|
from __future__ import annotations
|
|
from typing import Union
|
|
from transformers import Phi3Config, Phi3Model, Phi3ForCausalLM
|
|
from transformers.modeling_outputs import CausalLMOutputWithPast
|
|
from transformers.generation.utils import GenerateOutput
|
|
from .configuration_m3d_lamed import LamedPhi3Config
|
|
from abc import ABC, abstractmethod
|
|
from torch import Tensor
|
|
import math
|
|
from typing import Any, Dict, List
|
|
import torch
|
|
import torch.nn as nn
|
|
from typing import Optional, Tuple, Type
|
|
from monai.networks.blocks import PatchEmbed
|
|
import numpy as np
|
|
import torch.nn.functional as F
|
|
|
|
from einops import rearrange
|
|
from einops.layers.torch import Rearrange
|
|
from collections.abc import Sequence
|
|
from monai.networks.blocks.patchembedding import PatchEmbeddingBlock
|
|
from monai.networks.blocks.transformerblock import TransformerBlock
|
|
from monai.networks.nets import ViT
|
|
|
|
|
|
class BinaryDiceLoss(nn.Module):
|
|
def __init__(self, smooth=1, p=2, reduction='mean'):
|
|
super(BinaryDiceLoss, self).__init__()
|
|
self.smooth = smooth
|
|
self.p = p
|
|
self.reduction = reduction
|
|
|
|
def forward(self, predict, target):
|
|
predict = torch.sigmoid(predict)
|
|
target_ = target.clone().float()
|
|
target_[target == -1] = 0
|
|
assert predict.shape[0] == target.shape[0], "predict & target batch size don't match\n" + str(predict.shape) + '\n' + str(target.shape[0])
|
|
predict = predict.contiguous().view(predict.shape[0], -1)
|
|
target_ = target_.contiguous().view(target_.shape[0], -1)
|
|
|
|
num = torch.sum(torch.mul(predict, target_), dim=1)
|
|
den = torch.sum(predict, dim=1) + torch.sum(target_, dim=1) + self.smooth
|
|
|
|
dice_score = 2*num / den
|
|
dice_loss = 1 - dice_score
|
|
|
|
|
|
dice_loss_avg = dice_loss.sum() / dice_loss.shape[0]
|
|
|
|
return dice_loss_avg
|
|
|
|
class BCELoss(nn.Module):
|
|
def __init__(self):
|
|
super(BCELoss, self).__init__()
|
|
self.criterion = nn.BCEWithLogitsLoss()
|
|
|
|
def forward(self, predict, target):
|
|
assert predict.shape == target.shape, 'predict & target shape do not match\n' + str(predict.shape) + '\n' + str(target.shape)
|
|
target_ = target.clone()
|
|
target_[target == -1] = 0
|
|
|
|
ce_loss = self.criterion(predict, target_.float())
|
|
|
|
return ce_loss
|
|
|
|
|
|
|
|
class LayerNorm2d(nn.Module):
|
|
def __init__(self, num_channels: int, eps: float = 1e-6) -> None:
|
|
super().__init__()
|
|
self.weight = nn.Parameter(torch.ones(num_channels))
|
|
self.bias = nn.Parameter(torch.zeros(num_channels))
|
|
self.eps = eps
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
u = x.mean(1, keepdim=True)
|
|
s = (x - u).pow(2).mean(1, keepdim=True)
|
|
x = (x - u) / torch.sqrt(s + self.eps)
|
|
x = self.weight[:, None, None] * x + self.bias[:, None, None]
|
|
return x
|
|
|
|
|
|
class MLPBlock(nn.Module):
|
|
def __init__(
|
|
self,
|
|
embedding_dim: int,
|
|
mlp_dim: int,
|
|
act: Type[nn.Module] = nn.GELU,
|
|
) -> None:
|
|
super().__init__()
|
|
self.lin1 = nn.Linear(embedding_dim, mlp_dim)
|
|
self.lin2 = nn.Linear(mlp_dim, embedding_dim)
|
|
self.act = act()
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
return self.lin2(self.act(self.lin1(x)))
|
|
|
|
|
|
class TwoWayTransformer(nn.Module):
|
|
def __init__(
|
|
self,
|
|
depth: int,
|
|
embedding_dim: int,
|
|
num_heads: int,
|
|
mlp_dim: int,
|
|
activation: Type[nn.Module] = nn.ReLU,
|
|
attention_downsample_rate: int = 2,
|
|
) -> None:
|
|
"""
|
|
A transformer decoder that attends to an input image using
|
|
queries whose positional embedding is supplied.
|
|
|
|
Args:
|
|
depth (int): number of layers in the transformer
|
|
embedding_dim (int): the channel dimension for the input embeddings
|
|
num_heads (int): the number of heads for multihead attention. Must
|
|
divide embedding_dim
|
|
mlp_dim (int): the channel dimension internal to the MLP block
|
|
activation (nn.Module): the activation to use in the MLP block
|
|
"""
|
|
super().__init__()
|
|
self.depth = depth
|
|
self.embedding_dim = embedding_dim
|
|
self.num_heads = num_heads
|
|
self.mlp_dim = mlp_dim
|
|
self.layers = nn.ModuleList()
|
|
|
|
for i in range(depth):
|
|
self.layers.append(
|
|
TwoWayAttentionBlock(
|
|
embedding_dim=embedding_dim,
|
|
num_heads=num_heads,
|
|
mlp_dim=mlp_dim,
|
|
activation=activation,
|
|
attention_downsample_rate=attention_downsample_rate,
|
|
skip_first_layer_pe=(i == 0),
|
|
)
|
|
)
|
|
|
|
self.final_attn_token_to_image = Attention(
|
|
embedding_dim, num_heads, downsample_rate=attention_downsample_rate
|
|
)
|
|
self.norm_final_attn = nn.LayerNorm(embedding_dim)
|
|
|
|
def forward(
|
|
self,
|
|
image_embedding: Tensor,
|
|
image_pe: Tensor,
|
|
point_embedding: Tensor,
|
|
) -> Tuple[Tensor, Tensor]:
|
|
"""
|
|
Args:
|
|
image_embedding (torch.Tensor): image to attend to. Should be shape
|
|
B x embedding_dim x h x w for any h and w.
|
|
image_pe (torch.Tensor): the positional encoding to add to the image. Must
|
|
have the same shape as image_embedding.
|
|
point_embedding (torch.Tensor): the embedding to add to the query points.
|
|
Must have shape B x N_points x embedding_dim for any N_points.
|
|
|
|
Returns:
|
|
torch.Tensor: the processed point_embedding
|
|
torch.Tensor: the processed image_embedding
|
|
"""
|
|
|
|
bs, c, h, w, d = image_embedding.shape
|
|
image_embedding = image_embedding.flatten(2).permute(0, 2, 1)
|
|
image_pe = image_pe.flatten(2).permute(0, 2, 1)
|
|
|
|
|
|
queries = point_embedding
|
|
keys = image_embedding
|
|
|
|
|
|
for layer in self.layers:
|
|
queries, keys = layer(
|
|
queries=queries,
|
|
keys=keys,
|
|
query_pe=point_embedding,
|
|
key_pe=image_pe,
|
|
)
|
|
|
|
|
|
q = queries + point_embedding
|
|
k = keys + image_pe
|
|
attn_out = self.final_attn_token_to_image(q=q, k=k, v=keys)
|
|
queries = queries + attn_out
|
|
queries = self.norm_final_attn(queries)
|
|
|
|
return queries, keys
|
|
|
|
|
|
class TwoWayAttentionBlock(nn.Module):
|
|
def __init__(
|
|
self,
|
|
embedding_dim: int,
|
|
num_heads: int,
|
|
mlp_dim: int = 2048,
|
|
activation: Type[nn.Module] = nn.ReLU,
|
|
attention_downsample_rate: int = 2,
|
|
skip_first_layer_pe: bool = False,
|
|
) -> None:
|
|
"""
|
|
A transformer block with four layers: (1) self-attention of sparse
|
|
inputs, (2) cross attention of sparse inputs to dense inputs, (3) mlp
|
|
block on sparse inputs, and (4) cross attention of dense inputs to sparse
|
|
inputs.
|
|
|
|
Arguments:
|
|
embedding_dim (int): the channel dimension of the embeddings
|
|
num_heads (int): the number of heads in the attention layers
|
|
mlp_dim (int): the hidden dimension of the mlp block
|
|
activation (nn.Module): the activation of the mlp block
|
|
skip_first_layer_pe (bool): skip the PE on the first layer
|
|
"""
|
|
super().__init__()
|
|
self.self_attn = Attention(embedding_dim, num_heads)
|
|
self.norm1 = nn.LayerNorm(embedding_dim)
|
|
|
|
self.cross_attn_token_to_image = Attention(
|
|
embedding_dim, num_heads, downsample_rate=attention_downsample_rate
|
|
)
|
|
self.norm2 = nn.LayerNorm(embedding_dim)
|
|
|
|
self.mlp = MLPBlock(embedding_dim, mlp_dim, activation)
|
|
self.norm3 = nn.LayerNorm(embedding_dim)
|
|
|
|
self.norm4 = nn.LayerNorm(embedding_dim)
|
|
self.cross_attn_image_to_token = Attention(
|
|
embedding_dim, num_heads, downsample_rate=attention_downsample_rate
|
|
)
|
|
|
|
self.skip_first_layer_pe = skip_first_layer_pe
|
|
|
|
def forward(
|
|
self, queries: Tensor, keys: Tensor, query_pe: Tensor, key_pe: Tensor
|
|
) -> Tuple[Tensor, Tensor]:
|
|
|
|
if self.skip_first_layer_pe:
|
|
queries = self.self_attn(q=queries, k=queries, v=queries)
|
|
else:
|
|
q = queries + query_pe
|
|
attn_out = self.self_attn(q=q, k=q, v=queries)
|
|
queries = queries + attn_out
|
|
queries = self.norm1(queries)
|
|
|
|
|
|
q = queries + query_pe
|
|
k = keys + key_pe
|
|
attn_out = self.cross_attn_token_to_image(q=q, k=k, v=keys)
|
|
queries = queries + attn_out
|
|
queries = self.norm2(queries)
|
|
|
|
|
|
mlp_out = self.mlp(queries)
|
|
queries = queries + mlp_out
|
|
queries = self.norm3(queries)
|
|
|
|
|
|
q = queries + query_pe
|
|
k = keys + key_pe
|
|
attn_out = self.cross_attn_image_to_token(q=k, k=q, v=queries)
|
|
keys = keys + attn_out
|
|
keys = self.norm4(keys)
|
|
|
|
return queries, keys
|
|
|
|
|
|
class Attention(nn.Module):
|
|
"""
|
|
An attention layer that allows for downscaling the size of the embedding
|
|
after projection to queries, keys, and values.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
embedding_dim: int,
|
|
num_heads: int,
|
|
downsample_rate: int = 1,
|
|
) -> None:
|
|
super().__init__()
|
|
self.embedding_dim = embedding_dim
|
|
self.internal_dim = embedding_dim // downsample_rate
|
|
self.num_heads = num_heads
|
|
assert self.internal_dim % num_heads == 0, "num_heads must divide embedding_dim."
