Safetensors
gemma2
orchid13 commited on
Commit
97116d6
·
verified ·
1 Parent(s): 9b6d9ed

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +31 -14
README.md CHANGED
@@ -8,22 +8,20 @@ language:
8
  - su
9
  license: gemma
10
  ---
11
- # Gemma2 9B CPT Sahabat AI v1
12
-
13
- Sahabat AI v1 is a collection of Large Language Models (LLMs) which has been pretrained and instruct-tuned for Indonesian languages.
14
- This is the card for the Gemma2 9B CPT Sahabat AI v1 base model which has undergone continued pre-training from the [Gemma2 9B CPT SEA-Lionv3 base](https://huggingface.co/aisingapore/gemma2-9b-cpt-sea-lionv3-base) model.
15
-
16
- Sahabat is Indonesian for "Close Friends."
17
 
 
 
18
 
19
  ## Model Details
20
 
21
  ### Model Description
22
 
23
- The continued pre-training data for Gemma2 9B CPT Sahabat AI v1 base model encompasses approximately 125B tokens.
24
 
25
  - **Developed by:** PT GoTo Gojek Tokopedia Tbk, AI Singapore
26
  - **Funded by:** PT GoTo Gojek Tokopedia Tbk, AI Singapore
 
27
  - **Model type:** Decoder
28
  - **Languages:** English, Indonesian, Javanese, Sundanese
29
  - **License:** [Gemma Community License](https://ai.google.dev/gemma/terms)
@@ -31,7 +29,7 @@ The continued pre-training data for Gemma2 9B CPT Sahabat AI v1 base model encom
31
  For tokenisation, the model employs the default tokenizer used in Gemma-2-9B. The model has a context length of 8192.
32
 
33
  ### Benchmark Performance
34
- We evaluated Gemma2 9B CPT Sahabat AI v1 base model on general language capabilities.
35
 
36
  #### General Language Capabilities
37
  For the evaluation of general language capabilities, we employed the
@@ -146,7 +144,7 @@ The evaluation was done **five-shot** with native prompts on a sample of 100-100
146
 
147
  ### Data
148
 
149
- Gemma2 9B CPT Sahabat AI v1 base model was continued pre-trained on 50B tokens of the following data:
150
 
151
  | Data Source | Unique Tokens (B) | Multiplier | Total Tokens (B) | Percentage (%)|
152
  |---------------------------------------|:-----------------:|:----------:|:----------------:|:-------------:|
@@ -168,10 +166,10 @@ Note:
168
 
169
  ### Infrastructure
170
 
171
- Gemma2 9B CPT Sahabat AI v1 was trained using [MosaicML Composer](https://github.com/mosaicml/composer)
172
  on the following hardware:
173
 
174
- | Training Details | Gemma2 9B CPT Sahabat AI v1|
175
  |----------------------|:--------------------------:|
176
  | Nvidia H100 80GB GPU | 32 |
177
  | Training Duration | 7 days |
@@ -179,7 +177,7 @@ on the following hardware:
179
 
180
  ### Configuration
181
 
182
- | HyperParameter | Gemma2 9B CPT Sahabat AI v1|
183
  |-------------------|:--------------------------:|
184
  | Precision | bfloat16 |
185
  | Optimizer | decoupled_adamw |
@@ -188,8 +186,27 @@ on the following hardware:
188
  | Global Batch Size | 256 |
189
  | Micro Batch Size | 1 |
190
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
191
 
192
- ## The Team (by ascending alphabetical order)
193
 
194
  ### AI Singapore
195
  Chan Adwin<br>
@@ -241,7 +258,7 @@ Any opinions, findings and conclusions or recommendations expressed in this mate
241
 
242
  ## Contact
243
 
244
- For more info, please contact us using this [Sahabat Inquiry Form.](https://docs.google.com/forms/d/1_us969eQtEooYOn4XkvGkdP5VHOyCbO6L_sd9kTMnaA/edit)
245
 
246
 
247
  ## Disclaimer
 
8
  - su
9
  license: gemma
10
  ---
11
+ # Gemma2 9B CPT Sahabat-AI v1
 
 
 
 
 
12
 
13
+ **Sahabat-AI** (Indonesian language for “close friends”) is a collection of Large Language Models (LLMs) which has been pretrained and instruct-tuned for Indonesian language and its various dialects. Sahabat-AI ecosystem is co-initiated by Indonesian tech and telecommunication companies: GoTo Group and Indosat Ooredoo Hutchison.
14
+ This is the card for the Gemma2 9B CPT Sahabat-AI v1 base model which has undergone continued pre-training from the [Gemma2 9B CPT SEA-Lionv3 base](https://huggingface.co/aisingapore/gemma2-9b-cpt-sea-lionv3-base) model.
15
 
