in range(self.num_point_embeddings)]
self.point_embeddings = nn.ModuleList(point_embeddings)
self.not_a_point_embed = nn.Embedding(1, embed_dim)
self.mask_input_size = (4 * image_embedding_size[0], 4 * image_embedding_size[1], 4 * image_embedding_size[2])
self.mask_downscaling = nn.Sequential(
nn.Conv2d(1, mask_in_chans // 4, kernel_size=2, stride=2),
LayerNorm2d(mask_in_chans // 4),
activation(),
nn.Conv2d(mask_in_chans // 4, mask_in_chans, kernel_size=2, stride=2),
LayerNorm2d(mask_in_chans),
activation(),
nn.Conv2d(mask_in_chans, embed_dim, kernel_size=1),
)
self.no_mask_embed = nn.Embedding(1, embed_dim)
def get_dense_pe(self) -> torch.Tensor:
"""
Returns the positional encoding used to encode point prompts,
applied to a dense set of points the shape of the image encoding.
Returns:
torch.Tensor: Positional encoding with shape
1x(embed_dim)x(embedding_h)x(embedding_w)
"""
return self.pe_layer(self.image_embedding_size).unsqueeze(0)
def _embed_points(
self,
points: torch.Tensor,
labels: torch.Tensor,
pad: bool,
) -> torch.Tensor:
"""Embeds point prompts."""
points = points + 0.5 # Shift to center of pixel
if pad:
padding_point = torch.zeros((points.shape[0], 1, 3), device=points.device)
padding_label = -torch.ones((labels.shape[0], 1), device=labels.device)
points = torch.cat([points, padding_point], dim=1)
labels = torch.cat([labels, padding_label], dim=1)
point_embedding = self.pe_layer.forward_with_coords(points, self.input_image_size)
point_embedding[labels == -1] = 0.0
point_embedding[labels == -1] += self.not_a_point_embed.weight
point_embedding[labels == 0] += self.point_embeddings[0].weight
point_embedding[labels == 1] += self.point_embeddings[1].weight
return point_embedding
def _embed_boxes(self, boxes: torch.Tensor) -> torch.Tensor:
"""Embeds box prompts."""
boxes = boxes + 0.5 # Shift to center of pixel
coords = boxes.reshape(-1, 2, 3)
corner_embedding = self.pe_layer.forward_with_coords(coords, self.input_image_size)
corner_embedding[:, 0, :] += self.point_embeddings[2].weight
corner_embedding[:, 1, :] += self.point_embeddings[3].weight
return corner_embedding
def _embed_masks(self, masks: torch.Tensor) -> torch.Tensor:
"""Embeds mask inputs."""
mask_embedding = self.mask_downscaling(masks)
return mask_embedding
def _get_batch_size(
self,
points: Optional[Tuple[torch.Tensor, torch.Tensor]],
boxes: Optional[torch.Tensor],
masks: Optional[torch.Tensor],
text_embedding: Optional[torch.Tensor],
) -> int:
"""
Gets the batch size of the output given the batch size of the input prompts.
"""
if points is not None:
return points[0].shape[0]
elif boxes is not None:
return boxes.shape[0]
elif masks is not None:
return masks.shape[0]
elif text_embedding is not None:
return text_embedding.shape[0]
else:
return 1
def _get_device(self) -> torch.device:
return self.point_embeddings[0].weight.device
def forward(
self,
points: Optional[Tuple[torch.Tensor, torch.Tensor]],
boxes: Optional[torch.Tensor],
masks: Optional[torch.Tensor],
text_embedding: Optional[torch.Tensor],
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Embeds different types of prompts, returning both sparse and dense
embeddings.
Arguments:
points (tuple(torch.Tensor, torch.Tensor) or none): point coordinates
and labels to embed.
boxes (torch.Tensor or none): boxes to embed
masks (torch.Tensor or none): masks to embed
text: test prompt (B, 768)
Returns:
torch.Tensor: sparse embeddings for the points and boxes, with shape
BxNx(embed_dim), where N is determined by the number of input points
and boxes.
torch.Tensor: dense embeddings for the masks, in the shape
Bx(embed_dim)x(embed_H)x(embed_W)
"""
# print('prompt encoder here...')
bs = self._get_batch_size(points, boxes, masks, text_embedding)
sparse_embeddings = torch.empty((bs, 0, self.embed_dim), device=self._get_device(),
dtype=self.point_embeddings[0].weight.dtype)
# print('sparse_embeddings ', sparse_embeddings.shape)
if points is not None:
coords, labels = points
point_embeddings = self._embed_points(coords, labels, pad=(boxes is None))
sparse_embeddings = torch.cat([sparse_embeddings, point_embeddings], dim=1)
if boxes is not None:
box_embeddings = self._embed_boxes(boxes)
sparse_embeddings = torch.cat([sparse_embeddings, box_embeddings], dim=1)
if text_embedding is not None:
sparse_embeddings = torch.cat([sparse_embeddings, text_embedding.unsqueeze(dim=1)], dim=1)
# print('box_embeddings ', box_embeddings.shape)
# print('sparse_embeddings after box/point/text', sparse_embeddings.shape)
if masks is not None:
dense_embeddings = self._embed_masks(masks)
else:
dense_embeddings = self.no_mask_embed.weight.reshape(1, -1, 1, 1, 1).expand(
bs, -1, int(self.image_embedding_size[0]), int(self.image_embedding_size[1]),
int(self.image_embedding_size[2])
)
return sparse_embeddings, dense_embeddings
class PositionEmbeddingRandom(nn.Module):
"""
Positional encoding using random spatial frequencies.
"""
def __init__(self, num_pos_feats: int = 64, scale: Optional[float] = None) -> None:
super().__init__()
if scale is None or scale <= 0.0:
scale = 1.0
self.register_buffer(
"positional_encoding_gaussian_matrix",
scale * torch.randn((3, num_pos_feats)),
)
def _pe_encoding(self, coords: torch.Tensor) -> torch.Tensor:
"""Positionally encode points that are normalized to [0,1]."""