|
|
|
|
self.q_proj = nn.Linear(embedding_dim, self.internal_dim)
|
|
self.k_proj = nn.Linear(embedding_dim, self.internal_dim)
|
|
self.v_proj = nn.Linear(embedding_dim, self.internal_dim)
|
|
self.out_proj = nn.Linear(self.internal_dim, embedding_dim)
|
|
|
|
def _separate_heads(self, x: Tensor, num_heads: int) -> Tensor:
|
|
b, n, c = x.shape
|
|
x = x.reshape(b, n, num_heads, c // num_heads)
|
|
return x.transpose(1, 2)
|
|
|
|
def _recombine_heads(self, x: Tensor) -> Tensor:
|
|
b, n_heads, n_tokens, c_per_head = x.shape
|
|
x = x.transpose(1, 2)
|
|
return x.reshape(b, n_tokens, n_heads * c_per_head)
|
|
|
|
def forward(self, q: Tensor, k: Tensor, v: Tensor) -> Tensor:
|
|
|
|
q = self.q_proj(q)
|
|
k = self.k_proj(k)
|
|
v = self.v_proj(v)
|
|
|
|
|
|
q = self._separate_heads(q, self.num_heads)
|
|
k = self._separate_heads(k, self.num_heads)
|
|
v = self._separate_heads(v, self.num_heads)
|
|
|
|
|
|
_, _, _, c_per_head = q.shape
|
|
attn = q @ k.permute(0, 1, 3, 2)
|
|
attn = attn / math.sqrt(c_per_head)
|
|
attn = torch.softmax(attn, dim=-1)
|
|
|
|
|
|
out = attn @ v
|
|
out = self._recombine_heads(out)
|
|
out = self.out_proj(out)
|
|
|
|
return out
|
|
|
|
|
|
|
|
|
|
class ImageEncoderViT(nn.Module):
|
|
def __init__(
|
|
self,
|
|
img_size: int = 1024,
|
|
patch_size: int = 16,
|
|
in_chans: int = 1,
|
|
embed_dim: int = 768,
|
|
depth: int = 12,
|
|
num_heads: int = 12,
|
|
mlp_ratio: float = 4.0,
|
|
out_chans: int = 256,
|
|
qkv_bias: bool = True,
|
|
norm_layer: Type[nn.Module] = nn.LayerNorm,
|
|
act_layer: Type[nn.Module] = nn.GELU,
|
|
use_abs_pos: bool = True,
|
|
use_rel_pos: bool = False,
|
|
rel_pos_zero_init: bool = True,
|
|
window_size: int = 0,
|
|
global_attn_indexes: Tuple[int, ...] = (),
|
|
) -> None:
|
|
"""
|
|
Args:
|
|
img_size (int): Input image size.
|
|
patch_size (int): Patch size.
|
|
in_chans (int): Number of input image channels.
|
|
embed_dim (int): Patch embedding dimension.
|
|
depth (int): Depth of ViT.
|
|
num_heads (int): Number of attention heads in each ViT block.
|
|
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
|
qkv_bias (bool): If True, add a learnable bias to query, key, value.
|
|
norm_layer (nn.Module): Normalization layer.
|
|
act_layer (nn.Module): Activation layer.
|
|
use_abs_pos (bool): If True, use absolute positional embeddings.
|
|
use_rel_pos (bool): If True, add relative positional embeddings to the attention map.
|
|
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
|
|
window_size (int): Window size for window attention blocks.
|
|
global_attn_indexes (list): Indexes for blocks using global attention.
|
|
"""
|
|
super().__init__()
|
|
self.img_size = img_size
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.patch_embed = PatchEmbed(
|
|
patch_size=patch_size,
|
|
in_chans=in_chans,
|
|
embed_dim=embed_dim,
|
|
spatial_dims=3,
|
|
)
|
|
|
|
self.pos_embed: Optional[nn.Parameter] = None
|
|
if use_abs_pos:
|
|
|
|
self.pos_embed = nn.Parameter(
|
|
torch.zeros(1, img_size // patch_size, img_size // patch_size, img_size // patch_size, embed_dim)
|
|
)
|
|
|
|
self.blocks = nn.ModuleList()
|
|
for i in range(depth):
|
|
block = Block(
|
|
dim=embed_dim,
|
|
num_heads=num_heads,
|
|
mlp_ratio=mlp_ratio,
|
|
qkv_bias=qkv_bias,
|
|
norm_layer=norm_layer,
|
|
act_layer=act_layer,
|
|
use_rel_pos=use_rel_pos,
|
|
rel_pos_zero_init=rel_pos_zero_init,
|
|
window_size=window_size if i not in global_attn_indexes else 0,
|
|
input_size=(img_size // patch_size, img_size // patch_size),
|
|
)
|
|
self.blocks.append(block)
|
|
|
|
self.neck = nn.Sequential(
|
|
nn.Conv2d(
|
|
embed_dim,
|
|
out_chans,
|
|
kernel_size=1,
|
|
bias=False,
|
|
),
|
|
LayerNorm2d(out_chans),
|
|
nn.Conv2d(
|
|
out_chans,
|
|
out_chans,
|
|
kernel_size=3,
|
|
padding=1,
|
|
bias=False,
|
|
),
|
|
LayerNorm2d(out_chans),
|
|
)
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
x = self.patch_embed(x)
|
|
print('patch embedded shape: ', x.shape)
|
|
if self.pos_embed is not None:
|
|
x = x + self.pos_embed
|
|
|
|
for blk in self.blocks:
|
|
x = blk(x)
|
|
|
|
x = self.neck(x.permute(0, 3, 1, 2))
|
|
|
|
return x
|
|
|
|
|
|
class Block(nn.Module):
|
|
"""Transformer blocks with support of window attention and residual propagation blocks"""
|
|
|
|
def __init__(
|
|
self,
|
|
dim: int,
|
|
num_heads: int,
|
|
mlp_ratio: float = 4.0,
|
|
qkv_bias: bool = True,
|
|
norm_layer: Type[nn.Module] = nn.LayerNorm,
|
|
act_layer: Type[nn.Module] = nn.GELU,
|
|
use_rel_pos: bool = False,
|
|
rel_pos_zero_init: bool = True,
|
|
window_size: int = 0,
|
|
input_size: Optional[Tuple[int, int]] = None,
|
|
) -> None:
|
|
"""
|
|
Args:
|
|
dim (int): Number of input channels.
|
|
num_heads (int): Number of attention heads in each ViT block.
|
|
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
|
qkv_bias (bool): If True, add a learnable bias to query, key, value.
|
|
norm_layer (nn.Module): Normalization layer.
|
|
act_layer (nn.Module): Activation layer.
|
|
use_rel_pos (bool): If True, add relative positional embeddings to the attention map.
|
|
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
|
|
window_size (int): Window size for window attention blocks. If it equals 0, then
|
|
use global attention.
|
|
input_size (tuple(int, int) or None): Input resolution for calculating the relative
|
|
positional parameter size.
|
|
"""
|
|
super().__init__()
|
|
self.norm1 = norm_layer(dim)
|
|
self.attn = Attention2(
|
|
dim,
|
|
num_heads=num_heads,
|
|
qkv_bias=qkv_bias,
|
|
use_rel_pos=use_rel_pos,
|
|
rel_pos_zero_init=rel_pos_zero_init,
|
|
input_size=input_size if window_size == 0 else (window_size, window_size),
|
|
)
|
|
|
|
self.norm2 = norm_layer(dim)
|
|
self.mlp = MLPBlock(embedding_dim=dim, mlp_dim=int(dim * mlp_ratio), act=act_layer)
|
|
|
|
self.window_size = window_size
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
shortcut = x
|
|
x = self.norm1(x)
|
|
|
|
if self.window_size > 0:
|
|
H, W = x.shape[1], x.shape[2]
|
|
x, pad_hw = window_partition(x, self.window_size)
|
|
|
|
x = self.attn(x)
|
|
|
|
if self.window_size > 0:
|
|
x = window_unpartition(x, self.window_size, pad_hw, (H, W))
|
|
|
|
x = shortcut + x
|
|
x = x + self.mlp(self.norm2(x))
|
|
|
|
return x
|
|
|
|
|
|
class Attention2(nn.Module):
|
|
"""Multi-head Attention block with relative position embeddings."""
|
|
|
|
def __init__(
|
|
self,
|
|
dim: int,
|
|
num_heads: int = 8,
|
|
qkv_bias: bool = True,
|
|
use_rel_pos: bool = False,
|
|
rel_pos_zero_init: bool = True,
|
|
input_size: Optional[Tuple[int, int]] = None,
|
|
) -> None:
|
|
"""
|
|
Args:
|
|
dim (int): Number of input channels.
|
|
num_heads (int): Number of attention heads.
|
|
qkv_bias (bool): If True, add a learnable bias to query, key, value.
|
|
rel_pos (bool): If True, add relative positional embeddings to the attention map.
|
|
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
|
|
input_size (tuple(int, int) or None): Input resolution for calculating the relative
|
|
positional parameter size.
|
|
"""
|
|
super().__init__()
|
|
self.num_heads = num_heads
|
|
head_dim = dim // num_heads
|
|
self.scale = head_dim ** -0.5
|
|
|
|
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
|
self.proj = nn.Linear(dim, dim)
|
|
|
|
self.use_rel_pos = use_rel_pos
|
|
if self.use_rel_pos:
|
|
assert (
|
|
input_size is not None
|
|
), "Input size must be provided if using relative positional encoding."
|
|
|
|
self.rel_pos_h = nn.Parameter(torch.zeros(2 * input_size[0] - 1, head_dim))
|
|
self.rel_pos_w = nn.Parameter(torch.zeros(2 * input_size[1] - 1, head_dim))
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
B, H, W, _ = x.shape
|
|
|
|
qkv = self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
|
|
|
|
q, k, v = qkv.reshape(3, B * self.num_heads, H * W, -1).unbind(0)
|
|
|
|
attn = (q * self.scale) @ k.transpose(-2, -1)
|
|
|
|
if self.use_rel_pos:
|
|
attn = add_decomposed_rel_pos(attn, q, self.rel_pos_h, self.rel_pos_w, (H, W), (H, W))
|
|
|
|
attn = attn.softmax(dim=-1)
|
|
x = (attn @ v).view(B, self.num_heads, H, W, -1).permute(0, 2, 3, 1, 4).reshape(B, H, W, -1)
|
|
x = self.proj(x)
|
|
|
|
return x
|
|
|
|
|
|
def window_partition(x: torch.Tensor, window_size: int) -> Tuple[torch.Tensor, Tuple[int, int]]:
|
|
"""
|
|
Partition into non-overlapping windows with padding if needed.
