GizemGuleser
commited on
Commit
·
98877c2
1
Parent(s):
6d998e5
Upload PPO LunarLander-v2 trained agent
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 256.23 +/- 11.73
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb74b857f80>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb74b861050>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb74b8610e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb74b861170>", "_build": "<function ActorCriticPolicy._build at 0x7fb74b861200>", "forward": "<function ActorCriticPolicy.forward at 0x7fb74b861290>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb74b861320>", "_predict": "<function ActorCriticPolicy._predict at 0x7fb74b8613b0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb74b861440>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb74b8614d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb74b861560>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fb74b8ae510>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 901120, "_total_timesteps": 900000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651829054.5296493, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADPSKr4HL4o+QglDPo5JbL7t8+Y6Al9svQAAAAAAAAAA+ioKPiWkjz7cAgy+VtkQvtYRvrxWaAY9AAAAAAAAAAAzc3a6oa0HPh4oTL2lvCK+6JlNvWWkwLwAAAAAAAAAAOZ5HD3DcU66Gz3FOzHhzbSMn4q7npC/swAAgD8AAIA/WlW9PZponz/kRKY+gCu7vm5KJz6bR6k9AAAAAAAAAABzP1c+cQoDP0ehLb5/saq+2xPVPLpk8rwAAAAAAAAAAJoXArwUiKO6wGKPOfYTnzRWmKE6wpKkuAAAgD8AAIA/M48PPOEOi7pVEfU8nBbEOBCOETsaaLo3AACAPwAAgD+m2RS+e0Liui6UvDr6uAE3IOPeO1Wb2rkAAIA/AACAP80ysrykEAq5LvKuukme0bWKR5o7uJvMOQAAgD8AAIA/M08JvY/WIbpgj305zp+dNKY9dbrJYZS4AACAPwAAgD8ziyS8j6Jkulo5UzuKkvk3zN/wOnsuDroAAIA/AACAP80DzDyuSYK6le3TOpNR4TX/OFA6gF7yuQAAgD8AAIA/mg1DPClQTrogABW4n9Wus5RCrDt7mys3AACAPwAAgD/gKRk+25sqP0J0Lr5Ln4++T4IHvL26yr0AAAAAAAAAAABwQTxI26W6f0ctO5otYDUOPtk6crNMNAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0012444444444443814, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI9gmgGNluaECUhpRSlIwBbJRN6AOMAXSUR0ChHbXta6jGdX2UKGgGaAloD0MISOF6FK7fYkCUhpRSlGgVTegDaBZHQKEethb4agp1fZQoaAZoCWgPQwjR60/ic7JiQJSGlFKUaBVN6ANoFkdAoSAJXCCSR3V9lChoBmgJaA9DCAHBHD1+RWJAlIaUUpRoFU3oA2gWR0ChJdp9RaX8dX2UKGgGaAloD0MIzcr2IW/CX0CUhpRSlGgVTegDaBZHQKEpaFRpDeF1fZQoaAZoCWgPQwj6Cz1i9JpuQJSGlFKUaBVNkwFoFkdAoSs/iFTNuHV9lChoBmgJaA9DCI0LB0IyJ2ZAlIaUUpRoFU3oA2gWR0ChK7pQLux9dX2UKGgGaAloD0MI+P4G7VVkZUCUhpRSlGgVTegDaBZHQKEy8hzvJBB1fZQoaAZoCWgPQwjv5T45ih5jQJSGlFKUaBVN6ANoFkdAoTM7OJLuhXV9lChoBmgJaA9DCM8sCVDTt2dAlIaUUpRoFU3oA2gWR0ChN1aHbh3rdX2UKGgGaAloD0MIFHe8ye8iYECUhpRSlGgVTegDaBZHQKE3bU8V58l1fZQoaAZoCWgPQwiMMEW5NDtjQJSGlFKUaBVN6ANoFkdAoTmwa3qiXnV9lChoBmgJaA9DCJmghm9hRmZAlIaUUpRoFU3oA2gWR0ChOgTvqkdndX2UKGgGaAloD0MIJxdjYB3DY0CUhpRSlGgVTegDaBZHQKE7CJiy6c11fZQoaAZoCWgPQwiqSfCGtBplQJSGlFKUaBVN6ANoFkdAoTva9VWCE3V9lChoBmgJaA9DCIv5uaGpWmJAlIaUUpRoFU3oA2gWR0ChTN6Hbh3rdX2UKGgGaAloD0MItCJqos8uZECUhpRSlGgVTegDaBZHQKFRpYA80UJ1fZQoaAZoCWgPQwgTfNP0WZtgQJSGlFKUaBVN6ANoFkdAoVKsR3/xUnV9lChoBmgJaA9DCLKhm/0BFGhAlIaUUpRoFU3oA2gWR0ChVArwnYxtdX2UKGgGaAloD0MIsYnMXGBAYkCUhpRSlGgVTegDaBZHQKFaAOc2BJ91fZQoaAZoCWgPQwhZ+tAFdVViQJSGlFKUaBVN6ANoFkdAoV2SRuCPIXV9lChoBmgJaA9DCEc9RKO7lnFAlIaUUpRoFU3OA2gWR0ChXmrxqfvndX2UKGgGaAloD0MIrfcb7TjMYUCUhpRSlGgVTegDaBZHQKFf1K1XvH91fZQoaAZoCWgPQwgpBHKJI7JtQJSGlFKUaBVNKgNoFkdAoWTvdweeWnV9lChoBmgJaA9DCH5WmSmtL2NAlIaUUpRoFU3oA2gWR0ChZ1dxyXD4dX2UKGgGaAloD0MISIld21tPYkCUhpRSlGgVTegDaBZHQKFnouEEkjZ1fZQoaAZoCWgPQwgK2A5GbKlhQJSGlFKUaBVN6ANoFkdAoWvhCngpB3V9lChoBmgJaA9DCFe0Oc5t62VAlIaUUpRoFU3oA2gWR0ChbnRu0kWzdX2UKGgGaAloD0MIW9JRDuZAY0CUhpRSlGgVTegDaBZHQKFu1Kp1ifB1fZQoaAZoCWgPQwhGe7yQDgpmQJSGlFKUaBVN6ANoFkdAoW/vI8yN43V9lChoBmgJaA9DCD3wMVhxXGRAlIaUUpRoFU3oA2gWR0ChcNn6VMVUdX2UKGgGaAloD0MIP+YDAh0bYUCUhpRSlGgVTegDaBZHQKFx/8VHnU51fZQoaAZoCWgPQwiokCv1rABkQJSGlFKUaBVN6ANoFkdAoYapOYYzi3V9lChoBmgJaA9DCL0d4bRgAGNAlIaUUpRoFU3oA2gWR0Chh7ZlWfbsdX2UKGgGaAloD0MIYkok0UvZZECUhpRSlGgVTegDaBZHQKGJFjYI0Il1fZQoaAZoCWgPQwhBDkqY6dxjQJSGlFKUaBVN6ANoFkdAoY6ocm0E5nV9lChoBmgJaA9DCLNg4o+iSGRAlIaUUpRoFU3oA2gWR0ChkgCuEEkjdX2UKGgGaAloD0MI3jr/dlkKY0CUhpRSlGgVTegDaBZHQKGS0/yGzrx1fZQoaAZoCWgPQwi63ct98o9mQJSGlFKUaBVN6ANoFkdAoZQ4m3OObXV9lChoBmgJaA9DCNfCLLRzVWVAlIaUUpRoFU3oA2gWR0ChmTeqR2bHdX2UKGgGaAloD0MIv4I0Y9HvYkCUhpRSlGgVTegDaBZHQKGbjQeFL391fZQoaAZoCWgPQwjh7qzd9nhiQJSGlFKUaBVN6ANoFkdAoZvVJ6IFeXV9lChoBmgJaA9DCMZRuYlaGmNAlIaUUpRoFU3oA2gWR0ChoCYU34sVdX2UKGgGaAloD0MILlc/NkmMYUCUhpRSlGgVTegDaBZHQKGi0EBbOeJ1fZQoaAZoCWgPQwg/yLJg4rNmQJSGlFKUaBVN6ANoFkdAoaM0lXzUZ3V9lChoBmgJaA9DCBUBTu9iA2dAlIaUUpRoFU3oA2gWR0ChpEuB19v1dX2UKGgGaAloD0MI2T7kLVfBZ0CUhpRSlGgVTegDaBZHQKGlO6Lfk3l1fZQoaAZoCWgPQwhAFqJD4DRdQJSGlFKUaBVN6ANoFkdAoaZcPrfLtHV9lChoBmgJaA9DCLe0GhL3wGFAlIaUUpRoFU3oA2gWR0Chu4fNqxkedX2UKGgGaAloD0MIQup29hVEZUCUhpRSlGgVTegDaBZHQKG8mJx//ed1fZQoaAZoCWgPQwifceFAyAZgQJSGlFKUaBVN6ANoFkdAob4PYUWVNnV9lChoBmgJaA9DCNNnB1zX82ZAlIaUUpRoFU3oA2gWR0Chw9UqpcX4dX2UKGgGaAloD0MI43FRLaJvYUCUhpRSlGgVTegDaBZHQKHHSvX9R791fZQoaAZoCWgPQwgT7pV5q8plQJSGlFKUaBVN6ANoFkdAocgo5T6zmnV9lChoBmgJaA9DCBTNA1hk1WNAlIaUUpRoFU3oA2gWR0ChyaN4A0bcdX2UKGgGaAloD0MIgjrl0Y2JXECUhpRSlGgVTegDaBZHQKHO86tDD0l1fZQoaAZoCWgPQwggYRiwZDhiQJSGlFKUaBVN6ANoFkdAodF0it7rs3V9lChoBmgJaA9DCLwGfeltfWFAlIaUUpRoFU3oA2gWR0Ch0cZ4Oc2BdX2UKGgGaAloD0MI3LjF/FwwYkCUhpRSlGgVTegDaBZHQKHWKp6yB091fZQoaAZoCWgPQwjFjPD2ILNjQJSGlFKUaBVN6ANoFkdAodjMe0XxfHV9lChoBmgJaA9DCBVUVP3KfmVAlIaUUpRoFU3oA2gWR0Ch2TDRMN+cdX2UKGgGaAloD0MInE8dq5SVZECUhpRSlGgVTegDaBZHQKHaXTI/7i11fZQoaAZoCWgPQwjToGgewH1iQJSGlFKUaBVN6ANoFkdAodtKZUkv9XV9lChoBmgJaA9DCJhr0QI0emRAlIaUUpRoFU3oA2gWR0Ch3GGCAc1gdX2UKGgGaAloD0MIF2ahndMSY0CUhpRSlGgVTegDaBZHQKHxYs/Y8Md1fZQoaAZoCWgPQwh6xVOPtJtjQJSGlFKUaBVN6ANoFkdAofJ3VXmvGXV9lChoBmgJaA9DCOGVJM91QGJAlIaUUpRoFU3oA2gWR0Ch8+ILG7z1dX2UKGgGaAloD0MIVHJO7KGTXUCUhpRSlGgVTegDaBZHQKH5rtzCDVZ1fZQoaAZoCWgPQwjS/DGtTV9iQJSGlFKUaBVN6ANoFkdAof0eu5jH43V9lChoBmgJaA9DCHQn2H8dhGJAlIaUUpRoFU3oA2gWR0Ch/fRuKoAGdX2UKGgGaAloD0MIjj17LtPZY0CUhpRSlGgVTegDaBZHQKH/br9ETg51fZQoaAZoCWgPQwiQuwhTlANiQJSGlFKUaBVN6ANoFkdAogSDc6/7BXV9lChoBmgJaA9DCF4UPfAx72NAlIaUUpRoFU3oA2gWR0CiBt/VAiV0dX2UKGgGaAloD0MInbtdL838Y0CUhpRSlGgVTegDaBZHQKIHL/LDAJt1fZQoaAZoCWgPQwhtVn2uNqptQJSGlFKUaBVNxwFoFkdAogqm4AjptHV9lChoBmgJaA9DCKN1VDVBnF1AlIaUUpRoFU3oA2gWR0CiC2iKaXrudX2UKGgGaAloD0MIzR5oBQamZ0CUhpRSlGgVTegDaBZHQKIN2C3gDRt1fZQoaAZoCWgPQwjyQc9m1SxnQJSGlFKUaBVN6ANoFkdAog434EfT1HV9lChoBmgJaA9DCPqa5bLR52ZAlIaUUpRoFU3oA2gWR0CiDz6naWX1dX2UKGgGaAloD0MItHbbheZrUECUhpRSlGgVS/toFkdAog/rELpiZ3V9lChoBmgJaA9DCLyUumScGWFAlIaUUpRoFU3oA2gWR0CiEBI4uK4ydX2UKGgGaAloD0MInzvB/uujXECUhpRSlGgVTegDaBZHQKIQ+p1ie/Z1fZQoaAZoCWgPQwimC7H6IypiQJSGlFKUaBVN6ANoFkdAoiS3T/hl2HV9lChoBmgJaA9DCO9v0F692nFAlIaUUpRoFU2wAmgWR0CiJVrxAjY7dX2UKGgGaAloD0MIv2INF7l0Y0CUhpRSlGgVTegDaBZHQKIloxwAEMd1fZQoaAZoCWgPQwjNBplk5JZBQJSGlFKUaBVL5WgWR0CiJqEc0cfedX2UKGgGaAloD0MIMX4a9+YhYUCUhpRSlGgVTegDaBZHQKIm6iMYMv11fZQoaAZoCWgPQwjqspjYfF9gQJSGlFKUaBVN6ANoFkdAoi7/7WNFSnV9lChoBmgJaA9DCLCvdamRzmRAlIaUUpRoFU3oA2gWR0CiMUe0ojOcdX2UKGgGaAloD0MIz2VqEnyOcECUhpRSlGgVTX8DaBZHQKIyicinpB51fZQoaAZoCWgPQwg3je21oO9wQJSGlFKUaBVNrAJoFkdAojR33g1m8XV9lChoBmgJaA9DCEKwql7+jmRAlIaUUpRoFU3oA2gWR0CiOOiiItUXdX2UKGgGaAloD0MIVkrP9BLvW0CUhpRSlGgVTegDaBZHQKI8XHxSYPZ1fZQoaAZoCWgPQwjDD86nDtViQJSGlFKUaBVN6ANoFkdAoj0U5U96knV9lChoBmgJaA9DCAGmDBzQk2JAlIaUUpRoFU3oA2gWR0CiP1ysCDEndX2UKGgGaAloD0MIZfuQt1wzRECUhpRSlGgVS9NoFkdAokBENWluWXV9lChoBmgJaA9DCAuXVdiMemdAlIaUUpRoFU3oA2gWR0CiQKkTQE6ldX2UKGgGaAloD0MI4PPDCOGmY0CUhpRSlGgVTegDaBZHQKJBQ7p3X7N1fZQoaAZoCWgPQwhZbJOKRtNkQJSGlFKUaBVN6ANoFkdAokJczbeuWHV9lChoBmgJaA9DCF6fOetTPHFAlIaUUpRoFU1xA2gWR0CiRQ2fChvjdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 296, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:db8dd6f34f153645819b0343476989b6f16ba0264bdf8fbe9b83bea316c2bff2
|
3 |
+
size 144109
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fb74b857f80>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb74b861050>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb74b8610e0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb74b861170>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fb74b861200>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fb74b861290>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb74b861320>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fb74b8613b0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb74b861440>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb74b8614d0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb74b861560>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fb74b8ae510>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 901120,
|
46 |
+