16
  ## Model Details
17
 
18
  ### Model Description
19
 
20
+ The continued pre-training data for Gemma2 9B CPT Sahabat-AI v1 base model encompasses approximately 125B tokens.
21
 
22
  - **Developed by:** PT GoTo Gojek Tokopedia Tbk, AI Singapore
23
  - **Funded by:** PT GoTo Gojek Tokopedia Tbk, AI Singapore
24
+ - **Supported by:** PT Indosat Ooredoo Hutchison
25
  - **Model type:** Decoder
26
  - **Languages:** English, Indonesian, Javanese, Sundanese
27
  - **License:** [Gemma Community License](https://ai.google.dev/gemma/terms)
 
29
  For tokenisation, the model employs the default tokenizer used in Gemma-2-9B. The model has a context length of 8192.
30
 
31
  ### Benchmark Performance
32
+ We evaluated Gemma2 9B CPT Sahabat-AI v1 base model on general language capabilities.
33
 
34
  #### General Language Capabilities
35
  For the evaluation of general language capabilities, we employed the
 
144
 
145
  ### Data
146
 
147
+ Gemma2 9B CPT Sahabat-AI v1 base model was continued pre-trained on 50B tokens of the following data:
148
 
149
  | Data Source | Unique Tokens (B) | Multiplier | Total Tokens (B) | Percentage (%)|
150
  |---------------------------------------|:-----------------:|:----------:|:----------------:|:-------------:|
 
166
 
167
  ### Infrastructure
168
 
169
+ Gemma2 9B CPT Sahabat-AI v1 was trained using [MosaicML Composer](https://github.com/mosaicml/composer)
170
  on the following hardware:
171
 
172
+ | Training Details | Gemma2 9B CPT Sahabat-AI v1|
173
  |----------------------|:--------------------------:|
174
  | Nvidia H100 80GB GPU | 32 |
175
  | Training Duration | 7 days |
 
177
 
178
  ### Configuration
179
 
180
+ | HyperParameter | Gemma2 9B CPT Sahabat-AI v1|
181
  |-------------------|:--------------------------:|
182
  | Precision | bfloat16 |
183
  | Optimizer | decoupled_adamw |
 
186
  | Global Batch Size | 256 |
187
  | Micro Batch Size | 1 |
188
 
189
+ ## Call for Collaboration
190
+
191
+ Sahabat-AI (Indonesian language for “close friends”) a **local open source Large Language Model (LLM) ecosystem in Indonesian language**, co-initiated by Indonesian tech and telecommunication companies: GoTo Group and Indosat Ooredoo Hutchison.
192
+ Sahabat-AI ecosystem aims to empower Indonesians who want to develop AI-based services and applications using Bahasa Indonesia and its various local dialects.
193
+
194
+ We are supported by research centers and global tech experts such as AI Singapore and Tech Mahendra to train the model to gain general language understanding.
195
+
196
+ We also have collaborated with key top Indonesia universities such as University of Indonesia, Gadjah Mada University, Bogor Institute of Agriculture, Bandung Institute of Technology, including top Indonesia media groups, such as Kompas Media Group and Republika to train and enrich the model in Bahasa Indonesia, ensuring optimum provision of local context and cultural relevance.
197
+
198
+ We would like to invite **researchers, developers, and language enthusiasts** to actively contribute to the enhancement and expansion of Sahabat-AI.
199
+ Your collaborations can involve:
200
+ - Identifying and reporting technical issues
201
+ - Sharing pre-training, instruction, and preference data
202
+ - Improving documentation usability
203
+ - Proposing and implementing new model evaluation tasks and metrics
204
+
205
+ Join us in shaping the future of Sahabat-AI by sharing your expertise and insights to make these models more accessible, accurate, and versatile.
206
+
207
+ You can contribute your ideas through [this form.](https://docs.google.com/forms/d/1_us969eQtEooYOn4XkvGkdP5VHOyCbO6L_sd9kTMnaA/edit)
208
 
209
+ ## The Development Team (in ascending alphabetical order)
210
 
211
  ### AI Singapore
212
  Chan Adwin<br>
 
258
 
259
  ## Contact
260
 
261
+ For more info, please contact us using this [Sahabat-AI Inquiry Form.](https://docs.google.com/forms/d/1_us969eQtEooYOn4XkvGkdP5VHOyCbO6L_sd9kTMnaA/edit)
262
 
263
 
264
  ## Disclaimer