|
|
Args:
|
|
x (tensor): input tokens with [B, H, W, C].
|
|
window_size (int): window size.
|
|
|
|
Returns:
|
|
windows: windows after partition with [B * num_windows, window_size, window_size, C].
|
|
(Hp, Wp): padded height and width before partition
|
|
"""
|
|
B, H, W, C = x.shape
|
|
|
|
pad_h = (window_size - H % window_size) % window_size
|
|
pad_w = (window_size - W % window_size) % window_size
|
|
if pad_h > 0 or pad_w > 0:
|
|
x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h))
|
|
Hp, Wp = H + pad_h, W + pad_w
|
|
|
|
x = x.view(B, Hp // window_size, window_size, Wp // window_size, window_size, C)
|
|
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
|
|
return windows, (Hp, Wp)
|
|
|
|
|
|
def window_unpartition(
|
|
windows: torch.Tensor, window_size: int, pad_hw: Tuple[int, int], hw: Tuple[int, int]
|
|
) -> torch.Tensor:
|
|
"""
|
|
Window unpartition into original sequences and removing padding.
|
|
Args:
|
|
windows (tensor): input tokens with [B * num_windows, window_size, window_size, C].
|
|
window_size (int): window size.
|
|
pad_hw (Tuple): padded height and width (Hp, Wp).
|
|
hw (Tuple): original height and width (H, W) before padding.
|
|
|
|
Returns:
|
|
x: unpartitioned sequences with [B, H, W, C].
|
|
"""
|
|
Hp, Wp = pad_hw
|
|
H, W = hw
|
|
B = windows.shape[0] // (Hp * Wp // window_size // window_size)
|
|
x = windows.view(B, Hp // window_size, Wp // window_size, window_size, window_size, -1)
|
|
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, Hp, Wp, -1)
|
|
|
|
if Hp > H or Wp > W:
|
|
x = x[:, :H, :W, :].contiguous()
|
|
return x
|
|
|
|
|
|
def get_rel_pos(q_size: int, k_size: int, rel_pos: torch.Tensor) -> torch.Tensor:
|
|
"""
|
|
Get relative positional embeddings according to the relative positions of
|
|
query and key sizes.
|
|
Args:
|
|
q_size (int): size of query q.
|
|
k_size (int): size of key k.
|
|
rel_pos (Tensor): relative position embeddings (L, C).
|
|
|
|
Returns:
|
|
Extracted positional embeddings according to relative positions.
|
|
"""
|
|
max_rel_dist = int(2 * max(q_size, k_size) - 1)
|
|
|
|
if rel_pos.shape[0] != max_rel_dist:
|
|
|
|
rel_pos_resized = F.interpolate(
|
|
rel_pos.reshape(1, rel_pos.shape[0], -1).permute(0, 2, 1),
|
|
size=max_rel_dist,
|
|
mode="linear",
|
|
)
|
|
rel_pos_resized = rel_pos_resized.reshape(-1, max_rel_dist).permute(1, 0)
|
|
else:
|
|
rel_pos_resized = rel_pos
|
|
|
|
|
|
q_coords = torch.arange(q_size)[:, None] * max(k_size / q_size, 1.0)
|
|
k_coords = torch.arange(k_size)[None, :] * max(q_size / k_size, 1.0)
|
|
relative_coords = (q_coords - k_coords) + (k_size - 1) * max(q_size / k_size, 1.0)
|
|
|
|
return rel_pos_resized[relative_coords.long()]
|
|
|
|
|
|
def add_decomposed_rel_pos(
|
|
attn: torch.Tensor,
|
|
q: torch.Tensor,
|
|
rel_pos_h: torch.Tensor,
|
|
rel_pos_w: torch.Tensor,
|
|
q_size: Tuple[int, int],
|
|
k_size: Tuple[int, int],
|
|
) -> torch.Tensor:
|
|
"""
|
|
Calculate decomposed Relative Positional Embeddings from :paper:`mvitv2`.
|
|
https://github.com/facebookresearch/mvit/blob/19786631e330df9f3622e5402b4a419a263a2c80/mvit/models/attention.py # noqa B950
|
|
Args:
|
|
attn (Tensor): attention map.
|
|
q (Tensor): query q in the attention layer with shape (B, q_h * q_w, C).
|
|
rel_pos_h (Tensor): relative position embeddings (Lh, C) for height axis.
|
|
rel_pos_w (Tensor): relative position embeddings (Lw, C) for width axis.
|
|
q_size (Tuple): spatial sequence size of query q with (q_h, q_w).
|
|
k_size (Tuple): spatial sequence size of key k with (k_h, k_w).
|
|
|
|
Returns:
|
|
attn (Tensor): attention map with added relative positional embeddings.
|
|
"""
|
|
q_h, q_w = q_size
|
|
k_h, k_w = k_size
|
|
Rh = get_rel_pos(q_h, k_h, rel_pos_h)
|
|
Rw = get_rel_pos(q_w, k_w, rel_pos_w)
|
|
|
|
B, _, dim = q.shape
|
|
r_q = q.reshape(B, q_h, q_w, dim)
|
|
rel_h = torch.einsum("bhwc,hkc->bhwk", r_q, Rh)
|
|
rel_w = torch.einsum("bhwc,wkc->bhwk", r_q, Rw)
|
|
|
|
attn = (
|
|
attn.view(B, q_h, q_w, k_h, k_w) + rel_h[:, :, :, :, None] + rel_w[:, :, :, None, :]
|
|
).view(B, q_h * q_w, k_h * k_w)
|
|
|
|
return attn
|
|
|
|
|
|
class PromptEncoder(nn.Module):
|
|
def __init__(
|
|
self,
|
|
embed_dim: int,
|
|
image_embedding_size: Tuple[int, int, int],
|
|
input_image_size: Tuple[int, int, int],
|
|
mask_in_chans: int,
|
|
activation: Type[nn.Module] = nn.GELU,
|
|
) -> None:
|
|
"""
|
|
Encodes prompts for input to SAM's mask decoder.
|
|
|
|
Arguments:
|
|
embed_dim (int): The prompts' embedding dimension
|
|
image_embedding_size (tuple(int, int)): The spatial size of the
|
|
image embedding, as (H, W).
|
|
input_image_size (int): The padded size of the image as input
|
|
to the image encoder, as (H, W).
|
|
mask_in_chans (int): The number of hidden channels used for
|
|
encoding input masks.
|
|
activation (nn.Module): The activation to use when encoding
|
|
input masks.
|
|
"""
|
|
super().__init__()
|
|
self.embed_dim = embed_dim
|
|
self.input_image_size = input_image_size
|
|
self.image_embedding_size = image_embedding_size
|
|
self.pe_layer = PositionEmbeddingRandom(embed_dim // 2)
|
|
|
|
self.num_point_embeddings: int = 4
|
|
point_embeddings = [nn.Embedding(1, embed_dim) for i in range(self.num_point_embeddings)]
|
|
self.point_embeddings = nn.ModuleList(point_embeddings)
|
|
self.not_a_point_embed = nn.Embedding(1, embed_dim)
|
|
|
|
self.mask_input_size = (4 * image_embedding_size[0], 4 * image_embedding_size[1], 4 * image_embedding_size[2])
|
|
self.mask_downscaling = nn.Sequential(
|
|
nn.Conv2d(1, mask_in_chans // 4, kernel_size=2, stride=2),
|
|
LayerNorm2d(mask_in_chans // 4),
|
|
activation(),
|
|
nn.Conv2d(mask_in_chans // 4, mask_in_chans, kernel_size=2, stride=2),
|
|
LayerNorm2d(mask_in_chans),
|
|
activation(),
|
|
nn.Conv2d(mask_in_chans, embed_dim, kernel_size=1),
|
|
)
|
|
self.no_mask_embed = nn.Embedding(1, embed_dim)
|
|
|
|
def get_dense_pe(self) -> torch.Tensor:
|
|
"""
|
|
Returns the positional encoding used to encode point prompts,
|
|
applied to a dense set of points the shape of the image encoding.
|
|
|
|
Returns:
|
|
torch.Tensor: Positional encoding with shape
|
|
1x(embed_dim)x(embedding_h)x(embedding_w)
|
|
"""
|
|
return self.pe_layer(self.image_embedding_size).unsqueeze(0)
|
|
|
|
def _embed_points(
|
|
self,
|
|
points: torch.Tensor,
|
|
labels: torch.Tensor,
|
|
pad: bool,
|
|
) -> torch.Tensor:
|
|
"""Embeds point prompts."""
|
|
points = points + 0.5
|
|
if pad:
|
|
padding_point = torch.zeros((points.shape[0], 1, 3), device=points.device)
|
|
padding_label = -torch.ones((labels.shape[0], 1), device=labels.device)
|
|
points = torch.cat([points, padding_point], dim=1)
|
|
labels = torch.cat([labels, padding_label], dim=1)
|
|
point_embedding = self.pe_layer.forward_with_coords(points, self.input_image_size)
|
|
point_embedding[labels == -1] = 0.0
|
|
point_embedding[labels == -1] += self.not_a_point_embed.weight
|
|
point_embedding[labels == 0] += self.point_embeddings[0].weight
|
|
point_embedding[labels == 1] += self.point_embeddings[1].weight
|
|
return point_embedding
|
|
|
|
def _embed_boxes(self, boxes: torch.Tensor) -> torch.Tensor:
|
|
"""Embeds box prompts."""
|
|
boxes = boxes + 0.5
|
|
coords = boxes.reshape(-1, 2, 3)
|
|
corner_embedding = self.pe_layer.forward_with_coords(coords, self.input_image_size)
|
|
corner_embedding[:, 0, :] += self.point_embeddings[2].weight
|
|
corner_embedding[:, 1, :] += self.point_embeddings[3].weight
|
|
return corner_embedding
|
|
|
|
def _embed_masks(self, masks: torch.Tensor) -> torch.Tensor:
|
|
"""Embeds mask inputs."""
|
|
mask_embedding = self.mask_downscaling(masks)
|
|
return mask_embedding
|
|
|
|
def _get_batch_size(
|
|
self,
|
|
points: Optional[Tuple[torch.Tensor, torch.Tensor]],
|
|
boxes: Optional[torch.Tensor],
|
|
masks: Optional[torch.Tensor],
|
|
text_embedding: Optional[torch.Tensor],
|
|
) -> int:
|
|
"""
|
|
Gets the batch size of the output given the batch size of the input prompts.
