GizemGuleser commited on
Commit
98877c2
·
1 Parent(s): 6d998e5

Upload PPO LunarLander-v2 trained agent

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 256.23 +/- 11.73
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **PPO** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
25
+
26
+ ## Usage (with Stable-baselines3)
27
+ TODO: Add your code
28
+
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb74b857f80>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb74b861050>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb74b8610e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb74b861170>", "_build": "<function ActorCriticPolicy._build at 0x7fb74b861200>", "forward": "<function ActorCriticPolicy.forward at 0x7fb74b861290>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb74b861320>", "_predict": "<function ActorCriticPolicy._predict at 0x7fb74b8613b0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb74b861440>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb74b8614d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb74b861560>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fb74b8ae510>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 901120, "_total_timesteps": 900000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651829054.5296493, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADPSKr4HL4o+QglDPo5JbL7t8+Y6Al9svQAAAAAAAAAA+ioKPiWkjz7cAgy+VtkQvtYRvrxWaAY9AAAAAAAAAAAzc3a6oa0HPh4oTL2lvCK+6JlNvWWkwLwAAAAAAAAAAOZ5HD3DcU66Gz3FOzHhzbSMn4q7npC/swAAgD8AAIA/WlW9PZponz/kRKY+gCu7vm5KJz6bR6k9AAAAAAAAAABzP1c+cQoDP0ehLb5/saq+2xPVPLpk8rwAAAAAAAAAAJoXArwUiKO6wGKPOfYTnzRWmKE6wpKkuAAAgD8AAIA/M48PPOEOi7pVEfU8nBbEOBCOETsaaLo3AACAPwAAgD+m2RS+e0Liui6UvDr6uAE3IOPeO1Wb2rkAAIA/AACAP80ysrykEAq5LvKuukme0bWKR5o7uJvMOQAAgD8AAIA/M08JvY/WIbpgj305zp+dNKY9dbrJYZS4AACAPwAAgD8ziyS8j6Jkulo5UzuKkvk3zN/wOnsuDroAAIA/AACAP80DzDyuSYK6le3TOpNR4TX/OFA6gF7yuQAAgD8AAIA/mg1DPClQTrogABW4n9Wus5RCrDt7mys3AACAPwAAgD/gKRk+25sqP0J