# assuming coords are in [0, 1]^2 square and have d_1 x ... x d_n x 2 shape
coords = 2 * coords - 1
coords = coords @ self.positional_encoding_gaussian_matrix
coords = 2 * np.pi * coords
# outputs d_1 x ... x d_n x C shape
return torch.cat([torch.sin(coords), torch.cos(coords)], dim=-1)
def forward(self, size: Tuple[int, int, int]) -> torch.Tensor:
"""Generate positional encoding for a grid of the specified size."""
h, w, d = size
device: Any = self.positional_encoding_gaussian_matrix.device
dtype = self.positional_encoding_gaussian_matrix.dtype
grid = torch.ones((h, w, d), device=device, dtype=dtype)
y_embed = grid.cumsum(dim=0) - 0.5
x_embed = grid.cumsum(dim=1) - 0.5
z_embed = grid.cumsum(dim=2) - 0.5
y_embed = y_embed / h
x_embed = x_embed / w
z_embed = z_embed / d
pe = self._pe_encoding(torch.stack([x_embed, y_embed, z_embed], dim=-1))
return pe.permute(3, 0, 1, 2) # C x H x W x D
def forward_with_coords(
self, coords_input: torch.Tensor, image_size: Tuple[int, int]
) -> torch.Tensor:
"""Positionally encode points that are not normalized to [0,1]."""
coords = coords_input.clone()
coords[:, :, 0] = coords[:, :, 0] / image_size[1]
coords[:, :, 1] = coords[:, :, 1] / image_size[0]
coords[:, :, 2] = coords[:, :, 2] / image_size[2]
return self._pe_encoding(coords.to(torch.float)) # B x N x C
class MaskDecoder(nn.Module):
def __init__(
self,
*,
image_encoder_type: str,
transformer_dim: int,
transformer: nn.Module,
num_multimask_outputs: int = 3,
activation: Type[nn.Module] = nn.GELU,
iou_head_depth: int = 3,
iou_head_hidden_dim: int = 256,
image_size,
patch_size,
) -> None:
"""
Predicts masks given an image and prompt embeddings, using a
transformer architecture.
Arguments:
transformer_dim (int): the channel dimension of the transformer
transformer (nn.Module): the transformer used to predict masks
num_multimask_outputs (int): the number of masks to predict
when disambiguating masks
activation (nn.Module): the type of activation to use when
upscaling masks
iou_head_depth (int): the depth of the MLP used to predict
mask quality
iou_head_hidden_dim (int): the hidden dimension of the MLP
used to predict mask quality
"""
super().__init__()
self.transformer_dim = transformer_dim
self.transformer = transformer
self.num_multimask_outputs = num_multimask_outputs
self.iou_token = nn.Embedding(1, transformer_dim)
self.num_mask_tokens = num_multimask_outputs + 1
self.mask_tokens = nn.Embedding(self.num_mask_tokens, transformer_dim)
if image_encoder_type == 'swin_vit':
self.feat_shape = image_size / patch_size
self.output_upscaling = nn.Sequential(
nn.ConvTranspose3d(transformer_dim, transformer_dim // 4, kernel_size=2, stride=2),
nn.LayerNorm(
(transformer_dim // 4, int(self.feat_shape[0]), int(self.feat_shape[1]), int(self.feat_shape[2]))),
# swin
activation(),
nn.ConvTranspose3d(transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2), # swin
# nn.Conv3d(transformer_dim // 4, transformer_dim // 8, kernel_size=3, stride=1, padding=1), # vit
activation(),
)
else:
self.feat_shape = image_size / patch_size * 2
self.output_upscaling = nn.Sequential(
nn.ConvTranspose3d(transformer_dim, transformer_dim // 4, kernel_size=2, stride=2),
nn.LayerNorm(
(transformer_dim // 4, int(self.feat_shape[0]), int(self.feat_shape[1]), int(self.feat_shape[2]))),
# vit
activation(),
nn.ConvTranspose3d(transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2),
# nn.Conv3d(transformer_dim // 4, transformer_dim // 8, kernel_size=3, stride=1, padding=1),
activation(),
)
self.output_hypernetworks_mlps = nn.ModuleList(
[
MLP(transformer_dim, transformer_dim, transformer_dim // 8, 3)
for i in range(self.num_mask_tokens)
]
)
self.iou_prediction_head = MLP(
transformer_dim, iou_head_hidden_dim, self.num_mask_tokens, iou_head_depth
)
self.txt_align_upscaled_embedding = nn.Linear(768, 96)
def forward(
self,
image_embeddings: torch.Tensor,
text_embedding: Optional[torch.Tensor],
image_pe: torch.Tensor,
sparse_prompt_embeddings: torch.Tensor,
dense_prompt_embeddings: torch.Tensor,
multimask_output: bool,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Predict masks given image and prompt embeddings.
Arguments:
image_embeddings (torch.Tensor): the embeddings from the image encoder
image_pe (torch.Tensor): positional encoding with the shape of image_embeddings
sparse_prompt_embeddings (torch.Tensor): the embeddings of the points and boxes
dense_prompt_embeddings (torch.Tensor): the embeddings of the mask inputs
multimask_output (bool): Whether to return multiple masks or a single
mask.
Returns:
torch.Tensor: batched predicted masks
torch.Tensor: batched predictions of mask quality
"""
# print('--------------decoder here--------------')
masks, iou_pred = self.predict_masks(
image_embeddings=image_embeddings,
text_embedding=text_embedding,
image_pe=image_pe,
sparse_prompt_embeddings=sparse_prompt_embeddings,
dense_prompt_embeddings=dense_prompt_embeddings,
)
# Select the correct mask or masks for output
if multimask_output:
mask_slice = slice(1, None)
else:
mask_slice = slice(0, 1)
masks = masks[:, mask_slice, :, :, :]
iou_pred = iou_pred[:, mask_slice]
# Prepare output
return masks, iou_pred
def predict_masks(
self,
image_embeddings: torch.Tensor,
text_embedding: torch.Tensor,
image_pe: torch.Tensor,
sparse_prompt_embeddings: torch.Tensor,
dense_prompt_embeddings: torch.Tensor,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Predicts masks. See 'forward' for more details."""