|
|
"""
|
|
if points is not None:
|
|
return points[0].shape[0]
|
|
elif boxes is not None:
|
|
return boxes.shape[0]
|
|
elif masks is not None:
|
|
return masks.shape[0]
|
|
elif text_embedding is not None:
|
|
return text_embedding.shape[0]
|
|
else:
|
|
return 1
|
|
|
|
def _get_device(self) -> torch.device:
|
|
return self.point_embeddings[0].weight.device
|
|
|
|
def forward(
|
|
self,
|
|
points: Optional[Tuple[torch.Tensor, torch.Tensor]],
|
|
boxes: Optional[torch.Tensor],
|
|
masks: Optional[torch.Tensor],
|
|
text_embedding: Optional[torch.Tensor],
|
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
"""
|
|
Embeds different types of prompts, returning both sparse and dense
|
|
embeddings.
|
|
|
|
Arguments:
|
|
points (tuple(torch.Tensor, torch.Tensor) or none): point coordinates
|
|
and labels to embed.
|
|
boxes (torch.Tensor or none): boxes to embed
|
|
masks (torch.Tensor or none): masks to embed
|
|
text: test prompt (B, 768)
|
|
|
|
Returns:
|
|
torch.Tensor: sparse embeddings for the points and boxes, with shape
|
|
BxNx(embed_dim), where N is determined by the number of input points
|
|
and boxes.
|
|
torch.Tensor: dense embeddings for the masks, in the shape
|
|
Bx(embed_dim)x(embed_H)x(embed_W)
|
|
"""
|
|
|
|
|
|
bs = self._get_batch_size(points, boxes, masks, text_embedding)
|
|
sparse_embeddings = torch.empty((bs, 0, self.embed_dim), device=self._get_device(),
|
|
dtype=self.point_embeddings[0].weight.dtype)
|
|
|
|
if points is not None:
|
|
coords, labels = points
|
|
point_embeddings = self._embed_points(coords, labels, pad=(boxes is None))
|
|
sparse_embeddings = torch.cat([sparse_embeddings, point_embeddings], dim=1)
|
|
|
|
if boxes is not None:
|
|
box_embeddings = self._embed_boxes(boxes)
|
|
sparse_embeddings = torch.cat([sparse_embeddings, box_embeddings], dim=1)
|
|
|
|
if text_embedding is not None:
|
|
sparse_embeddings = torch.cat([sparse_embeddings, text_embedding.unsqueeze(dim=1)], dim=1)
|
|
|
|
|
|
|
|
|
|
if masks is not None:
|
|
dense_embeddings = self._embed_masks(masks)
|
|
else:
|
|
dense_embeddings = self.no_mask_embed.weight.reshape(1, -1, 1, 1, 1).expand(
|
|
bs, -1, int(self.image_embedding_size[0]), int(self.image_embedding_size[1]),
|
|
int(self.image_embedding_size[2])
|
|
)
|
|
return sparse_embeddings, dense_embeddings
|
|
|
|
|
|
class PositionEmbeddingRandom(nn.Module):
|
|
"""
|
|
Positional encoding using random spatial frequencies.
|
|
"""
|
|
|
|
def __init__(self, num_pos_feats: int = 64, scale: Optional[float] = None) -> None:
|
|
super().__init__()
|
|
if scale is None or scale <= 0.0:
|
|
scale = 1.0
|
|
self.register_buffer(
|
|
"positional_encoding_gaussian_matrix",
|
|
scale * torch.randn((3, num_pos_feats)),
|
|
)
|
|
|
|
def _pe_encoding(self, coords: torch.Tensor) -> torch.Tensor:
|
|
"""Positionally encode points that are normalized to [0,1]."""
|
|
|
|
coords = 2 * coords - 1
|
|
coords = coords @ self.positional_encoding_gaussian_matrix
|
|
coords = 2 * np.pi * coords
|
|
|
|
return torch.cat([torch.sin(coords), torch.cos(coords)], dim=-1)
|
|
|
|
def forward(self, size: Tuple[int, int, int]) -> torch.Tensor:
|
|
"""Generate positional encoding for a grid of the specified size."""
|
|
h, w, d = size
|
|
device: Any = self.positional_encoding_gaussian_matrix.device
|
|
dtype = self.positional_encoding_gaussian_matrix.dtype
|
|
grid = torch.ones((h, w, d), device=device, dtype=dtype)
|
|
y_embed = grid.cumsum(dim=0) - 0.5
|
|
x_embed = grid.cumsum(dim=1) - 0.5
|
|
z_embed = grid.cumsum(dim=2) - 0.5
|
|
y_embed = y_embed / h
|
|
x_embed = x_embed / w
|
|
z_embed = z_embed / d
|
|
|
|
pe = self._pe_encoding(torch.stack([x_embed, y_embed, z_embed], dim=-1))
|
|
return pe.permute(3, 0, 1, 2)
|
|
|
|
def forward_with_coords(
|
|
self, coords_input: torch.Tensor, image_size: Tuple[int, int]
|
|
) -> torch.Tensor:
|
|
"""Positionally encode points that are not normalized to [0,1]."""
|
|
coords = coords_input.clone()
|
|
coords[:, :, 0] = coords[:, :, 0] / image_size[1]
|
|
coords[:, :, 1] = coords[:, :, 1] / image_size[0]
|
|
coords[:, :, 2] = coords[:, :, 2] / image_size[2]
|
|
return self._pe_encoding(coords.to(torch.float))
|
|
|
|
|
|
class MaskDecoder(nn.Module):
|
|
def __init__(
|
|
self,
|
|
*,
|
|
image_encoder_type: str,
|
|
transformer_dim: int,
|
|
transformer: nn.Module,
|
|
num_multimask_outputs: int = 3,
|
|
activation: Type[nn.Module] = nn.GELU,
|
|
iou_head_depth: int = 3,
|
|
iou_head_hidden_dim: int = 256,
|
|
image_size,
|
|
patch_size,
|
|
) -> None:
|
|
"""
|
|
Predicts masks given an image and prompt embeddings, using a
|
|
transformer architecture.
|
|
|
|
Arguments:
|
|
transformer_dim (int): the channel dimension of the transformer
|
|
transformer (nn.Module): the transformer used to predict masks
|
|
num_multimask_outputs (int): the number of masks to predict
|
|
when disambiguating masks
|
|
activation (nn.Module): the type of activation to use when
|
|
upscaling masks
|
|
iou_head_depth (int): the depth of the MLP used to predict
|
|
mask quality
|
|
iou_head_hidden_dim (int): the hidden dimension of the MLP
|
|
used to predict mask quality
|
|
"""
|
|
super().__init__()
|
|
self.transformer_dim = transformer_dim
|
|
self.transformer = transformer
|
|
|
|
self.num_multimask_outputs = num_multimask_outputs
|
|
|
|
self.iou_token = nn.Embedding(1, transformer_dim)
|
|
self.num_mask_tokens = num_multimask_outputs + 1
|
|
self.mask_tokens = nn.Embedding(self.num_mask_tokens, transformer_dim)
|
|
|
|
if image_encoder_type == 'swin_vit':
|
|
self.feat_shape = image_size / patch_size
|
|
self.output_upscaling = nn.Sequential(
|
|
nn.ConvTranspose3d(transformer_dim, transformer_dim // 4, kernel_size=2, stride=2),
|
|
nn.LayerNorm(
|
|
(transformer_dim // 4, int(self.feat_shape[0]), int(self.feat_shape[1]), int(self.feat_shape[2]))),
|
|
|
|
activation(),
|
|
nn.ConvTranspose3d(transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2),
|
|
|
|
activation(),
|
|
)
|
|
else:
|
|
self.feat_shape = image_size / patch_size * 2
|
|
self.output_upscaling = nn.Sequential(
|
|
nn.ConvTranspose3d(transformer_dim, transformer_dim // 4, kernel_size=2, stride=2),
|
|
nn.LayerNorm(
|
|
(transformer_dim // 4, int(self.feat_shape[0]), int(self.feat_shape[1]), int(self.feat_shape[2]))),
|
|
|
|
activation(),
|
|
nn.ConvTranspose3d(transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2),
|
|
|
|
activation(),
|
|
)
|
|
self.output_hypernetworks_mlps = nn.ModuleList(
|
|
[
|
|
MLP(transformer_dim, transformer_dim, transformer_dim // 8, 3)
|
|
for i in range(self.num_mask_tokens)
|
|
]
|
|
)
|
|
|
|
self.iou_prediction_head = MLP(
|
|
transformer_dim, iou_head_hidden_dim, self.num_mask_tokens, iou_head_depth
|
|
)
|
|
|
|
self.txt_align_upscaled_embedding = nn.Linear(768, 96)
|
|
|
|
def forward(
|
|
self,
|
|
image_embeddings: torch.Tensor,
|
|
text_embedding: Optional[torch.Tensor],
|
|
image_pe: torch.Tensor,
|
|
sparse_prompt_embeddings: torch.Tensor,
|
|
dense_prompt_embeddings: torch.Tensor,
|
|
multimask_output: bool,
|
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
"""
|
|
Predict masks given image and prompt embeddings.
|
|
|
|
Arguments:
|
|
image_embeddings (torch.Tensor): the embeddings from the image encoder
|
|
image_pe (torch.Tensor): positional encoding with the shape of image_embeddings
|
|
sparse_prompt_embeddings (torch.Tensor): the embeddings of the points and boxes
|
|
dense_prompt_embeddings (torch.Tensor): the embeddings of the mask inputs
|
|
multimask_output (bool): Whether to return multiple masks or a single
|
|
mask.
|
|
|
|
Returns:
|
|
torch.Tensor: batched predicted masks
|
|
torch.Tensor: batched predictions of mask quality
|
|
"""
|
|
|
|
masks, iou_pred = self.predict_masks(
|
|
image_embeddings=image_embeddings,
|
|
text_embedding=text_embedding,
|
|
image_pe=image_pe,
|
|
sparse_prompt_embeddings=sparse_prompt_embeddings,
|
|
dense_prompt_embeddings=dense_prompt_embeddings,
|
|
)
|
|
|
|
|
|
if multimask_output:
|
|
mask_slice = slice(1, None)
|
|
else:
|
|
mask_slice = slice(0, 1)
|
|
masks = masks[:, mask_slice, :, :, :]
|
|
iou_pred = iou_pred[:, mask_slice]
|
|
|
|
|
|
return masks, iou_pred
|
|
|
|
def predict_masks(
|
|
self,
|
|
image_embeddings: torch.Tensor,
|
|
text_embedding: torch.Tensor,
|
|
image_pe: torch.Tensor,
|
|
sparse_prompt_embeddings: torch.Tensor,
|
|
dense_prompt_embeddings: torch.Tensor,
|
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
"""Predicts masks. See 'forward' for more details."""