0Lr5Ln4++T4IHvL26yr0AAAAAAAAAAABwQTxI26W6f0ctO5otYDUOPtk6crNMNAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0012444444444443814, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI9gmgGNluaECUhpRSlIwBbJRN6AOMAXSUR0ChHbXta6jGdX2UKGgGaAloD0MISOF6FK7fYkCUhpRSlGgVTegDaBZHQKEethb4agp1fZQoaAZoCWgPQwjR60/ic7JiQJSGlFKUaBVN6ANoFkdAoSAJXCCSR3V9lChoBmgJaA9DCAHBHD1+RWJAlIaUUpRoFU3oA2gWR0ChJdp9RaX8dX2UKGgGaAloD0MIzcr2IW/CX0CUhpRSlGgVTegDaBZHQKEpaFRpDeF1fZQoaAZoCWgPQwj6Cz1i9JpuQJSGlFKUaBVNkwFoFkdAoSs/iFTNuHV9lChoBmgJaA9DCI0LB0IyJ2ZAlIaUUpRoFU3oA2gWR0ChK7pQLux9dX2UKGgGaAloD0MI+P4G7VVkZUCUhpRSlGgVTegDaBZHQKEy8hzvJBB1fZQoaAZoCWgPQwjv5T45ih5jQJSGlFKUaBVN6ANoFkdAoTM7OJLuhXV9lChoBmgJaA9DCM8sCVDTt2dAlIaUUpRoFU3oA2gWR0ChN1aHbh3rdX2UKGgGaAloD0MIFHe8ye8iYECUhpRSlGgVTegDaBZHQKE3bU8V58l1fZQoaAZoCWgPQwiMMEW5NDtjQJSGlFKUaBVN6ANoFkdAoTmwa3qiXnV9lChoBmgJaA9DCJmghm9hRmZAlIaUUpRoFU3oA2gWR0ChOgTvqkdndX2UKGgGaAloD0MIJxdjYB3DY0CUhpRSlGgVTegDaBZHQKE7CJiy6c11fZQoaAZoCWgPQwiqSfCGtBplQJSGlFKUaBVN6ANoFkdAoTva9VWCE3V9lChoBmgJaA9DCIv5uaGpWmJAlIaUUpRoFU3oA2gWR0ChTN6Hbh3rdX2UKGgGaAloD0MItCJqos8uZECUhpRSlGgVTegDaBZHQKFRpYA80UJ1fZQoaAZoCWgPQwgTfNP0WZtgQJSGlFKUaBVN6ANoFkdAoVKsR3/xUnV9lChoBmgJaA9DCLKhm/0BFGhAlIaUUpRoFU3oA2gWR0ChVArwnYxtdX2UKGgGaAloD0MIsYnMXGBAYkCUhpRSlGgVTegDaBZHQKFaAOc2BJ91fZQoaAZoCWgPQwhZ+tAFdVViQJSGlFKUaBVN6ANoFkdAoV2SRuCPIXV9lChoBmgJaA9DCEc9RKO7lnFAlIaUUpRoFU3OA2gWR0ChXmrxqfvndX2UKGgGaAloD0MIrfcb7TjMYUCUhpRSlGgVTegDaBZHQKFf1K1XvH91fZQoaAZoCWgPQwgpBHKJI7JtQJSGlFKUaBVNKgNoFkdAoWTvdweeWnV9lChoBmgJaA9DCH5WmSmtL2NAlIaUUpRoFU3oA2gWR0ChZ1dxyXD4dX2UKGgGaAloD0MISIld21tPYkCUhpRSlGgVTegDaBZHQKFnouEEkjZ1fZQoaAZoCWgPQwgK2A5GbKlhQJSGlFKUaBVN6ANoFkdAoWvhCngpB3V9lChoBmgJaA9DCFe0Oc5t62VAlIaUUpRoFU3oA2gWR0ChbnRu0kWzdX2UKGgGaAloD0MIW9JRDuZAY0CUhpRSlGgVTegDaBZHQKFu1Kp1ifB1fZQoaAZoCWgPQwhGe7yQDgpmQJSGlFKUaBVN6ANoFkdAoW/vI8yN43V9lChoBmgJaA9DCD3wMVhxXGRAlIaUUpRoFU3oA2gWR0ChcNn6VMVUdX2UKGgGaAloD0MIP+YDAh0bYUCUhpRSlGgVTegDaBZHQKFx/8VHnU51fZQoaAZoCWgPQwiokCv1rABkQJSGlFKUaBVN6