# Concatenate output tokens
output_tokens = torch.cat([self.iou_token.weight, self.mask_tokens.weight], dim=0)
output_tokens = output_tokens.unsqueeze(0).expand(sparse_prompt_embeddings.size(0), -1, -1)
tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1) # [2, 7=(5+2), 256]
# Expand per-image data in batch direction to be per-mask
if image_embeddings.shape[0] != tokens.shape[0]:
src = torch.repeat_interleave(image_embeddings, tokens.shape[0], dim=0)
else:
src = image_embeddings
src = src + dense_prompt_embeddings
pos_src = torch.repeat_interleave(image_pe, tokens.shape[0], dim=0)
b, c, h, w, d = src.shape
# Run the transformer
hs, src = self.transformer(src, pos_src, tokens)
iou_token_out = hs[:, 0, :]
mask_tokens_out = hs[:, 1: (1 + self.num_mask_tokens), :]
# Upscale mask embeddings and predict masks using the mask tokens
src = src.transpose(1, 2).view(b, c, h, w, d)
# print('src ', src.shape) # vit:[B, 768, 12, 12, 6], swin: [B, 6, 6, 3]
upscaled_embedding = self.output_upscaling(src)
hyper_in_list: List[torch.Tensor] = []
for i in range(self.num_mask_tokens):
hyper_in_list.append(self.output_hypernetworks_mlps[i](mask_tokens_out[:, i, :]))
hyper_in = torch.stack(hyper_in_list, dim=1)
b, c, h, w, d = upscaled_embedding.shape
# print('hyper_in ', hyper_in.shape) # [2, 4, 96]
# print('upscaled_embedding ', upscaled_embedding.shape) # [2, 96, 24, 24, 12]*
masks = (hyper_in @ upscaled_embedding.view(b, c, h * w * d)).view(b, -1, h, w, d)
# print('masks here ', masks.shape) # [2, 4, 24, 24, 12]
if text_embedding is not None:
# text_embedding: B x 768, upscaled_embedding: B x c x h x w x d => B x 1 x h x w x d
text_embedding_down = self.txt_align_upscaled_embedding(text_embedding).unsqueeze(dim=1)
upscaled_embedding = upscaled_embedding.view(b, c, h * w * d)
# print('text_embedding_down ', text_embedding_down.shape) # [2, 1, 96]
# text_embedding_norm = F.normalize(text_embedding_down, dim=-1)
# upscaled_embedding_norm = F.normalize(upscaled_embedding, dim=1)
# sim = (text_embedding_norm @ upscaled_embedding_norm).view(b, -1, h, w, d)
# print(text_embedding_down.shape, upscaled_embedding.shape)
sim = (text_embedding_down @ upscaled_embedding).view(b, -1, h, w, d)
# print('sim ', sim.shape) # [B, 1, 24, 24, 12]
sim = sim.repeat(1, masks.shape[1], 1, 1, 1)
# print('sim after', sim.shape) # [B, 4, 24, 24, 12]
masks = masks + sim
# Generate mask quality predictions
iou_pred = self.iou_prediction_head(iou_token_out)
return masks, iou_pred
# Lightly adapted from
# https://github.com/facebookresearch/MaskFormer/blob/main/mask_former/modeling/transformer/transformer_predictor.py # noqa
class MLP(nn.Module):
def __init__(
self,
input_dim: int,
hidden_dim: int,
output_dim: int,
num_layers: int,
sigmoid_output: bool = False,
) -> None:
super().__init__()
self.num_layers = num_layers
h = [hidden_dim] * (num_layers - 1)
self.layers = nn.ModuleList(
nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim])
)
self.sigmoid_output = sigmoid_output
def forward(self, x):
for i, layer in enumerate(self.layers):
x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
if self.sigmoid_output:
x = F.sigmoid(x)
return x
class Sam(nn.Module):
mask_threshold: float = 0.0
image_format: str = "RGB"
def __init__(
self,
image_encoder: ImageEncoderViT,
prompt_encoder: PromptEncoder,
mask_decoder: MaskDecoder,
pixel_mean: List[float] = [123.675, 116.28, 103.53],
pixel_std: List[float] = [58.395, 57.12, 57.375],
) -> None:
"""
SAM predicts object masks from an image and input prompts.
Arguments:
image_encoder (ImageEncoderViT): The backbone used to encode the
image into image embeddings that allow for efficient mask prediction.
prompt_encoder (PromptEncoder): Encodes various types of input prompts.
mask_decoder (MaskDecoder): Predicts masks from the image embeddings
and encoded prompts.
pixel_mean (list(float)): Mean values for normalizing pixels in the input image.
pixel_std (list(float)): Std values for normalizing pixels in the input image.
"""
super().__init__()
self.image_encoder = image_encoder
self.prompt_encoder = prompt_encoder
self.mask_decoder = mask_decoder
self.register_buffer("pixel_mean", torch.Tensor(pixel_mean).view(-1, 1, 1), False)
self.register_buffer("pixel_std", torch.Tensor(pixel_std).view(-1, 1, 1), False)
@property
def device(self) -> Any:
return self.pixel_mean.device
@torch.no_grad()
def forward(
self,
batched_input: List[Dict[str, Any]],
multimask_output: bool,
) -> List[Dict[str, torch.Tensor]]:
"""
Predicts masks end-to-end from provided images and prompts.
If prompts are not known in advance, using SamPredictor is
recommended over calling the model directly.
Arguments:
batched_input (list(dict)): A list over input images, each a
dictionary with the following keys. A prompt key can be
excluded if it is not present.
'image': The image as a torch tensor in 3xHxW format,
already transformed for input to the model.
'original_size': (tuple(int, int)) The original size of
the image before transformation, as (H, W).
'point_coords': (torch.Tensor) Batched point prompts for
this image, with shape BxNx2. Already transformed to the
input frame of the model.
'point_labels': (torch.Tensor) Batched labels for point prompts,
with shape BxN.