|
|
|
|
output_tokens = torch.cat([self.iou_token.weight, self.mask_tokens.weight], dim=0)
|
|
output_tokens = output_tokens.unsqueeze(0).expand(sparse_prompt_embeddings.size(0), -1, -1)
|
|
tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1)
|
|
|
|
if image_embeddings.shape[0] != tokens.shape[0]:
|
|
src = torch.repeat_interleave(image_embeddings, tokens.shape[0], dim=0)
|
|
else:
|
|
src = image_embeddings
|
|
|
|
src = src + dense_prompt_embeddings
|
|
pos_src = torch.repeat_interleave(image_pe, tokens.shape[0], dim=0)
|
|
b, c, h, w, d = src.shape
|
|
|
|
|
|
hs, src = self.transformer(src, pos_src, tokens)
|
|
iou_token_out = hs[:, 0, :]
|
|
mask_tokens_out = hs[:, 1: (1 + self.num_mask_tokens), :]
|
|
|
|
|
|
src = src.transpose(1, 2).view(b, c, h, w, d)
|
|
|
|
upscaled_embedding = self.output_upscaling(src)
|
|
hyper_in_list: List[torch.Tensor] = []
|
|
for i in range(self.num_mask_tokens):
|
|
hyper_in_list.append(self.output_hypernetworks_mlps[i](mask_tokens_out[:, i, :]))
|
|
hyper_in = torch.stack(hyper_in_list, dim=1)
|
|
b, c, h, w, d = upscaled_embedding.shape
|
|
|
|
|
|
masks = (hyper_in @ upscaled_embedding.view(b, c, h * w * d)).view(b, -1, h, w, d)
|
|
|
|
|
|
if text_embedding is not None:
|
|
|
|
text_embedding_down = self.txt_align_upscaled_embedding(text_embedding).unsqueeze(dim=1)
|
|
upscaled_embedding = upscaled_embedding.view(b, c, h * w * d)
|
|
|
|
|
|
|
|
|
|
|
|
sim = (text_embedding_down @ upscaled_embedding).view(b, -1, h, w, d)
|
|
|
|
sim = sim.repeat(1, masks.shape[1], 1, 1, 1)
|
|
|
|
masks = masks + sim
|
|
|
|
iou_pred = self.iou_prediction_head(iou_token_out)
|
|
|
|
return masks, iou_pred
|
|
|
|
|
|
|
|
|
|
class MLP(nn.Module):
|
|
def __init__(
|
|
self,
|
|
input_dim: int,
|
|
hidden_dim: int,
|
|
output_dim: int,
|
|
num_layers: int,
|
|
sigmoid_output: bool = False,
|
|
) -> None:
|
|
super().__init__()
|
|
self.num_layers = num_layers
|
|
h = [hidden_dim] * (num_layers - 1)
|
|
self.layers = nn.ModuleList(
|
|
nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim])
|
|
)
|
|
self.sigmoid_output = sigmoid_output
|
|
|
|
def forward(self, x):
|
|
for i, layer in enumerate(self.layers):
|
|
x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
|
|
if self.sigmoid_output:
|
|
x = F.sigmoid(x)
|
|
return x
|
|
|
|
|
|
class Sam(nn.Module):
|
|
mask_threshold: float = 0.0
|
|
image_format: str = "RGB"
|
|
|
|
def __init__(
|
|
self,
|
|
image_encoder: ImageEncoderViT,
|
|
prompt_encoder: PromptEncoder,
|
|
mask_decoder: MaskDecoder,
|
|
pixel_mean: List[float] = [123.675, 116.28, 103.53],
|
|
pixel_std: List[float] = [58.395, 57.12, 57.375],
|
|
) -> None:
|
|
"""
|
|
SAM predicts object masks from an image and input prompts.
|
|
|
|
Arguments:
|
|
image_encoder (ImageEncoderViT): The backbone used to encode the
|
|
image into image embeddings that allow for efficient mask prediction.
|
|
prompt_encoder (PromptEncoder): Encodes various types of input prompts.
|
|
mask_decoder (MaskDecoder): Predicts masks from the image embeddings
|
|
and encoded prompts.
|
|
pixel_mean (list(float)): Mean values for normalizing pixels in the input image.
|
|
pixel_std (list(float)): Std values for normalizing pixels in the input image.
|
|
"""
|
|
super().__init__()
|
|
self.image_encoder = image_encoder
|
|
self.prompt_encoder = prompt_encoder
|
|
self.mask_decoder = mask_decoder
|
|
self.register_buffer("pixel_mean", torch.Tensor(pixel_mean).view(-1, 1, 1), False)
|
|
self.register_buffer("pixel_std", torch.Tensor(pixel_std).view(-1, 1, 1), False)
|
|
|
|
@property
|
|
def device(self) -> Any:
|
|
return self.pixel_mean.device
|
|
|
|
@torch.no_grad()
|
|
def forward(
|
|
self,
|
|
batched_input: List[Dict[str, Any]],
|
|
multimask_output: bool,
|
|
) -> List[Dict[str, torch.Tensor]]:
|
|
"""
|
|
Predicts masks end-to-end from provided images and prompts.
|
|
If prompts are not known in advance, using SamPredictor is
|
|
recommended over calling the model directly.
|
|
|
|
Arguments:
|
|
batched_input (list(dict)): A list over input images, each a
|
|
dictionary with the following keys. A prompt key can be
|
|
excluded if it is not present.
|
|
'image': The image as a torch tensor in 3xHxW format,
|
|
already transformed for input to the model.
|
|
'original_size': (tuple(int, int)) The original size of
|
|
the image before transformation, as (H, W).
|
|
'point_coords': (torch.Tensor) Batched point prompts for
|
|
this image, with shape BxNx2. Already transformed to the
|
|
input frame of the model.
|
|
'point_labels': (torch.Tensor) Batched labels for point prompts,
|
|
with shape BxN.
|
|
'boxes': (torch.Tensor) Batched box inputs, with shape Bx4.
|
|
Already transformed to the input frame of the model.
|
|
'mask_inputs': (torch.Tensor) Batched mask inputs to the model,
|
|
in the form Bx1xHxW.
|
|
multimask_output (bool): Whether the model should predict multiple
|
|
disambiguating masks, or return a single mask.
|
|
|
|
Returns:
|
|
(list(dict)): A list over input images, where each element is
|
|
as dictionary with the following keys.
|
|
'masks': (torch.Tensor) Batched binary mask predictions,
|
|
with shape BxCxHxW, where B is the number of input prompts,
|
|
C is determined by multimask_output, and (H, W) is the
|
|
original size of the image.
|
|
'iou_predictions': (torch.Tensor) The model's predictions
|
|
of mask quality, in shape BxC.
|
|
'low_res_logits': (torch.Tensor) Low resolution logits with
|
|
shape BxCxHxW, where H=W=256. Can be passed as mask input
|
|
to subsequent iterations of prediction.
|
|
"""
|
|
input_images = torch.stack([self.preprocess(x["image"]) for x in batched_input], dim=0)
|
|
image_embeddings = self.image_encoder(input_images)
|
|
|
|
outputs = []
|
|
for image_record, curr_embedding in zip(batched_input, image_embeddings):
|
|
if "point_coords" in image_record:
|
|
points = (image_record["point_coords"], image_record["point_labels"])
|
|
else:
|
|
points = None
|
|
sparse_embeddings, dense_embeddings = self.prompt_encoder(
|
|
points=points,
|
|
boxes=image_record.get("boxes", None),
|
|
masks=image_record.get("mask_inputs", None),
|
|
)
|
|
low_res_masks, iou_predictions = self.mask_decoder(
|
|
image_embeddings=curr_embedding.unsqueeze(0),
|
|
image_pe=self.prompt_encoder.get_dense_pe(),
|
|
sparse_prompt_embeddings=sparse_embeddings,
|
|
dense_prompt_embeddings=dense_embeddings,
|
|
multimask_output=multimask_output,
|
|
)
|
|
masks = self.postprocess_masks(
|
|
low_res_masks,
|
|
input_size=image_record["image"].shape[-2:],
|
|
original_size=image_record["original_size"],
|
|
)
|
|
masks = masks > self.mask_threshold
|
|
outputs.append(
|
|
{
|
|
"masks": masks,
|
|
"iou_predictions": iou_predictions,
|
|
"low_res_logits": low_res_masks,
|
|
}
|
|
)
|
|
return outputs
|
|
|
|
def postprocess_masks(
|
|
self,
|
|
masks: torch.Tensor,
|
|
input_size: Tuple[int, ...],
|
|
original_size: Tuple[int, ...],
|
|
) -> torch.Tensor:
|
|
"""
|
|
Remove padding and upscale masks to the original image size.
|
|
|
|
Arguments:
|
|
masks (torch.Tensor): Batched masks from the mask_decoder,
|
|
in BxCxHxW format.
|
|
input_size (tuple(int, int)): The size of the image input to the
|
|
model, in (H, W) format. Used to remove padding.
|
|
original_size (tuple(int, int)): The original size of the image
|
|
before resizing for input to the model, in (H, W) format.
|
|
|
|
Returns:
|
|
(torch.Tensor): Batched masks in BxCxHxW format, where (H, W)
|
|
is given by original_size.
|
|
"""
|
|
masks = F.interpolate(
|
|
masks,
|
|
(self.image_encoder.img_size, self.image_encoder.img_size),
|
|
mode="bilinear",
|
|
align_corners=False,
|
|
)
|
|
masks = masks[..., : input_size[0], : input_size[1]]
|
|
masks = F.interpolate(masks, original_size, mode="bilinear", align_corners=False)
|
|
return masks
|
|
|
|
def preprocess(self, x: torch.Tensor) -> torch.Tensor:
|
|
"""Normalize pixel values and pad to a square input."""
|
|
|
|
|
|
x = (x - self.pixel_mean) / self.pixel_std
|
|
|
|
|
|
h, w = x.shape[-2:]
|
|
padh = self.image_encoder.img_size - h
|
|
padw = self.image_encoder.img_size - w
|
|
x = F.pad(x, (0, padw, 0, padh))
|
|
return x
|
|
|
|
|
|
"""
|
|
Examples::
|
|
# for 3D single channel input with size (96,96,96), 4-channel output and feature size of 48.
|
|
>>> net = SwinUNETR(img_size=(96,96,96), in_channels=1, out_channels=4, feature_size=48)
|
|
# for 3D 4-channel input with size (128,128,128), 3-channel output and (2,4,2,2) layers in each stage.
|
|
>>> net = SwinUNETR(img_size=(128,128,128), in_channels=4, out_channels=3, depths=(2,4,2,2))
|
|
# for 2D single channel input with size (96,96), 2-channel output and gradient checkpointing.
|
|
>>> net = SwinUNETR(img_size=(96,96), in_channels=3, out_channels=2, use_checkpoint=True, spatial_dims=2)
|
|
"""
|
|
|
|
|
|
def build_sam_vit_3d(args, checkpoint=None):
|
|
print('build_sam_vit_3d...')