ANoFkdAoYapOYYzi3V9lChoBmgJaA9DCL0d4bRgAGNAlIaUUpRoFU3oA2gWR0Chh7ZlWfbsdX2UKGgGaAloD0MIYkok0UvZZECUhpRSlGgVTegDaBZHQKGJFjYI0Il1fZQoaAZoCWgPQwhBDkqY6dxjQJSGlFKUaBVN6ANoFkdAoY6ocm0E5nV9lChoBmgJaA9DCLNg4o+iSGRAlIaUUpRoFU3oA2gWR0ChkgCuEEkjdX2UKGgGaAloD0MI3jr/dlkKY0CUhpRSlGgVTegDaBZHQKGS0/yGzrx1fZQoaAZoCWgPQwi63ct98o9mQJSGlFKUaBVN6ANoFkdAoZQ4m3OObXV9lChoBmgJaA9DCNfCLLRzVWVAlIaUUpRoFU3oA2gWR0ChmTeqR2bHdX2UKGgGaAloD0MIv4I0Y9HvYkCUhpRSlGgVTegDaBZHQKGbjQeFL391fZQoaAZoCWgPQwjh7qzd9nhiQJSGlFKUaBVN6ANoFkdAoZvVJ6IFeXV9lChoBmgJaA9DCMZRuYlaGmNAlIaUUpRoFU3oA2gWR0ChoCYU34sVdX2UKGgGaAloD0MILlc/NkmMYUCUhpRSlGgVTegDaBZHQKGi0EBbOeJ1fZQoaAZoCWgPQwg/yLJg4rNmQJSGlFKUaBVN6ANoFkdAoaM0lXzUZ3V9lChoBmgJaA9DCBUBTu9iA2dAlIaUUpRoFU3oA2gWR0ChpEuB19v1dX2UKGgGaAloD0MI2T7kLVfBZ0CUhpRSlGgVTegDaBZHQKGlO6Lfk3l1fZQoaAZoCWgPQwhAFqJD4DRdQJSGlFKUaBVN6ANoFkdAoaZcPrfLtHV9lChoBmgJaA9DCLe0GhL3wGFAlIaUUpRoFU3oA2gWR0Chu4fNqxkedX2UKGgGaAloD0MIQup29hVEZUCUhpRSlGgVTegDaBZHQKG8mJx//ed1fZQoaAZoCWgPQwifceFAyAZgQJSGlFKUaBVN6ANoFkdAob4PYUWVNnV9lChoBmgJaA9DCNNnB1zX82ZAlIaUUpRoFU3oA2gWR0Chw9UqpcX4dX2UKGgGaAloD0MI43FRLaJvYUCUhpRSlGgVTegDaBZHQKHHSvX9R791fZQoaAZoCWgPQwgT7pV5q8plQJSGlFKUaBVN6ANoFkdAocgo5T6zmnV9lChoBmgJaA9DCBTNA1hk1WNAlIaUUpRoFU3oA2gWR0ChyaN4A0bcdX2UKGgGaAloD0MIgjrl0Y2JXECUhpRSlGgVTegDaBZHQKHO86tDD0l1fZQoaAZoCWgPQwggYRiwZDhiQJSGlFKUaBVN6ANoFkdAodF0it7rs3V9lChoBmgJaA9DCLwGfeltfWFAlIaUUpRoFU3oA2gWR0Ch0cZ4Oc2BdX2UKGgGaAloD0MI3LjF/FwwYkCUhpRSlGgVTegDaBZHQKHWKp6yB091fZQoaAZoCWgPQwjFjPD2ILNjQJSGlFKUaBVN6ANoFkdAodjMe0XxfHV9lChoBmgJaA9DCBVUVP3KfmVAlIaUUpRoFU3oA2gWR0Ch2TDRMN+cdX2UKGgGaAloD0MInE8dq5SVZECUhpRSlGgVTegDaBZHQKHaXTI/7i11fZQoaAZoCWgPQwjToGgewH1iQJSGlFKUaBVN6ANoFkdAodtKZUkv9XV9lChoBmgJaA9DCJhr0QI0emRAlIaUUpRoFU3oA2gWR0Ch3GGCAc1gdX2UKGgGaAloD0MIF2ahndMSY0CUhpRSlGgVTegDaBZHQKHxYs/Y8Md1fZQoaAZoCWgPQwh6xVOPtJtjQJSGlFKUaBVN6ANoFkdAofJ3VXmvGXV9lChoBmgJaA9DCOGVJM91QGJAlIaUUpRoFU3oA2gWR0Ch8+ILG7z1dX2UKGgGaAloD0MIVHJO7KGTXUCUhpRSlGgVTegDaBZHQKH5rtzCDVZ1fZQoaAZoCWgPQwjS/DGtTV9iQJSGlFKUaBVN6ANoFkdAof0eu5jH43V9lChoBmgJaA9DCHQn2H8dhGJAlIaUUpRoFU3oA2gWR0Ch/fRuKoAGdX2UKGgGaAloD0MIjj17LtPZY0CUhpRSlGgVTegDaBZHQKH/br9ETg51fZQoaAZoCWgPQwiQuwhTlANiQJSGlFKUaBVN6ANoFkdAogSDc6/7BXV9lChoBmgJaA9DCF4UPfAx72NAlIaUUpRoFU3oA2gWR0CiBt/VAiV0dX2UKGgGaAloD0MInbtdL838Y0CUhpRSlGgVTegDaBZHQKIHL/LDAJt1fZQoaAZoCWgPQwhtVn2uNqptQJSGlFKUaBVNxwFoFkdAogqm4AjptHV9lChoBmgJaA9DCKN1VDVBnF1AlIaUUpRoFU3oA2gWR0CiC2iKaXrudX2UKGgGaAloD0MIzR5oBQamZ0CUhpRSlGgVTegDaBZHQKIN2C3gDRt1fZQoaAZoCWgPQwjyQc9m1SxnQJSGlFKUaBVN6ANoFkdAog434EfT1HV9lChoBmgJaA9DCPqa5bLR52ZAlIaUUpRoFU3oA2gWR0CiDz6naWX1dX2UKGgGaAloD0MItHbbheZrUECUhpRSlGgVS/toFkdAog/rELpiZ3V9lChoBmgJaA9DCLyUumScGWFAlIaUUpRoFU3oA2gWR0CiEBI4uK4ydX2UKGgGaAloD0MInzvB/uujXECUhpRSlGgVTegDaBZHQKIQ+p1ie/Z1fZQoaAZoCWgPQwimC7H6IypiQJSGlFKUaBVN6ANoFkdAoiS3T/hl2HV9lChoBmgJaA9DCO9v0F692nFAlIaUUpRoFU2wAmgWR0CiJVrxAjY7dX2UKGgGaAloD0MIv2INF7l0Y0CUhpRSlGgVTegDaBZHQKIloxwAEMd1fZQoaAZoCWgPQwjNBplk5JZBQJSGlFKUaBVL5WgWR0CiJqEc0cfedX2UKGgGaAloD0MIMX4a9+YhYUCUhpRSlGgVTegDaBZHQKIm6iMYMv11fZQoaAZoCWgPQwjqspjYfF9gQJSGlFKUaBVN6ANoFkdAoi7/7WNFSnV9lChoBmgJaA9DCLCvdamRzmRAlIaUUpRoFU3oA2gWR0CiMUe0ojOcdX2UKGgGaAloD0MIz2VqEnyOcECUhpRSlGgVTX8DaBZHQKIyicinpB51fZQoaAZoCWgPQwg3je21oO9wQJSGlFKUaBVNrAJoFkdAojR33g1m8XV9lChoBmgJaA9DCEKwql7+jmRAlIaUUpRoFU3oA2gWR0CiOOiiItUXdX2UKGgGaAloD0MIVkrP9BLvW0CUhpRSlGgVTegDaBZHQKI8XHxSYPZ1fZQoaAZoCWgPQwjDD86nDtViQJSGlFKUaBVN6ANoFkdAoj0U5U96knV9lChoBmgJaA9DCAGmDBzQk2JAlIaUUpRoFU3oA2gWR0CiP1ysCDEndX2UKGgGaAloD0MIZfuQt1wzRECUhpRSlGgVS9NoFkdAokBENWluWXV9lChoBmgJaA9DCAuXVdiMemdAlIaUUpRoFU3oA2gWR0CiQKkTQE6ldX2UKGgGaAloD0MI4PPDCOGmY0CUhpRSlGgVTegDaBZHQKJBQ7p3X7N1fZQoaAZoCWgPQwhZbJOKRtNkQJSGlFKUaBVN6ANoFkdAokJczbeuWHV9lChoBmgJaA9DCF6fOetTPHFAlIaUUpRoFU1xA2gWR0CiRQ2fChvjdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 296, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:db8dd6f34f153645819b0343476989b6f16ba0264bdf8fbe9b83bea316c2bff2
3
+ size 144109