'boxes': (torch.Tensor) Batched box inputs, with shape Bx4.
Already transformed to the input frame of the model.
'mask_inputs': (torch.Tensor) Batched mask inputs to the model,
in the form Bx1xHxW.
multimask_output (bool): Whether the model should predict multiple
disambiguating masks, or return a single mask.
Returns:
(list(dict)): A list over input images, where each element is
as dictionary with the following keys.
'masks': (torch.Tensor) Batched binary mask predictions,
with shape BxCxHxW, where B is the number of input prompts,
C is determined by multimask_output, and (H, W) is the
original size of the image.
'iou_predictions': (torch.Tensor) The model's predictions
of mask quality, in shape BxC.
'low_res_logits': (torch.Tensor) Low resolution logits with
shape BxCxHxW, where H=W=256. Can be passed as mask input
to subsequent iterations of prediction.
"""
input_images = torch.stack([self.preprocess(x["image"]) for x in batched_input], dim=0)
image_embeddings = self.image_encoder(input_images)
outputs = []
for image_record, curr_embedding in zip(batched_input, image_embeddings):
if "point_coords" in image_record:
points = (image_record["point_coords"], image_record["point_labels"])
else:
points = None
sparse_embeddings, dense_embeddings = self.prompt_encoder(
points=points,
boxes=image_record.get("boxes", None),
masks=image_record.get("mask_inputs", None),
)
low_res_masks, iou_predictions = self.mask_decoder(
image_embeddings=curr_embedding.unsqueeze(0),
image_pe=self.prompt_encoder.get_dense_pe(),
sparse_prompt_embeddings=sparse_embeddings,
dense_prompt_embeddings=dense_embeddings,
multimask_output=multimask_output,
)
masks = self.postprocess_masks(
low_res_masks,
input_size=image_record["image"].shape[-2:],
original_size=image_record["original_size"],
)
masks = masks > self.mask_threshold
outputs.append(
{
"masks": masks,
"iou_predictions": iou_predictions,
"low_res_logits": low_res_masks,
}
)
return outputs
def postprocess_masks(
self,
masks: torch.Tensor,
input_size: Tuple[int, ...],
original_size: Tuple[int, ...],
) -> torch.Tensor:
"""
Remove padding and upscale masks to the original image size.
Arguments:
masks (torch.Tensor): Batched masks from the mask_decoder,
in BxCxHxW format.
input_size (tuple(int, int)): The size of the image input to the
model, in (H, W) format. Used to remove padding.
original_size (tuple(int, int)): The original size of the image
before resizing for input to the model, in (H, W) format.
Returns:
(torch.Tensor): Batched masks in BxCxHxW format, where (H, W)
is given by original_size.
"""
masks = F.interpolate(
masks,
(self.image_encoder.img_size, self.image_encoder.img_size),
mode="bilinear",
align_corners=False,
)
masks = masks[..., : input_size[0], : input_size[1]]
masks = F.interpolate(masks, original_size, mode="bilinear", align_corners=False)
return masks
def preprocess(self, x: torch.Tensor) -> torch.Tensor:
"""Normalize pixel values and pad to a square input."""
# Normalize colors
# TODO
x = (x - self.pixel_mean) / self.pixel_std
# Pad
h, w = x.shape[-2:]
padh = self.image_encoder.img_size - h
padw = self.image_encoder.img_size - w
x = F.pad(x, (0, padw, 0, padh))
return x
"""
Examples::
# for 3D single channel input with size (96,96,96), 4-channel output and feature size of 48.
>>> net = SwinUNETR(img_size=(96,96,96), in_channels=1, out_channels=4, feature_size=48)
# for 3D 4-channel input with size (128,128,128), 3-channel output and (2,4,2,2) layers in each stage.
>>> net = SwinUNETR(img_size=(128,128,128), in_channels=4, out_channels=3, depths=(2,4,2,2))
# for 2D single channel input with size (96,96), 2-channel output and gradient checkpointing.
>>> net = SwinUNETR(img_size=(96,96), in_channels=3, out_channels=2, use_checkpoint=True, spatial_dims=2)
"""
def build_sam_vit_3d(args, checkpoint=None):
print('build_sam_vit_3d...')
return _build_sam(
image_encoder_type='vit',
embed_dim=768,
patch_size=args.patch_size,
checkpoint=checkpoint,
image_size=args.image_size,
)
sam_model_registry = {
"vit": build_sam_vit_3d,
}
def _build_sam(
image_encoder_type,
embed_dim,
patch_size,
checkpoint,
image_size,
):
mlp_dim = 3072
num_layers = 12
num_heads = 12
pos_embed = 'perceptron'
dropout_rate = 0.0
image_encoder = ViT(
in_channels=1,
img_size=image_size,
patch_size=patch_size,
hidden_size=embed_dim,
mlp_dim=mlp_dim,
num_layers=num_layers,
num_heads=num_heads,
pos_embed=pos_embed,
classification=False,
dropout_rate=dropout_rate,
)
image_embedding_size = [int(item) for item in (np.array(image_size) / np.array(patch_size))]
if checkpoint is not None:
with open(checkpoint, "rb") as f:
state_dict = torch.load(f, map_location='cpu')['state_dict']
encoder_dict = {k.replace('model.encoder.', ''): v for k, v in state_dict.items() if 'model.encoder.' in k}
image_encoder.load_state_dict(encoder_dict)
print(f'===> image_encoder.load_param: {checkpoint}')
sam = Sam(
image_encoder=image_encoder,
prompt_encoder=PromptEncoder(
embed_dim=embed_dim,
image_embedding_size=image_embedding_size,
input_image_size=image_size,
mask_in_chans=16,
),
mask_decoder=MaskDecoder(
image_encoder_type=image_encoder_type,
num_multimask_outputs=3,
transformer=TwoWayTransformer(
depth=2,
embedding_dim=embed_dim,
mlp_dim=2048,
num_heads=8,
),
transformer_dim=embed_dim,
iou_head_depth=3,
iou_head_hidden_dim=256,
image_size=np.array(image_size),
patch_size=np.array(patch_size),
),
pixel_mean=[123.675, 116.28, 103.53],
pixel_std=[58.395, 57.12, 57.375],
)
sam.eval()
return sam
class SegVol(nn.Module):
def __init__(self,
image_encoder,
mask_decoder,
prompt_encoder,
roi_size,
patch_size,
):
super().__init__()
self.image_encoder = image_encoder
self.mask_decoder = mask_decoder
self.prompt_encoder = prompt_encoder
self.feat_shape = np.array(roi_size)/np.array(patch_size)
def forward(self, image, text_emb=None, text=None, boxes=None, points=None):