|
|
return _build_sam(
|
|
image_encoder_type='vit',
|
|
embed_dim=768,
|
|
patch_size=args.patch_size,
|
|
checkpoint=checkpoint,
|
|
image_size=args.image_size,
|
|
)
|
|
|
|
|
|
sam_model_registry = {
|
|
"vit": build_sam_vit_3d,
|
|
}
|
|
|
|
|
|
def _build_sam(
|
|
image_encoder_type,
|
|
embed_dim,
|
|
patch_size,
|
|
checkpoint,
|
|
image_size,
|
|
):
|
|
mlp_dim = 3072
|
|
num_layers = 12
|
|
num_heads = 12
|
|
pos_embed = 'perceptron'
|
|
dropout_rate = 0.0
|
|
|
|
image_encoder = ViT(
|
|
in_channels=1,
|
|
img_size=image_size,
|
|
patch_size=patch_size,
|
|
hidden_size=embed_dim,
|
|
mlp_dim=mlp_dim,
|
|
num_layers=num_layers,
|
|
num_heads=num_heads,
|
|
pos_embed=pos_embed,
|
|
classification=False,
|
|
dropout_rate=dropout_rate,
|
|
)
|
|
image_embedding_size = [int(item) for item in (np.array(image_size) / np.array(patch_size))]
|
|
|
|
if checkpoint is not None:
|
|
with open(checkpoint, "rb") as f:
|
|
state_dict = torch.load(f, map_location='cpu')['state_dict']
|
|
encoder_dict = {k.replace('model.encoder.', ''): v for k, v in state_dict.items() if 'model.encoder.' in k}
|
|
image_encoder.load_state_dict(encoder_dict)
|
|
print(f'===> image_encoder.load_param: {checkpoint}')
|
|
sam = Sam(
|
|
image_encoder=image_encoder,
|
|
prompt_encoder=PromptEncoder(
|
|
embed_dim=embed_dim,
|
|
image_embedding_size=image_embedding_size,
|
|
input_image_size=image_size,
|
|
mask_in_chans=16,
|
|
),
|
|
mask_decoder=MaskDecoder(
|
|
image_encoder_type=image_encoder_type,
|
|
num_multimask_outputs=3,
|
|
transformer=TwoWayTransformer(
|
|
depth=2,
|
|
embedding_dim=embed_dim,
|
|
mlp_dim=2048,
|
|
num_heads=8,
|
|
),
|
|
transformer_dim=embed_dim,
|
|
iou_head_depth=3,
|
|
iou_head_hidden_dim=256,
|
|
image_size=np.array(image_size),
|
|
patch_size=np.array(patch_size),
|
|
),
|
|
pixel_mean=[123.675, 116.28, 103.53],
|
|
pixel_std=[58.395, 57.12, 57.375],
|
|
)
|
|
sam.eval()
|
|
return sam
|
|
|
|
class SegVol(nn.Module):
|
|
def __init__(self,
|
|
image_encoder,
|
|
mask_decoder,
|
|
prompt_encoder,
|
|
roi_size,
|
|
patch_size,
|
|
):
|
|
super().__init__()
|
|
self.image_encoder = image_encoder
|
|
self.mask_decoder = mask_decoder
|
|
self.prompt_encoder = prompt_encoder
|
|
self.feat_shape = np.array(roi_size)/np.array(patch_size)
|
|
|
|
def forward(self, image, text_emb=None, text=None, boxes=None, points=None):
|
|
bs = image.shape[0]
|
|
img_shape = (image.shape[2], image.shape[3], image.shape[4])
|
|
image_embedding, _ = self.image_encoder(image)
|
|
|
|
image_embedding = image_embedding.transpose(1, 2).view(bs, -1,
|
|
int(self.feat_shape[0]), int(self.feat_shape[1]), int(self.feat_shape[2]))
|
|
|
|
logits = self.forward_decoder(image_embedding, img_shape, text_emb=text_emb, text=text, boxes=boxes, points=points)
|
|
|
|
return logits
|
|
|
|
def forward_decoder(self, image_embedding, img_shape, text_emb=None, text=None, boxes=None, points=None):
|
|
text_embedding = text_emb
|
|
sparse_embeddings, dense_embeddings = self.prompt_encoder(
|
|
points=None,
|
|
boxes=None,
|
|
masks=None,
|
|
text_embedding=text_embedding,
|
|
)
|
|
|
|
dense_pe = self.prompt_encoder.get_dense_pe()
|
|
|
|
low_res_masks, _ = self.mask_decoder(
|
|
image_embeddings=image_embedding,
|
|
text_embedding = text_embedding,
|
|
image_pe=dense_pe,
|
|
sparse_prompt_embeddings=sparse_embeddings,
|
|
dense_prompt_embeddings=dense_embeddings,
|
|
multimask_output=False,
|
|
)
|
|
logits = F.interpolate(low_res_masks, size=img_shape, mode='trilinear', align_corners=False)
|
|
|
|
return logits
|
|
|
|
|
|
def build_segmentation_module(config, **kwargs):
|
|
segmentation_module = getattr(config, 'segmentation_module')
|
|
if 'segvol' in segmentation_module.lower():
|
|
sam_model = sam_model_registry['vit'](args=config, checkpoint=None)
|
|
seg_model = SegVol(
|
|
image_encoder=sam_model.image_encoder,
|
|
mask_decoder=sam_model.mask_decoder,
|
|
prompt_encoder=sam_model.prompt_encoder,
|
|
roi_size=config.image_size,
|
|
patch_size=config.patch_size,
|
|
)
|
|
return seg_model
|
|
else:
|
|
raise ValueError(f'Unknown segmentation module: {segmentation_module}')
|
|
|
|
|
|
class IdentityMap(nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
|
|
def forward(self, x, *args, **kwargs):
|
|
return x
|
|
|
|
@property
|
|
def config(self):
|
|
return {"mm_projector_type": 'identity'}
|
|
|
|
|
|
|
|
class SpatialPoolingProjector(nn.Module):
|
|
def __init__(self, image_size, patch_size, in_dim, out_dim, layer_type, layer_num, pooling_type='spatial', pooling_size=2):
|
|
super().__init__()
|
|
self.in_dim = in_dim
|
|
self.pooling_size = pooling_size
|
|
|
|
self.num_patches_pre = [img // pch for img, pch in zip(image_size, patch_size)]
|
|
self.num_patches_post = [num // pooling_size for num in self.num_patches_pre]
|
|
|
|
if layer_type == 'linear':
|
|
depth = int(layer_num)
|
|
modules = [nn.Linear(in_dim, out_dim)]
|
|
for _ in range(1, depth):
|
|
modules.append(nn.Linear(out_dim, out_dim))
|
|
self.projector = nn.Sequential(*modules)
|
|
elif layer_type == 'mlp':
|
|
depth = int(layer_num)
|
|
modules = [nn.Linear(in_dim, out_dim)]
|
|
for _ in range(1, depth):
|
|
modules.append(nn.GELU())
|
|
modules.append(nn.Linear(out_dim, out_dim))
|
|
self.projector = nn.Sequential(*modules)
|
|
else:
|
|
print("Projector error!")
|
|
|
|
self.pooling_type = pooling_type
|
|
|
|
def forward(self, x):
|
|
B = x.shape[0]
|
|
|
|
if self.pooling_type == 'spatial':
|
|
to_3d = Rearrange("b (p1 p2 p3) d -> b d p1 p2 p3", b=B, d=self.in_dim, p1=self.num_patches_pre[0], p2=self.num_patches_pre[1], p3=self.num_patches_pre[2])
|
|
x = to_3d(x)
|
|
x = F.avg_pool3d(x, kernel_size=self.pooling_size, stride=self.pooling_size)
|
|
to_seq = Rearrange("b d p1 p2 p3 -> b (p1 p2 p3) d", b=B, d=self.in_dim, p1=self.num_patches_post[0], p2=self.num_patches_post[1], p3=self.num_patches_post[2])
|
|
x = to_seq(x)
|
|
elif self.pooling_type == 'sequence':
|
|
x = x.permute(0, 2, 1)
|
|
x = F.avg_pool1d(x, kernel_size=self.pooling_size**3, stride=self.pooling_size**3)
|
|
x = x.permute(0, 2, 1)
|
|
|
|
x = rearrange(x, "b n d -> (b n) d")
|
|
x = self.projector(x)
|
|
x = rearrange(x, "(b n) d -> b n d", b=B)
|
|
|
|
return x
|
|
|
|
@property
|
|
def proj_out_num(self):
|
|
num = 1
|
|
for n in self.num_patches_post:
|
|
num *= n
|
|
return num
|
|
|
|
|
|
class Minigpt(nn.Module):
|
|
def __init__(self, config=None):
|
|
super(Minigpt, self).__init__()
|
|
|
|
inc, ouc = config.mm_hidden_size, config.hidden_size
|
|
self.linear = nn.Linear(inc * 4, ouc)
|
|
|
|
def forward(self, x):
|
|
|
|
b, num_tokens, c = x.shape
|
|
|
|
|
|
if num_tokens % 4 != 0:
|
|
raise ValueError("num_tokens must be divisible by 4")
|
|
|
|
|
|
x = x.view(b, num_tokens // 4, c * 4)
|
|
|
|
|
|
x = self.linear(x)
|
|
return x
|
|
|
|
|
|
class Vanilla(nn.Module):
|
|
def __init__(self, config=None):
|
|
super(Vanilla, self).__init__()
|
|
|
|
inc, ouc = config.mm_hidden_size, config.hidden_size
|
|
self.linear = nn.Linear(inc * 4, ouc)
|
|
|
|
def forward(self, x):
|
|
b, num_tokens, c = x.shape
|
|
|
|
|
|
if num_tokens % 4 != 0:
|
|
raise ValueError("num_tokens must be divisible by 4")
|
|
|
|
|
|
x = x.view(b, num_tokens // 4, 4, c)
|
|
|
|
|
|
x = x.permute(0, 1, 3, 2).contiguous()
|
|
|
|
|
|
x = x.view(b, num_tokens // 4, c * 4)
|
|
|
|
|
|
x = self.linear(x)
|
|
return x
|
|
|
|
|
|
def build_mm_projector(config, delay_load=False, **kwargs):
|
|
projector_type = getattr(config, 'mm_projector_type')
|
|
|
|
if projector_type == 'linear':
|
|
return nn.Linear(config.mm_hidden_size, config.hidden_size)
|
|
|
|
|
|
elif projector_type == 'spp':
|
|
return SpatialPoolingProjector(image_size=config.image_size,
|
|
patch_size=config.patch_size,
|
|
in_dim=config.mm_hidden_size,
|
|
out_dim=config.hidden_size,
|
|
layer_type=config.proj_layer_type,
|
|
layer_num=config.proj_layer_num,
|
|
pooling_type=config.proj_pooling_type,
|
|
pooling_size=config.proj_pooling_size)
|
|
|
|
|
|
elif projector_type == 'identity':
|
|
return IdentityMap()
|
|
else:
|
|
raise ValueError(f'Unknown projector type: {projector_type}')
|
|
|
|
|
|
|
|
class myViT(nn.Module):
|
|
"""
|
|
Vision Transformer (ViT), based on: "Dosovitskiy et al.,
|
|
An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale <https://arxiv.org/abs/2010.11929>"
|
|
|
|
ViT supports Torchscript but only works for Pytorch after 1.8.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
in_channels: int,
|
|
img_size: Sequence[int] | int,
|
|
patch_size: Sequence[int] | int,
|
|
hidden_size: int = 768,
|
|
mlp_dim: int = 3072,
|
|
num_layers: int = 12,
|
|
num_heads: int = 12,
|
|
pos_embed: str = "conv",
|
|
classification: bool = False,
|
|
num_classes: int = 2,
|
|
dropout_rate: float = 0.0,
|
|
spatial_dims: int = 3,
|
|
post_activation="Tanh",
|
|
qkv_bias: bool = False,
|
|
save_attn: bool = False,
|
|
) -> None:
|
|
"""
|
|
Args:
|
|
in_channels (int): dimension of input channels.
