Gobee commited on
Commit
5dfec46
Β·
1 Parent(s): 250f4e0

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +28 -6
README.md CHANGED
@@ -23,7 +23,7 @@ model-index:
23
  metrics:
24
  - name: Test WER
25
  type: wer
26
- value: 56.44
27
  ---
28
 
29
  # Wav2Vec2-Large-XLSR-53-Tamil
@@ -37,10 +37,15 @@ When using this model, make sure that your speech input is sampled at 16kHz.
37
  The model can be used directly (without a language model) as follows:
38
 
39
  ```python
 
 
 
 
 
 
40
  import torch
41
- import torchaudio
42
  from datasets import load_dataset
43
- from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
44
 
45
  test_dataset = load_dataset("common_voice", "ta", split="test[:2%]").
46
 
@@ -76,10 +81,16 @@ The model can be evaluated as follows on the {language} test data of Common Voic
76
 
77
 
78
  ```python
 
 
 
 
 
 
 
79
  import torch
80
- import torchaudio
81
  from datasets import load_dataset, load_metric
82
- from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
83
  import re
84
 
85
  test_dataset = load_dataset("common_voice", "ta", split="test")
@@ -90,7 +101,6 @@ model = Wav2Vec2ForCTC.from_pretrained("Gobee/Wav2vec2-Large-XLSR-Tamil")
90
  model.to("cuda")
91
 
92
  chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\β€œ\%\β€˜\”\ \’\–\(\)]'
93
- resampler = torchaudio.transforms.Resample(48_000, 16_000)
94
 
95
  # Preprocessing the datasets.
96
  # We need to read the aduio files as arrays
@@ -118,3 +128,15 @@ result = test_dataset.map(evaluate, batched=True, batch_size=8)
118
 
119
  print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
120
  ```
 
 
 
 
 
 
 
 
 
 
 
 
 
23
  metrics:
24
  - name: Test WER
25
  type: wer
26
+ value: 57.004356
27
  ---
28
 
29
  # Wav2Vec2-Large-XLSR-53-Tamil
 
37
  The model can be used directly (without a language model) as follows:
38
 
39
  ```python
40
+
41
+ !pip install datasets
42
+ !pip install transformers
43
+
44
+ from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
45
+
46
  import torch
47
+ import librosa
48
  from datasets import load_dataset
 
49
 
50
  test_dataset = load_dataset("common_voice", "ta", split="test[:2%]").
51
 
 
81
 
82
 
83
  ```python
84
+
85
+ !pip install datasets
86
+ !pip install transformers
87
+ !pip install jiwer
88
+
89
+ from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
90
+
91
  import torch
92
+ import librosa
93
  from datasets import load_dataset, load_metric
 
94
  import re
95
 
96
  test_dataset = load_dataset("common_voice", "ta", split="test")
 
101
  model.to("cuda")
102
 
103
  chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\β€œ\%\β€˜\”\ \’\–\(\)]'
 
104
 
105
  # Preprocessing the datasets.
106
  # We need to read the aduio files as arrays
 
128
 
129
  print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
130
  ```
131
+
132
+ **Test Result**: 57.004356 %
133
+
134
+ ## Usage and Evaluation script
135
+
136
+ The script used for usage and evaluation can be found [here](https://colab.research.google.com/drive/1dyDe14iOmoNoVHDJTkg-hAgLnrGdI-Dk?usp=share_link)
137
+
138
+ ## Training
139
+
140
+ The Common Voice `train`, `validation` datasets were used for training.
141
+
142
+ The script used for training can be found [here](https://colab.research.google.com/drive/1-Klkgr4f-C9SanHfVC5RhP0ELUH6TYlN?usp=sharing)