bs = image.shape[0]
img_shape = (image.shape[2], image.shape[3], image.shape[4])
image_embedding, _ = self.image_encoder(image)
image_embedding = image_embedding.transpose(1, 2).view(bs, -1,
int(self.feat_shape[0]), int(self.feat_shape[1]), int(self.feat_shape[2]))
logits = self.forward_decoder(image_embedding, img_shape, text_emb=text_emb, text=text, boxes=boxes, points=points)
return logits
def forward_decoder(self, image_embedding, img_shape, text_emb=None, text=None, boxes=None, points=None):
text_embedding = text_emb
sparse_embeddings, dense_embeddings = self.prompt_encoder(
points=None,
boxes=None,
masks=None,
text_embedding=text_embedding,
)
dense_pe = self.prompt_encoder.get_dense_pe()
low_res_masks, _ = self.mask_decoder(
image_embeddings=image_embedding,
text_embedding = text_embedding,
image_pe=dense_pe,
sparse_prompt_embeddings=sparse_embeddings,
dense_prompt_embeddings=dense_embeddings,
multimask_output=False,
)
logits = F.interpolate(low_res_masks, size=img_shape, mode='trilinear', align_corners=False)
return logits
def build_segmentation_module(config, **kwargs):
segmentation_module = getattr(config, 'segmentation_module')
if 'segvol' in segmentation_module.lower():
sam_model = sam_model_registry['vit'](args=config, checkpoint=None)
seg_model = SegVol(
image_encoder=sam_model.image_encoder,
mask_decoder=sam_model.mask_decoder,
prompt_encoder=sam_model.prompt_encoder,
roi_size=config.image_size,
patch_size=config.patch_size,
)
return seg_model
else:
raise ValueError(f'Unknown segmentation module: {segmentation_module}')
class IdentityMap(nn.Module):
def __init__(self):
super().__init__()
def forward(self, x, *args, **kwargs):
return x
@property
def config(self):
return {"mm_projector_type": 'identity'}
class SpatialPoolingProjector(nn.Module):
def __init__(self, image_size, patch_size, in_dim, out_dim, layer_type, layer_num, pooling_type='spatial', pooling_size=2):
super().__init__()
self.in_dim = in_dim
self.pooling_size = pooling_size
self.num_patches_pre = [img // pch for img, pch in zip(image_size, patch_size)]
self.num_patches_post = [num // pooling_size for num in self.num_patches_pre]
if layer_type == 'linear':
depth = int(layer_num)
modules = [nn.Linear(in_dim, out_dim)]
for _ in range(1, depth):
modules.append(nn.Linear(out_dim, out_dim))
self.projector = nn.Sequential(*modules)
elif layer_type == 'mlp':
depth = int(layer_num)
modules = [nn.Linear(in_dim, out_dim)]
for _ in range(1, depth):
modules.append(nn.GELU())
modules.append(nn.Linear(out_dim, out_dim))
self.projector = nn.Sequential(*modules)
else:
print("Projector error!")
self.pooling_type = pooling_type
def forward(self, x):
B = x.shape[0] # B*N*D
if self.pooling_type == 'spatial':
to_3d = Rearrange("b (p1 p2 p3) d -> b d p1 p2 p3", b=B, d=self.in_dim, p1=self.num_patches_pre[0], p2=self.num_patches_pre[1], p3=self.num_patches_pre[2])
x = to_3d(x)
x = F.avg_pool3d(x, kernel_size=self.pooling_size, stride=self.pooling_size)
to_seq = Rearrange("b d p1 p2 p3 -> b (p1 p2 p3) d", b=B, d=self.in_dim, p1=self.num_patches_post[0], p2=self.num_patches_post[1], p3=self.num_patches_post[2])
x = to_seq(x)
elif self.pooling_type == 'sequence':
x = x.permute(0, 2, 1) #b d n
x = F.avg_pool1d(x, kernel_size=self.pooling_size**3, stride=self.pooling_size**3)
x = x.permute(0, 2, 1) #b n d
x = rearrange(x, "b n d -> (b n) d")
x = self.projector(x)
x = rearrange(x, "(b n) d -> b n d", b=B)
return x
@property
def proj_out_num(self):
num = 1
for n in self.num_patches_post:
num *= n
return num
class Minigpt(nn.Module):
def __init__(self, config=None):
super(Minigpt, self).__init__()
# c*4 is the input size, and c is the output size for the linear layer
inc, ouc = config.mm_hidden_size, config.hidden_size
self.linear = nn.Linear(inc * 4, ouc)
def forward(self, x):
# x is the input tensor with shape [b, num_tokens, c]
b, num_tokens, c = x.shape
# Check if num_tokens is divisible by 4
if num_tokens % 4 != 0:
raise ValueError("num_tokens must be divisible by 4")
# Reshape x to [b, num_tokens/4, c*4]
x = x.view(b, num_tokens // 4, c * 4)
# Apply the linear transformation
x = self.linear(x)
return x
class Vanilla(nn.Module):
def __init__(self, config=None):
super(Vanilla, self).__init__()
# c*4 is the input size, and c is the output size for the linear layer
inc, ouc = config.mm_hidden_size, config.hidden_size
self.linear = nn.Linear(inc * 4, ouc)
def forward(self, x):
b, num_tokens, c = x.shape
# Check if num_tokens is divisible by 4
if num_tokens % 4 != 0:
raise ValueError("num_tokens must be divisible by 4")
# First, reshape to [b, num_tokens//4, 4, c]
x = x.view(b, num_tokens // 4, 4, c)
# Then, permute to interleave the tokens
x = x.permute(0, 1, 3, 2).contiguous()
# Finally, reshape to [b, num_tokens//4, c*4] to interleave features of 4 tokens
x = x.view(b, num_tokens // 4, c * 4)
# Apply the linear transformation
x = self.linear(x)
return x
def build_mm_projector(config, delay_load=False, **kwargs):
projector_type = getattr(config, 'mm_projector_type')
if projector_type == 'linear':
return nn.Linear(config.mm_hidden_size, config.hidden_size)
elif projector_type == 'spp':
return SpatialPoolingProjector(image_size=config.image_size,
patch_size=config.patch_size,
in_dim=config.mm_hidden_size,
out_dim=config.hidden_size,
layer_type=config.proj_layer_type,
layer_num=config.proj_layer_num,
pooling_type=config.proj_pooling_type,
pooling_size=config.proj_pooling_size)
elif projector_type == 'identity':
return IdentityMap()
else:
raise ValueError(f'Unknown projector type: {projector_type}')
class myViT(nn.Module):
"""
Vision Transformer (ViT), based on: "Dosovitskiy et al.,
An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale <https://arxiv.org/abs/2010.11929>"
ViT supports Torchscript but only works for Pytorch after 1.8.