|
|
img_size (Union[Sequence[int], int]): dimension of input image.
|
|
patch_size (Union[Sequence[int], int]): dimension of patch size.
|
|
hidden_size (int, optional): dimension of hidden layer. Defaults to 768.
|
|
mlp_dim (int, optional): dimension of feedforward layer. Defaults to 3072.
|
|
num_layers (int, optional): number of transformer blocks. Defaults to 12.
|
|
num_heads (int, optional): number of attention heads. Defaults to 12.
|
|
pos_embed (str, optional): position embedding layer type. Defaults to "conv".
|
|
classification (bool, optional): bool argument to determine if classification is used. Defaults to False.
|
|
num_classes (int, optional): number of classes if classification is used. Defaults to 2.
|
|
dropout_rate (float, optional): faction of the input units to drop. Defaults to 0.0.
|
|
spatial_dims (int, optional): number of spatial dimensions. Defaults to 3.
|
|
post_activation (str, optional): add a final acivation function to the classification head
|
|
when `classification` is True. Default to "Tanh" for `nn.Tanh()`.
|
|
Set to other values to remove this function.
|
|
qkv_bias (bool, optional): apply bias to the qkv linear layer in self attention block. Defaults to False.
|
|
save_attn (bool, optional): to make accessible the attention in self attention block. Defaults to False.
|
|
|
|
Examples::
|
|
|
|
# for single channel input with image size of (96,96,96), conv position embedding and segmentation backbone
|
|
>>> net = ViT(in_channels=1, img_size=(96,96,96), pos_embed='conv')
|
|
|
|
# for 3-channel with image size of (128,128,128), 24 layers and classification backbone
|
|
>>> net = ViT(in_channels=3, img_size=(128,128,128), pos_embed='conv', classification=True)
|
|
|
|
# for 3-channel with image size of (224,224), 12 layers and classification backbone
|
|
>>> net = ViT(in_channels=3, img_size=(224,224), pos_embed='conv', classification=True, spatial_dims=2)
|
|
|
|
"""
|
|
|
|
super().__init__()
|
|
|
|
if not (0 <= dropout_rate <= 1):
|
|
raise ValueError("dropout_rate should be between 0 and 1.")
|
|
|
|
if hidden_size % num_heads != 0:
|
|
raise ValueError("hidden_size should be divisible by num_heads.")
|
|
self.hidden_size = hidden_size
|
|
self.classification = classification
|
|
self.patch_embedding = PatchEmbeddingBlock(
|
|
in_channels=in_channels,
|
|
img_size=img_size,
|
|
patch_size=patch_size,
|
|
hidden_size=hidden_size,
|
|
num_heads=num_heads,
|
|
pos_embed=pos_embed,
|
|
dropout_rate=dropout_rate,
|
|
spatial_dims=spatial_dims,
|
|
)
|
|
self.blocks = nn.ModuleList(
|
|
[
|
|
TransformerBlock(hidden_size, mlp_dim, num_heads, dropout_rate, qkv_bias, save_attn)
|
|
for i in range(num_layers)
|
|
]
|
|
)
|
|
self.norm = nn.LayerNorm(hidden_size)
|
|
if self.classification:
|
|
self.cls_token = nn.Parameter(torch.zeros(1, 1, hidden_size))
|
|
|
|
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
x = self.patch_embedding(x)
|
|
if hasattr(self, "cls_token"):
|
|
cls_token = self.cls_token.expand(x.shape[0], -1, -1)
|
|
x = torch.cat((cls_token, x), dim=1)
|
|
hidden_states_out = []
|
|
for blk in self.blocks:
|
|
x = blk(x)
|
|
hidden_states_out.append(x)
|
|
x = self.norm(x)
|
|
|
|
|
|
return x, hidden_states_out
|
|
|
|
|
|
class ViT3DTower(nn.Module):
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
self.config = config
|
|
self.select_layer = config.vision_select_layer
|
|
self.select_feature = config.vision_select_feature
|
|
|
|
self.vision_tower = myViT(
|
|
in_channels=self.config.image_channel,
|
|
img_size=self.config.image_size,
|
|
patch_size=self.config.patch_size,
|
|
pos_embed="perceptron",
|
|
spatial_dims=len(self.config.patch_size),
|
|
classification=True,
|
|
)
|
|
|
|
def forward(self, images):
|
|
last_feature, hidden_states = self.vision_tower(images)
|
|
if self.select_layer == -1:
|
|
image_features = last_feature
|
|
elif self.select_layer < -1:
|
|
image_features = hidden_states[self.select_feature]
|
|
else:
|
|
raise ValueError(f'Unexpected select layer: {self.select_layer}')
|
|
|
|
if self.select_feature == 'patch':
|
|
image_features = image_features[:, 1:]
|
|
elif self.select_feature == 'cls_patch':
|
|
image_features = image_features
|
|
else:
|
|
raise ValueError(f'Unexpected select feature: {self.select_feature}')
|
|
|
|
return image_features
|
|
|
|
@property
|
|
def dtype(self):
|
|
return self.vision_tower.dtype
|
|
|
|
@property
|
|
def device(self):
|
|
return self.vision_tower.device
|
|
|
|
@property
|
|
def hidden_size(self):
|
|
return self.vision_tower.hidden_size
|
|
|
|
|
|
def build_vision_tower(config, **kwargs):
|
|
vision_tower = getattr(config, 'vision_tower', None)
|
|
if 'vit3d' in vision_tower.lower():
|
|
return ViT3DTower(config, **kwargs)
|
|
else:
|
|
raise ValueError(f'Unknown vision tower: {vision_tower}')
|
|
|
|
class LamedMetaModel:
|
|
def __init__(self, config):
|
|
super(LamedMetaModel, self).__init__(config)
|
|
|
|
self.config = config
|
|
self.seg_enable = False
|
|
|
|
if hasattr(config, "vision_tower"):
|
|
self.vision_tower = build_vision_tower(config)
|
|
self.mm_projector = build_mm_projector(config)
|
|
|
|
if hasattr(config, "segmentation_module") and config.segmentation_module is not None:
|
|
self.seg_enable = True
|
|
self.seg_module = build_segmentation_module(config)
|
|
|
|
self.seg_projector = nn.Sequential(
|
|
nn.Linear(config.hidden_size, config.hidden_size),
|
|
nn.ReLU(inplace=True),
|
|
nn.Linear(config.hidden_size, config.mm_hidden_size),
|
|
nn.Dropout(0.1),
|
|
)
|
|
|
|
self.dice_loss = BinaryDiceLoss()
|
|
self.bce_loss = BCELoss()
|
|
|
|
def get_vision_tower(self):
|
|
vision_tower = getattr(self, 'vision_tower', None)
|
|
return vision_tower
|
|
|
|
def initialize_vision_modules(self, model_args):
|
|
self.config.image_channel = model_args.image_channel
|
|
self.config.image_size = model_args.image_size
|
|
self.config.patch_size = model_args.patch_size
|
|
|
|
self.config.vision_tower = model_args.vision_tower
|
|
self.config.vision_select_layer = model_args.vision_select_layer
|
|
self.config.vision_select_feature = model_args.vision_select_feature
|
|
|
|
self.config.mm_projector_type = model_args.mm_projector_type
|
|
self.config.proj_layer_type = model_args.proj_layer_type
|
|
self.config.proj_layer_num = model_args.proj_layer_num
|
|
self.config.proj_pooling_type = model_args.proj_pooling_type
|
|
self.config.proj_pooling_size = model_args.proj_pooling_size
|
|
|
|
|
|
if self.get_vision_tower() is None:
|
|
self.vision_tower = build_vision_tower(self.config)
|
|
|
|
|
|
|
|
if model_args.pretrain_vision_model is not None:
|
|
vision_model_weights = torch.load(model_args.pretrain_vision_model, map_location='cpu')
|
|
self.vision_tower.vision_tower.load_state_dict(vision_model_weights, strict=True)
|
|
|
|
self.config.mm_hidden_size = self.vision_tower.hidden_size
|
|
|
|
|
|
if getattr(self, 'mm_projector', None) is None:
|
|
self.mm_projector = build_mm_projector(self.config)
|
|
|
|
if model_args.pretrain_mm_mlp_adapter is not None:
|
|
mm_projector_weights = torch.load(model_args.pretrain_mm_mlp_adapter, map_location='cpu')
|
|
def get_w(weights, keyword):
|
|
return {k.split(keyword + '.')[1]: v for k, v in weights.items() if keyword in k}
|
|
self.mm_projector.load_state_dict(get_w(mm_projector_weights, 'mm_projector'), strict=True)
|
|
|
|
def initialize_seg_modules(self, model_args):
|
|
self.config.segmentation_module = model_args.segmentation_module
|
|
|
|
|
|
if getattr(self, 'segmentation_module', None) is None:
|
|
self.seg_module = build_segmentation_module(self.config)
|
|
self.seg_projector = nn.Sequential(
|
|
nn.Linear(self.config.hidden_size, self.config.hidden_size),
|
|
nn.ReLU(inplace=True),
|
|
nn.Linear(self.config.hidden_size, self.config.mm_hidden_size),
|
|
nn.Dropout(0.1),
|
|
)
|
|
self.seg_enable = True
|
|
|
|
if model_args.pretrain_seg_module is not None:
|
|
seg_module_weights = torch.load(model_args.pretrain_seg_module, map_location='cpu')
|
|
self.seg_module.load_state_dict(seg_module_weights, strict=True)
|
|
|
|
self.dice_loss = BinaryDiceLoss()
|
|
self.bce_loss = BCELoss()
|
|
|
|
class LamedMetaForCausalLM(ABC):
|
|
@abstractmethod
|
|
def get_model(self):
|
|
pass
|
|
|
|
def get_vision_tower(self):
|
|
return self.get_model().get_vision_tower()
|
|
|
|
def encode_images(self, images):
|
|
image_features = self.get_model().get_vision_tower()(images)
|
|
image_features = self.get_model().mm_projector(image_features)
|
|
return image_features
|
|
|
|
def prepare_inputs_for_multimodal(
|
|
self, input_ids, position_ids, attention_mask, past_key_values, labels,
|
|
images,
|
|
):
|
|
vision_tower = self.get_vision_tower()
|
|
if vision_tower is None or images is None or input_ids.shape[1] == 1:
|
|
return input_ids, position_ids, attention_mask, past_key_values, None, labels
|
|
else:
|
|
image_features = self.encode_images(images)
|
|
inputs_embeds = self.get_model().embed_tokens(input_ids)
|
|
inputs_embeds = torch.cat(
|
|
(inputs_embeds[:, :1, :], image_features, inputs_embeds[:, (image_features.shape[1] + 1):, :]), dim=1)
|
|
return None, position_ids, attention_mask, past_key_values, inputs_embeds, labels
|
|
|
|
def initialize_vision_tokenizer(self, model_args, tokenizer):
|
|
num_new_tokens = model_args.num_new_tokens
|
|
|
|
self.resize_token_embeddings(len(tokenizer))
|
|
|
|
if num_new_tokens > 0:
|
|
input_embeddings = self.get_input_embeddings().weight.data
|
|
output_embeddings = self.get_output_embeddings().weight.data
|
|
|
|
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(
|
|
dim=0, keepdim=True)
|
|
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(
|
|
dim=0, keepdim=True)
|
|
|
|
input_embeddings[-num_new_tokens:] = input_embeddings_avg
|
|
output_embeddings[-num_new_tokens:] = output_embeddings_avg
|
|
|
|
if model_args.tune_mm_mlp_adapter:
|
|
for p in self.get_input_embeddings().parameters():
|
|
p.requires_grad = True
|
|
for p in self.get_output_embeddings().parameters():
|
|
p.requires_grad = False
|
|
else:
|
|
|
|
|
|
for p in self.get_input_embeddings().parameters():
|
|
p.requires_grad = True
|
|
|
|
for p in self.get_output_embeddings().parameters():
|
|
p.requires_grad = True
|
|
|
|
if model_args.pretrain_mm_mlp_adapter:
|
|
mm_projector_weights = torch.load(model_args.pretrain_mm_mlp_adapter, map_location='cpu')
|
|
embed_tokens_weight = mm_projector_weights['model.embed_tokens.weight']
|
|
|
|
if input_embeddings.shape == embed_tokens_weight.shape:
|
|
input_embeddings = embed_tokens_weight
|
|
elif embed_tokens_weight.shape[0] == num_new_tokens:
|
|
input_embeddings[-num_new_tokens:] = embed_tokens_weight
|
|
else:
|
|
raise ValueError(f"Unexpected embed_tokens_weight shape. Pretrained: {embed_tokens_weight.shape}. Current: {input_embeddings.shape}. Numer of new tokens: {num_new_tokens}.")