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb74b857f80>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb74b861050>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb74b8610e0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb74b861170>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fb74b861200>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fb74b861290>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb74b861320>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fb74b8613b0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb74b861440>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb74b8614d0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb74b861560>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7fb74b8ae510>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 901120,
46
+ "_total_timesteps": 900000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1651829054.5296493,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADPSKr4HL4o+QglDPo5JbL7t8+Y6Al9svQAAAAAAAAAA+ioKPiWkjz7cAgy+VtkQvtYRvrxWaAY9AAAAAAAAAAAzc3a6oa0HPh4oTL2lvCK+6JlNvWWkwLwAAAAAAAAAAOZ5HD3DcU66Gz3FOzHhzbSMn4q7npC/swAAgD8AAIA/WlW9PZponz/kRKY+gCu7vm5KJz6bR6k9AAAAAAAAAABzP1c+cQoDP0ehLb5/saq+2xPVPLpk8rwAAAAAAAAAAJoXArwUiKO6wGKPOfYTnzRWmKE6wpKkuAAAgD8AAIA/M48PPOEOi7pVEfU8nBbEOBCOETsaaLo3AACAPwAAgD+m2RS+e0Liui6UvDr6uAE3IOPeO1Wb2rkAAIA/AACAP80ysrykEAq5LvKuukme0bWKR5o7uJvMOQAAgD8AAIA/M08JvY/WIbpgj305zp+dNKY9dbrJYZS4AACAPwAAgD8ziyS8j6Jkulo5UzuKkvk3zN/wOnsuDroAAIA/AACAP80DzDyuSYK6le3TOpNR4TX/OFA6gF7yuQAAgD8AAIA/mg1DPClQTrogABW4n9Wus5RCrDt7mys3AACAPwAAgD/gKRk+25sqP0J0Lr5Ln4++T4IHvL26yr0AAAAAAAAAAABwQTxI26W6f0ctO5otYDUOPtk6crNMNAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.0012444444444443814,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI9gmgGNluaECUhpRSlIwBbJRN6AOMAXSUR0ChHbXta6jGdX2UKGgGaAloD0MISOF6FK7fYkCUhpRSlGgVTegDaBZHQKEethb4agp1fZQoaAZoCWgPQwjR60/ic7JiQJSGlFKUaBVN6ANoFkdAoSAJXCCSR3V9lChoBmgJaA9DCAHBHD1+RWJAlIaUUpRoFU3oA2gWR0ChJdp9RaX8dX2UKGgGaAloD0MIzcr2IW/CX0CUhpRSlGgVTegDaBZHQKEpaFRpDeF1fZQoaAZoCWgPQwj6Cz1i9JpuQJSGlFKUaBVNkwFoFkdAoSs/iFTNuHV9lChoBmgJaA9DCI0LB0IyJ2ZAlIaUUpRoFU3oA2gWR0ChK7pQLux9dX2UKGgGaAloD0MI+P4G7VVkZUCUhpRSlGgVTegDaBZHQKEy8hzvJBB1fZQoaAZoCWgPQwjv5T45ih5jQJSGlFKUaBVN6ANoFkdAoTM7OJLuhXV9lChoBmgJaA9DCM8sCVDTt2dAlIaUUpRoFU3oA2gWR0ChN1aHbh3rdX2UKGgGaAloD0MIFHe8ye8iYECUhpRSlGgVTegDaBZHQKE3bU8V58l1fZQoaAZoCWgPQwiMMEW5NDtjQJSGlFKUaBVN6ANoFkdAoTmwa3qiXnV9lChoBmgJaA9DCJmghm9hRmZAlIaUUpRoFU3oA2gWR0ChOgTvqkdndX2UKGgGaAloD0MIJxdjYB3DY0CUhpRSlGgVTegDaBZHQKE7CJiy6c11fZQoaAZoCWgPQwiqSfCGtBplQJSGlFKUaBVN6ANoFkdAoTva9VWCE3V9lChoBmgJaA9DCIv5uaGpWmJAlIaUUpRoFU3oA2gWR0ChTN6Hbh3rdX2UKGgGaAloD0MItCJqos8uZECUhpRSlGgVTegDaBZHQKFRpYA80UJ1fZQoaAZoCWgPQwgTfNP0WZtgQJSGlFKUaBVN6ANoFkdAoVKsR3/xUnV9lChoBmgJaA9DCLKhm/0BFGhAlIaUUpRoFU3oA2gWR0ChVArwnYxtdX2UKGgGaAloD0MIsYnMXGBAYkCUhpRSlGgVTegDaBZHQKFaAOc2BJ91fZQoaAZoCWgPQwhZ+tAFdVViQJSGlFKUaBVN6ANoFkdAoV2SRuCPIXV9lChoBmgJaA9DCEc9RKO7lnFAlIaUUpRoFU3OA2gWR0ChXmrxqfvndX2UKGgGaAloD0MIrfcb7TjMYUCUhpRSlGgVTegDaBZHQKFf1K1XvH91fZQoaAZoCWgPQwgpBHKJI7JtQJSGlFKUaBVNKgNoFkdAoWTvdweeWnV9lChoBmgJaA9DCH5WmSmtL2NAlIaUUpRoFU3oA2gWR0ChZ1dxyXD4dX2UKGgGaAloD0MISIld21tPYkCUhpRSlGgVTegDaBZHQKFnouEEkjZ1fZQoaAZoCWgPQwgK2A5GbKlhQJSGlFKUaBVN6ANoFkdAoWvhCngpB3V9lChoBmgJaA9DCFe0Oc5t62VAlIaUUpRoFU3oA2gWR0ChbnRu0kWzdX2UKGgGaAloD0MIW9JRDuZAY0CUhpRSlGgVTegDaBZHQKFu1Kp1ifB1fZQoaAZoCWgPQwhGe7yQDgpmQJSGlFKUaBVN6ANoFkdAoW/vI8yN43V9lChoBmgJaA9DCD3wMVhxXGRAlIaUUpRoFU3oA2gWR0ChcNn6VMVUdX2UKGgGaAloD0MIP+YDAh0bYUCUhpRSlGgVTegDaBZHQKFx/8VHnU51fZQoaAZoCWgPQwiokCv1rABkQJSGlFKUaBVN6ANoFkdAoYapOYYzi3V9lChoBmgJaA9DCL0d4bRgAGNAlIaUUpRoFU3oA2gWR0Chh7ZlWfbsdX2UKGgGaAloD0MIYkok0UvZZECUhpRSlGgVTegDaBZHQKGJFjYI0Il1fZQoaAZoCWgPQwhBDkqY6dxjQJSGlFKUaBVN6ANoFkdAoY6ocm0E5nV9lChoBmgJaA9DCLNg4o+iSGRAlIaUUpRoFU3oA2gWR0ChkgCuEEkjdX2UKGgGaAloD0MI3jr/dlkKY0CUhpRSlGgVTegDaBZHQKGS0/yGzrx1fZQoaAZoCWgPQwi63ct98o9mQJSGlFKUaBVN6ANoFkdAoZQ4m3OObXV9lChoBmgJaA9DCNfCLLRzVWVAlIaUUpRoFU3oA2gWR0ChmTeqR2bHdX2UKGgGaAloD0MIv4I0Y9HvYkCUhpRSlGgVTegDaBZHQKGbjQeFL391fZQoaAZoCWgPQwjh7qzd9nhiQJSGlFKUaBVN6ANoFkdAoZvVJ6IFeXV9lChoBmgJaA9DCMZRuYlaGmNAlIaUUpRoFU3oA2gWR0ChoCYU34sVdX2UKGgGaAloD0MILlc/NkmMYUCUhpRSlGgVTegDaBZHQKGi0EBbOeJ1fZQoaAZoCWgPQwg/yLJg4rNmQJSGlFKUaBVN6ANoFkdAoaM0lXzUZ3V9lChoBmgJaA9DCBUBTu9iA2dAlIaUUpRoFU3oA2gWR0ChpEuB19v1dX2UKGgGaAloD0MI2T7kLVfBZ0CUhpRSlGgVTegDaBZHQKGlO6Lfk3l1fZQoaAZoCWgPQwhAFqJD4DRdQJSGlFKUaBVN6ANoFkdAoaZcPrfLtHV9lChoBmgJaA9DCLe0GhL3wGFAlIaUUpRoFU3oA2gWR0Chu4fNqxkedX2UKGgGaAloD0MIQup29hVEZUCUhpRSlGgVTegDaBZHQKG8mJx//ed1fZQoaAZoCWgPQwifceFAyAZgQJSGlFKUaBVN6ANoFkdAob4PYUWVNnV9lChoBmgJaA9DCNNnB1zX82ZAlIaUUpRoFU3oA2gWR0Chw9UqpcX4dX2UKGgGaAloD0MI43FRLaJvYUCUhpRSlGgVTegDaBZHQKHHSvX9R791fZQoaAZoCWgPQwgT7pV5q8plQJSGlFKUaBVN6ANoFkdAocgo5T6zmnV9lChoBmgJaA9DCBTNA1hk1WNAlIaUUpRoFU3oA2gWR0ChyaN4A0bcdX2UKGgGaAloD0MIgjrl0Y2JXECUhpRSlGgVTegDaBZHQKHO86tDD0l1fZQoaAZoCWgPQwggYRiwZDhiQJSGlFKUaBVN6ANoFkdAodF0it7rs3V9lChoBmgJaA9DCLwGfeltfWFAlIaUUpRoFU3oA2gWR0Ch0cZ4Oc2BdX2UKGgGaAloD0MI3LjF/FwwYkCUhpRSlGgVTegDaBZHQKHWKp6yB091fZQoaAZoCWgPQwjFjPD2ILNjQJSGlFKUaBVN6ANoFkdAodjMe0XxfHV9lChoBmgJaA9DCBVUVP3KfmVAlIaUUpRoFU3oA2gWR0Ch2TDRMN+cdX2UKGgGaAloD0MInE8dq5SVZECUhpRSlGgVTegDaBZHQKHaXTI/7i11fZQoaAZoCWgPQwjToGgewH1iQJSGlFKUaBVN6ANoFkdAodtKZUkv9XV9lChoBmgJaA9DCJhr0QI0emRAlIaUUpRoFU3oA2gWR0Ch3GGCAc1gdX2UKGgGaAloD0MIF2ahndMSY0CUhpRSlGgVTegDaBZHQKHxYs/Y8Md1fZQoaAZoCWgPQwh6xVOPtJtjQJSGlFKUaBVN6ANoFkdAofJ3VXmvGXV9lChoBmgJaA9DCOGVJM91QGJAlIaUUpRoFU3oA2gWR0Ch8+ILG7z1dX2UKGgGaAloD0MIVHJO7KGTXUCUhpRSlGgVTegDaBZHQKH5rtzCDVZ1fZQoaAZoCWgPQwjS/DGtTV9iQJSGlFKUaBVN6ANoFkdAof0eu5jH43V9lChoBmgJaA9DCHQn2H8dhGJAlIaUUpRoFU3oA2gWR0Ch/fRuKoAGdX2UKGgGaAloD0MIjj17LtPZY0CUhpRSlGgVTegDaBZHQKH/br9ETg51fZQoaAZoCWgPQwiQuwhTlANiQJSGlFKUaBVN6ANoFkdAogSDc6/7BXV9lChoBmgJaA9DCF4UPfAx72NAlIaUUpRoFU3oA2gWR0CiBt/VAiV0dX2UKGgGaAloD0MInbtdL838Y0CUhpRSlGgVTegDaBZHQKIHL/LDAJt1fZQoaAZoCWgPQwhtVn2uNqptQJSGlFKUaBVNxwFoFkdAogqm4AjptHV9lChoBmgJaA9DCKN1VDVBnF1AlIaUUpRoFU3oA2gWR0CiC2iKaXrudX2UKGgGaAloD0MIzR5oBQamZ0CUhpRSlGgVTegDaBZHQKIN2C3gDRt1fZQoaAZoCWgPQwjyQc9m1SxnQJSGlFKUaBVN6ANoFkdAog434EfT1HV9lChoBmgJaA9DCPqa5bLR52ZAlIaUUpRoFU3oA2gWR0CiDz6naWX1dX2UKGgGaAloD0MItHbbheZrUECUhpRSlGgVS/toFkdAog/rELpiZ3V9lChoBmgJaA9DCLyUumScGWFAlIaUUpRoFU3oA2gWR0CiEBI4uK4ydX2UKGgGaAloD0MInzvB/uujXECUhpRSlGgVTegDaBZHQKIQ+p1ie/Z1fZQoaAZoCWgPQwimC7H6IypiQJSGlFKUaBVN6ANoFkdAoiS3T/hl2HV9lChoBmgJaA9DCO9v0F692nFAlIaUUpRoFU2wAmgWR0CiJVrxAjY7dX2UKGgGaAloD0MIv2INF7l0Y0CUhpRSlGgVTegDaBZHQKIloxwAEMd1fZQoaAZoCWgPQwjNBplk5JZBQJSGlFKUaBVL5WgWR0CiJqEc0cfedX2UKGgGaAloD0MIMX4a9+YhYUCUhpRSlGgVTegDaBZHQKIm6iMYMv11fZQoaAZoCWgPQwjqspjYfF9gQJSGlFKUaBVN6ANoFkdAoi7/7WNFSnV9lChoBmgJaA9DCLCvdamRzmRAlIaUUpRoFU3oA2gWR0CiMUe0ojOcdX2UKGgGaAloD0MIz2VqEnyOcECUhpRSlGgVTX8DaBZHQKIyicinpB51fZQoaAZoCWgPQwg3je21oO9wQJSGlFKUaBVNrAJoFkdAojR33g1m8XV9lChoBmgJaA9DCEKwql7+jmRAlIaUUpRoFU3oA2gWR0CiOOiiItUXdX2UKGgGaAloD0MIVkrP9BLvW0CUhpRSlGgVTegDaBZHQKI8XHxSYPZ1fZQoaAZoCWgPQwjDD86nDtViQJSGlFKUaBVN6ANoFkdAoj0U5U96knV9lChoBmgJaA9DCAGmDBzQk2JAlIaUUpRoFU3oA2gWR0CiP1ysCDEndX2UKGgGaAloD0MIZfuQt1wzRECUhpRSlGgVS9NoFkdAokBENWluWXV9lChoBmgJaA9DCAuXVdiMemdAlIaUUpRoFU3oA2gWR0CiQKkTQE6ldX2UKGgGaAloD0MI4PPDCOGmY0CUhpRSlGgVTegDaBZHQKJBQ7p3X7N1fZQoaAZoCWgPQwhZbJOKRtNkQJSGlFKUaBVN6ANoFkdAokJczbeuWHV9lChoBmgJaA9DCF6fOetTPHFAlIaUUpRoFU1xA2gWR0CiRQ2fChvjdWUu"
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 296,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6ab61fb3b0d3c3b6785d028ac4a0802496cff45a3573fbf40be943464e7e3ab5
3
+ size 84893
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2428bda0ca366776e4542de9eecdcabac98c4635677bb10fe46f65ac72aa6dd6
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.11.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:938d3cc0695c7faa58e57b726c1767f7bf7abbf487f006b04bb3ee975f1c582d
3
+ size 190405
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 256.2283739006337, "std_reward": 11.729343163476019, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-06T09:52:49.361880"}