"""
def __init__(
self,
in_channels: int,
img_size: Sequence[int] | int,
patch_size: Sequence[int] | int,
hidden_size: int = 768,
mlp_dim: int = 3072,
num_layers: int = 12,
num_heads: int = 12,
pos_embed: str = "conv",
classification: bool = False,
num_classes: int = 2,
dropout_rate: float = 0.0,
spatial_dims: int = 3,
post_activation="Tanh",
qkv_bias: bool = False,
save_attn: bool = False,
) -> None:
"""
Args:
in_channels (int): dimension of input channels.
img_size (Union[Sequence[int], int]): dimension of input image.
patch_size (Union[Sequence[int], int]): dimension of patch size.
hidden_size (int, optional): dimension of hidden layer. Defaults to 768.
mlp_dim (int, optional): dimension of feedforward layer. Defaults to 3072.
num_layers (int, optional): number of transformer blocks. Defaults to 12.
num_heads (int, optional): number of attention heads. Defaults to 12.
pos_embed (str, optional): position embedding layer type. Defaults to "conv".
classification (bool, optional): bool argument to determine if classification is used. Defaults to False.
num_classes (int, optional): number of classes if classification is used. Defaults to 2.
dropout_rate (float, optional): faction of the input units to drop. Defaults to 0.0.
spatial_dims (int, optional): number of spatial dimensions. Defaults to 3.
post_activation (str, optional): add a final acivation function to the classification head
when `classification` is True. Default to "Tanh" for `nn.Tanh()`.
Set to other values to remove this function.
qkv_bias (bool, optional): apply bias to the qkv linear layer in self attention block. Defaults to False.
save_attn (bool, optional): to make accessible the attention in self attention block. Defaults to False.
Examples::
# for single channel input with image size of (96,96,96), conv position embedding and segmentation backbone
>>> net = ViT(in_channels=1, img_size=(96,96,96), pos_embed='conv')
# for 3-channel with image size of (128,128,128), 24 layers and classification backbone
>>> net = ViT(in_channels=3, img_size=(128,128,128), pos_embed='conv', classification=True)
# for 3-channel with image size of (224,224), 12 layers and classification backbone
>>> net = ViT(in_channels=3, img_size=(224,224), pos_embed='conv', classification=True, spatial_dims=2)
"""
super().__init__()
if not (0 <= dropout_rate <= 1):
raise ValueError("dropout_rate should be between 0 and 1.")
if hidden_size % num_heads != 0:
raise ValueError("hidden_size should be divisible by num_heads.")
self.hidden_size = hidden_size
self.classification = classification
self.patch_embedding = PatchEmbeddingBlock(
in_channels=in_channels,
img_size=img_size,
patch_size=patch_size,
hidden_size=hidden_size,
num_heads=num_heads,
pos_embed=pos_embed,
dropout_rate=dropout_rate,
spatial_dims=spatial_dims,
)
self.blocks = nn.ModuleList(
[
TransformerBlock(hidden_size, mlp_dim, num_heads, dropout_rate, qkv_bias, save_attn)
for i in range(num_layers)
]
)
self.norm = nn.LayerNorm(hidden_size)
if self.classification:
self.cls_token = nn.Parameter(torch.zeros(1, 1, hidden_size))
# if post_activation == "Tanh":
# self.classification_head = nn.Sequential(nn.Linear(hidden_size, num_classes), nn.Tanh())
# else:
# self.classification_head = nn.Linear(hidden_size, num_classes) # type: ignore
def forward(self, x):
x = self.patch_embedding(x)
if hasattr(self, "cls_token"):
cls_token = self.cls_token.expand(x.shape[0], -1, -1)
x = torch.cat((cls_token, x), dim=1)
hidden_states_out = []
for blk in self.blocks:
x = blk(x)
hidden_states_out.append(x)
x = self.norm(x)
# if hasattr(self, "classification_head"):
# x = self.classification_head(x[:, 0])
return x, hidden_states_out
class ViT3DTower(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.select_layer = config.vision_select_layer
self.select_feature = config.vision_select_feature
self.vision_tower = myViT(
in_channels=self.config.image_channel,
img_size=self.config.image_size,
patch_size=self.config.patch_size,
pos_embed="perceptron",
spatial_dims=len(self.config.patch_size),
classification=True,
)
def forward(self, images):
last_feature, hidden_states = self.vision_tower(images)
if self.select_layer == -1:
image_features = last_feature
elif self.select_layer < -1:
image_features = hidden_states[self.select_feature]
else:
raise ValueError(f'Unexpected select layer: {self.select_layer}')
if self.select_feature == 'patch':
image_features = image_features[:, 1:]
elif self.select_feature == 'cls_patch':
image_features = image_features
else:
raise ValueError(f'Unexpected select feature: {self.select_feature}')
return image_features
@property
def dtype(self):
return self.vision_tower.dtype
@property
def device(self):
return self.vision_tower.device
@property
def hidden_size(self):
return self.vision_tower.hidden_size
def build_vision_tower(config, **kwargs):
vision_tower = getattr(config, 'vision_tower', None)
if 'vit3d' in vision_tower.lower():
return ViT3DTower(config, **kwargs)
else:
raise ValueError(f'Unknown vision tower: {vision_tower}')
class LamedMetaModel:
def __init__(self, config):
super(LamedMetaModel, self).__init__(config)
self.config = config
self.seg_enable = False
if hasattr(config, "vision_tower"):
self.vision_tower = build_vision_tower(config)
self.mm_projector = build_mm_projector(config)
if hasattr(config, "segmentation_module") and config.segmentation_module is not None:
self.seg_enable = True
self.seg_module = build_segmentation_module(config)
self.seg_projector = nn.Sequential(
nn.Linear(config.hidden_size, config.hidden_size),
nn.ReLU(inplace=True),
nn.Linear(config.hidden_size, config.mm_hidden_size),
nn.Dropout(0.1),
)
self.dice_loss = BinaryDiceLoss()
self.bce_loss = BCELoss()
def get_vision_tower(self):
vision_tower = getattr(self, 'vision_tower', None)
return vision_tower
def initialize_vision_modules(self, model_args):
self.config.image_channel = model_args.image_channel
self.config.image_size = model_args.image_size
self.config.patch_size = model_args.patch_size
self.config.vision_tower = model_args.vision_tower
self.config.vision_select_layer = model_args.vision_select_layer
self.config.vision_select_feature = model_args.vision_select_feature
self.config.mm_projector_type = model_args.mm_projector_type
self.config.proj_layer_type = model_args.proj_layer_type
self.config.proj_layer_num = model_args.proj_layer_num
self.config.proj_pooling_type = model_args.proj_pooling_type
self.config.proj_pooling_size = model_args.proj_pooling_size
# vision tower
if self.get_vision_tower() is None:
self.vision_tower = build_vision_tower(self.config)
# If you have a more robust vision encoder, try freezing the vision tower by requires_grad_(False)
if model_args.pretrain_vision_model is not None:
vision_model_weights = torch.load(model_args.pretrain_vision_model, map_location='cpu')
self.vision_tower.vision_tower.load_state_dict(vision_model_weights, strict=True)
self.config.mm_hidden_size = self.vision_tower.hidden_size
# mm_projector
if getattr(self, 'mm_projector', None) is None:
self.mm_projector = build_mm_projector(self.config)
if model_args.pretrain_mm_mlp_adapter is not None:
mm_projector_weights = torch.load(model_args.pretrain_mm_mlp_adapter, map_location='cpu')
def get_w(weights, keyword):
return {k.split(keyword + '.')[1]: v for k, v in weights.items() if keyword in k}
self.mm_projector.load_state_dict(get_w(mm_projector_weights, 'mm_projector'), strict=True)
def initialize_seg_modules(self, model_args):
self.config.segmentation_module = model_args.segmentation_module
# segmentation_module
if getattr(self, 'segmentation_module', None) is None:
self.seg_module = build_segmentation_module(self.config)
self.seg_projector = nn.Sequential(
nn.Linear(self.config.hidden_size, self.config.hidden_size),
nn.ReLU(inplace=True),
nn.Linear(self.config.hidden_size, self.config.mm_hidden_size),
nn.Dropout(0.1),
)
self.seg_enable = True
if model_args.pretrain_seg_module is not None:
seg_module_weights = torch.load(model_args.pretrain_seg_module, map_location='cpu')
self.seg_module.load_state_dict(seg_module_weights, strict=True)
self.dice_loss = BinaryDiceLoss()
self.bce_loss = BCELoss()
class LamedMetaForCausalLM(ABC):
@abstractmethod
def get_model(self):
pass
def get_vision_tower(self):
return self.get_model().get_vision_tower()
def encode_images(self, images):
image_features = self.get_model().get_vision_tower()(images)
image_features = self.get_model().mm_projector(image_features)
return image_features
def prepare_inputs_for_multimodal(
self, input_ids, position_ids, attention_mask, past_key_values, labels,
images,
):
vision_tower = self.get_vision_tower()
if vision_tower is None or images is None or input_ids.shape[1] == 1:
return input_ids, position_ids, attention_mask, past_key_values, None, labels
else:
image_features = self.encode_images(images)
inputs_embeds = self.get_model().embed_tokens(input_ids)
inputs_embeds = torch.cat(
(inputs_embeds[:, :1, :], image_features, inputs_embeds[:, (image_features.shape[1] + 1):, :]), dim=1)
return None, position_ids, attention_mask, past_key_values, inputs_embeds, labels
def initialize_vision_tokenizer(self, model_args, tokenizer):
num_new_tokens = model_args.num_new_tokens
self.resize_token_embeddings(len(tokenizer))
if num_new_tokens > 0:
input_embeddings = self.get_input_embeddings().weight.data
output_embeddings = self.get_output_embeddings().weight.data
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(
dim=0, keepdim=True)
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(
dim=0, keepdim=True)
input_embeddings[-num_new_tokens:] = input_embeddings_avg
output_embeddings[-num_new_tokens:] = output_embeddings_avg
if model_args.tune_mm_mlp_adapter:
for p in self.get_input_embeddings().parameters():
p.requires_grad = True
for p in self.get_output_embeddings().parameters():
p.requires_grad = False
else:
# we add 4 new tokens
# if new tokens need input, please train input_embeddings
for p in self.get_input_embeddings().parameters():
p.requires_grad = True
# if new tokens need predict, please train output_embeddings
for p in self.get_output_embeddings().parameters():
p.requires_grad = True
if model_args.pretrain_mm_mlp_adapter:
mm_projector_weights = torch.load(model_args.pretrain_mm_mlp_adapter, map_location='cpu')
embed_tokens_weight = mm_projector_weights['model.embed_tokens.weight']
if input_embeddings.shape == embed_tokens_weight.shape:
input_embeddings = embed_tokens_weight
elif embed_tokens_weight.shape[0] == num_new_tokens:
input_embeddings[-num_new_tokens:] = embed_tokens_weight
else:
raise ValueError(f"Unexpected embed_tokens_weight shape. Pretrained: {embed_tokens_weight.shape}. Current: {input_embeddings.shape}. Numer of new tokens: {num_new_tokens}.")