|
|
|
|
|
|
|
|
class LamedPhi3Model(LamedMetaModel, Phi3Model):
|
|
config_class = LamedPhi3Config
|
|
def __init__(self, config: Phi3Config):
|
|
super(LamedPhi3Model, self).__init__(config)
|
|
|
|
|
|
class LamedPhi3ForCausalLM(LamedMetaForCausalLM, Phi3ForCausalLM):
|
|
config_class = LamedPhi3Config
|
|
|
|
def __init__(self, config):
|
|
super(LamedPhi3ForCausalLM, self).__init__(config)
|
|
self.model = LamedPhi3Model(config)
|
|
self.vocab_size = config.vocab_size
|
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
|
|
|
|
|
self.post_init()
|
|
|
|
def get_model(self):
|
|
return self.model
|
|
|
|
def forward(
|
|
self,
|
|
images: Optional[torch.FloatTensor] = None,
|
|
input_ids: torch.LongTensor = None,
|
|
labels: Optional[torch.LongTensor] = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
segs: Optional[torch.FloatTensor] = None,
|
|
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
use_cache: Optional[bool] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
cache_position: Optional[torch.LongTensor] = None,
|
|
) -> Union[Tuple, CausalLMOutputWithPast]:
|
|
|
|
input_ids_pre = input_ids
|
|
|
|
if inputs_embeds is None:
|
|
(
|
|
input_ids,
|
|
position_ids,
|
|
attention_mask,
|
|
past_key_values,
|
|
inputs_embeds,
|
|
labels
|
|
) = self.prepare_inputs_for_multimodal(
|
|
input_ids,
|
|
position_ids,
|
|
attention_mask,
|
|
past_key_values,
|
|
labels,
|
|
images,
|
|
)
|
|
|
|
try:
|
|
seg_ids = torch.nonzero(torch.sum(segs, dim=(1, 2, 3, 4))).flatten().tolist()
|
|
except:
|
|
seg_ids = []
|
|
|
|
if self.get_model().seg_enable and seg_ids:
|
|
outputs = super().forward(
|
|
input_ids=input_ids,
|
|
inputs_embeds=inputs_embeds,
|
|
attention_mask=attention_mask,
|
|
labels=labels,
|
|
output_hidden_states=True,
|
|
|
|
position_ids=position_ids,
|
|
past_key_values=past_key_values,
|
|
use_cache=use_cache,
|
|
output_attentions=output_attentions,
|
|
return_dict=return_dict
|
|
)
|
|
|
|
output_hidden_states = outputs.hidden_states
|
|
|
|
last_hidden_state = output_hidden_states[-1]
|
|
|
|
seg_token_mask = input_ids_pre[:, 1:] == self.config.seg_token_id
|
|
seg_token_mask = torch.cat(
|
|
[
|
|
seg_token_mask,
|
|
torch.zeros((seg_token_mask.shape[0], 1), dtype=seg_token_mask.dtype).cuda(),
|
|
],
|
|
dim=1,
|
|
)
|
|
|
|
seg_prompts = []
|
|
for i in seg_ids:
|
|
if torch.sum(seg_token_mask[i]) == 1:
|
|
seg_token = last_hidden_state[i][seg_token_mask[i]]
|
|
seg_prompt = self.get_model().seg_projector(seg_token)
|
|
elif torch.sum(seg_token_mask[i]) > 1:
|
|
seg_tokens = last_hidden_state[i][seg_token_mask[i]]
|
|
seg_token = torch.mean(seg_tokens, dim=0, keepdim=True)
|
|
seg_prompt = self.get_model().seg_projector(seg_token)
|
|
else:
|
|
seg_prompt = torch.zeros([1, self.config.mm_hidden_size], dtype=last_hidden_state.dtype,
|
|
device=last_hidden_state.device)
|
|
seg_prompts.append(seg_prompt)
|
|
|
|
seg_prompts = torch.cat(seg_prompts, dim=0)
|
|
logits = self.get_model().seg_module(images[seg_ids], text_emb=seg_prompts)
|
|
loss_dice = self.get_model().dice_loss(logits, segs[seg_ids])
|
|
loss_bce = self.get_model().bce_loss(logits, segs[seg_ids])
|
|
seg_loss = loss_dice + loss_bce
|
|
outputs.loss = outputs.loss + seg_loss
|
|
return outputs
|
|
else:
|
|
return super().forward(
|
|
input_ids=input_ids,
|
|
attention_mask=attention_mask,
|
|
position_ids=position_ids,
|
|
past_key_values=past_key_values,
|
|
inputs_embeds=inputs_embeds,
|
|
labels=labels,
|
|
use_cache=use_cache,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=return_dict
|
|
)
|
|
|
|
|
|
@torch.no_grad()
|
|
def generate(
|
|
self,
|
|
images: Optional[torch.Tensor] = None,
|
|
inputs: Optional[torch.Tensor] = None,
|
|
seg_enable: bool = False,
|
|
**kwargs,
|
|
) -> Union[GenerateOutput, torch.LongTensor, Any]:
|
|
position_ids = kwargs.pop("position_ids", None)
|
|
attention_mask = kwargs.pop("attention_mask", None)
|
|
if "inputs_embeds" in kwargs:
|
|
raise NotImplementedError("`inputs_embeds` is not supported")
|
|
|
|
if images is not None:
|
|
(
|
|
inputs,
|
|
position_ids,
|
|
attention_mask,
|
|
_,
|
|
inputs_embeds,
|
|
_
|
|
) = self.prepare_inputs_for_multimodal(
|
|
inputs,
|
|
position_ids,
|
|
attention_mask,
|
|
None,
|
|
None,
|
|
images,
|
|
)
|
|
else:
|
|
inputs_embeds = self.get_model().embed_tokens(inputs)
|
|
|
|
if seg_enable:
|
|
outputs = super().generate(
|
|
inputs_embeds=inputs_embeds,
|
|
output_hidden_states=True,
|
|
return_dict_in_generate=True,
|
|
**kwargs
|
|
)
|
|
|
|
output_hidden_states = outputs.hidden_states
|
|
output_ids = outputs.sequences
|
|
|
|
seg_token_mask = output_ids[:, 1:] == self.config.seg_token_id
|
|
|
|
last_tensors = [tuple[-1] for tuple in output_hidden_states]
|
|
last_hidden_state = torch.cat(last_tensors[1:], dim=1)
|
|
|
|
seg_prompts = []
|
|
noseg_ids = []
|
|
for i in range(len(seg_token_mask)):
|
|
if torch.sum(seg_token_mask[i]) == 1:
|
|
seg_token = last_hidden_state[i][seg_token_mask[i]]
|
|
seg_prompt = self.get_model().seg_projector(seg_token)
|
|
elif torch.sum(seg_token_mask[i]) > 1:
|
|
seg_tokens = last_hidden_state[i][seg_token_mask[i]]
|
|
seg_token = torch.mean(seg_tokens, dim=0, keepdim=True)
|
|
seg_prompt = self.get_model().seg_projector(seg_token)
|
|
else:
|
|
noseg_ids.append(i)
|
|
seg_prompt = torch.zeros([1, self.config.mm_hidden_size], dtype=last_hidden_state.dtype,
|
|
device=last_hidden_state.device)
|
|
seg_prompts.append(seg_prompt)
|
|
|
|
seg_prompts = torch.cat(seg_prompts, dim=0)
|
|
logits = self.get_model().seg_module(images, seg_prompts)
|
|
logits[noseg_ids] = -torch.inf
|
|
|
|
return output_ids, logits
|
|
else:
|
|
output_ids = super().generate(
|
|
inputs_embeds=inputs_embeds,
|
|
**kwargs
|
|
)
|
|
return output_ids
|
|
|
|
|
|
def prepare_inputs_for_generation(self, input_ids, past_key_values=None,
|
|
inputs_embeds=None, **kwargs):
|
|
images = kwargs.pop("images", None)
|
|
inputs = super().prepare_inputs_for_generation(
|
|
input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, **kwargs
|
|
)
|
|
if images is not None:
|
|
inputs['images'] = images
|
|
return inputs
|
|
|