class LamedPhi3Model(LamedMetaModel, Phi3Model):
config_class = LamedPhi3Config
def __init__(self, config: Phi3Config):
super(LamedPhi3Model, self).__init__(config)
class LamedPhi3ForCausalLM(LamedMetaForCausalLM, Phi3ForCausalLM):
config_class = LamedPhi3Config
def __init__(self, config):
super(LamedPhi3ForCausalLM, self).__init__(config)
self.model = LamedPhi3Model(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_model(self):
return self.model
def forward(
self,
images: Optional[torch.FloatTensor] = None,
input_ids: torch.LongTensor = None,
labels: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
segs: Optional[torch.FloatTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
) -> Union[Tuple, CausalLMOutputWithPast]:
input_ids_pre = input_ids
if inputs_embeds is None:
(
input_ids,
position_ids,
attention_mask,
past_key_values,
inputs_embeds,
labels
) = self.prepare_inputs_for_multimodal(
input_ids,
position_ids,
attention_mask,
past_key_values,
labels,
images,
)
try:
seg_ids = torch.nonzero(torch.sum(segs, dim=(1, 2, 3, 4))).flatten().tolist()
except:
seg_ids = []
if self.get_model().seg_enable and seg_ids:
outputs = super().forward(
input_ids=input_ids,
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
labels=labels,
output_hidden_states=True,
position_ids=position_ids,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
return_dict=return_dict
)
output_hidden_states = outputs.hidden_states
last_hidden_state = output_hidden_states[-1]
seg_token_mask = input_ids_pre[:, 1:] == self.config.seg_token_id
seg_token_mask = torch.cat(
[
seg_token_mask,
torch.zeros((seg_token_mask.shape[0], 1), dtype=seg_token_mask.dtype).cuda(),
],
dim=1,
)
seg_prompts = []
for i in seg_ids:
if torch.sum(seg_token_mask[i]) == 1:
seg_token = last_hidden_state[i][seg_token_mask[i]]
seg_prompt = self.get_model().seg_projector(seg_token)
elif torch.sum(seg_token_mask[i]) > 1:
seg_tokens = last_hidden_state[i][seg_token_mask[i]]
seg_token = torch.mean(seg_tokens, dim=0, keepdim=True)
seg_prompt = self.get_model().seg_projector(seg_token)
else:
seg_prompt = torch.zeros([1, self.config.mm_hidden_size], dtype=last_hidden_state.dtype,
device=last_hidden_state.device)
seg_prompts.append(seg_prompt)
seg_prompts = torch.cat(seg_prompts, dim=0)
logits = self.get_model().seg_module(images[seg_ids], text_emb=seg_prompts)
loss_dice = self.get_model().dice_loss(logits, segs[seg_ids])
loss_bce = self.get_model().bce_loss(logits, segs[seg_ids])
seg_loss = loss_dice + loss_bce
outputs.loss = outputs.loss + seg_loss
return outputs
else:
return super().forward(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
labels=labels,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict
)
@torch.no_grad()
def generate(
self,
images: Optional[torch.Tensor] = None,
inputs: Optional[torch.Tensor] = None,
seg_enable: bool = False,
**kwargs,
) -> Union[GenerateOutput, torch.LongTensor, Any]:
position_ids = kwargs.pop("position_ids", None)
attention_mask = kwargs.pop("attention_mask", None)
if "inputs_embeds" in kwargs:
raise NotImplementedError("`inputs_embeds` is not supported")
if images is not None:
(
inputs,
position_ids,
attention_mask,
_,
inputs_embeds,
_
) = self.prepare_inputs_for_multimodal(
inputs,
position_ids,
attention_mask,
None,
None,
images,
)
else:
inputs_embeds = self.get_model().embed_tokens(inputs)
if seg_enable:
outputs = super().generate(
inputs_embeds=inputs_embeds,
output_hidden_states=True,
return_dict_in_generate=True,
**kwargs
)
output_hidden_states = outputs.hidden_states
output_ids = outputs.sequences
seg_token_mask = output_ids[:, 1:] == self.config.seg_token_id
last_tensors = [tuple[-1] for tuple in output_hidden_states]
last_hidden_state = torch.cat(last_tensors[1:], dim=1)
seg_prompts = []
noseg_ids = []
for i in range(len(seg_token_mask)):
if torch.sum(seg_token_mask[i]) == 1:
seg_token = last_hidden_state[i][seg_token_mask[i]]
seg_prompt = self.get_model().seg_projector(seg_token)
elif torch.sum(seg_token_mask[i]) > 1:
seg_tokens = last_hidden_state[i][seg_token_mask[i]]
seg_token = torch.mean(seg_tokens, dim=0, keepdim=True)
seg_prompt = self.get_model().seg_projector(seg_token)
else:
noseg_ids.append(i)
seg_prompt = torch.zeros([1, self.config.mm_hidden_size], dtype=last_hidden_state.dtype,
device=last_hidden_state.device)
seg_prompts.append(seg_prompt)
seg_prompts = torch.cat(seg_prompts, dim=0)
logits = self.get_model().seg_module(images, seg_prompts)
logits[noseg_ids] = -torch.inf
return output_ids, logits
else:
output_ids = super().generate(
inputs_embeds=inputs_embeds,
**kwargs
)
return output_ids
def prepare_inputs_for_generation(self, input_ids, past_key_values=None,
inputs_embeds=None, **kwargs):
images = kwargs.pop("images", None)
inputs = super().prepare_inputs_for_generation(
input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, **kwargs
)
if images is not None:
inputs['images'] = images
return inputs