"_total_timesteps": 900000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1651829054.5296493,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADPSKr4HL4o+QglDPo5JbL7t8+Y6Al9svQAAAAAAAAAA+ioKPiWkjz7cAgy+VtkQvtYRvrxWaAY9AAAAAAAAAAAzc3a6oa0HPh4oTL2lvCK+6JlNvWWkwLwAAAAAAAAAAOZ5HD3DcU66Gz3FOzHhzbSMn4q7npC/swAAgD8AAIA/WlW9PZponz/kRKY+gCu7vm5KJz6bR6k9AAAAAAAAAABzP1c+cQoDP0ehLb5/saq+2xPVPLpk8rwAAAAAAAAAAJoXArwUiKO6wGKPOfYTnzRWmKE6wpKkuAAAgD8AAIA/M48PPOEOi7pVEfU8nBbEOBCOETsaaLo3AACAPwAAgD+m2RS+e0Liui6UvDr6uAE3IOPeO1Wb2rkAAIA/AACAP80ysrykEAq5LvKuukme0bWKR5o7uJvMOQAAgD8AAIA/M08JvY/WIbpgj305zp+dNKY9dbrJYZS4AACAPwAAgD8ziyS8j6Jkulo5UzuKkvk3zN/wOnsuDroAAIA/AACAP80DzDyuSYK6le3TOpNR4TX/OFA6gF7yuQAAgD8AAIA/mg1DPClQTrogABW4n9Wus5RCrDt7mys3AACAPwAAgD/gKRk+25sqP0J0Lr5Ln4++T4IHvL26yr0AAAAAAAAAAABwQTxI26W6f0ctO5otYDUOPtk6crNMNAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.0012444444444443814,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI9gmgGNluaECUhpRSlIwBbJRN6AOMAXSUR0ChHbXta6jGdX2UKGgGaAloD0MISOF6FK7fYkCUhpRSlGgVTegDaBZHQKEethb4agp1fZQoaAZoCWgPQwjR60/ic7JiQJSGlFKUaBVN6ANoFkdAoSAJXCCSR3V9lChoBmgJaA9DCAHBHD1+RWJAlIaUUpRoFU3oA2gWR0ChJdp9RaX8dX2UKGgGaAloD0MIzcr2IW/CX0CUhpRSlGgVTegDaBZHQKEpaFRpDeF1fZQoaAZoCWgPQwj6Cz1i9JpuQJSGlFKUaBVNkwFoFkdAoSs/iFTNuHV9lChoBmgJaA9DCI0LB0IyJ2ZAlIaUUpRoFU3oA2gWR0ChK7pQLux9dX2UKGgGaAloD0MI+P4G7VVkZUCUhpRSlGgVTegDaBZHQKEy8hzvJBB1fZQoaAZoCWgPQwjv5T45ih5jQJSGlFKUaBVN6ANoFkdAoTM7OJLuhXV9lChoBmgJaA9DCM8sCVDTt2dAlIaUUpRoFU3oA2gWR0ChN1aHbh3rdX2UKGgGaAloD0MIFHe8ye8iYECUhpRSlGgVTegDaBZHQKE3bU8V58l1fZQoaAZoCWgPQwiMMEW5NDtjQJSGlFKUaBVN6ANoFkdAoTmwa3qiXnV9lChoBmgJaA9DCJmghm9hRmZAlIaUUpRoFU3oA2gWR0ChOgTvqkdndX2UKGgGaAloD0MIJxdjYB3DY0CUhpRSlGgVTegDaBZHQKE7CJiy6c11fZQoaAZoCWgPQwiqSfCGtBplQJSGlFKUaBVN6ANoFkdAoTva9VWCE3V9lChoBmgJaA9DCIv5uaGpWmJAlIaUUpRoFU3oA2gWR0ChTN6Hbh3rdX2UKGgGaAloD0MItCJqos8uZECUhpRSlGgVTegDaBZHQKFRpYA80UJ1fZQoaAZoCWgPQwgTfNP0WZtgQJSGlFKUaBVN6ANoFkdAoVKsR3/xUnV9lChoBmgJaA9DCLKhm/0BFGhAlIaUUpRoFU3oA2gWR0ChVArwnYxtdX2UKGgGaAloD0MIsYnMXGBAYkCUhpRSlGgVTegDaBZHQKFaAOc2BJ91fZQoaAZoCWgPQwhZ+tAFdVViQJSGlFKUaBVN6ANoFkdAoV2SRuCPIXV9lChoBmgJaA9DCEc9RKO7lnFAlIaUUpRoFU3OA2gWR0ChXmrxqfvndX2UKGgGaAloD0MIrfcb7TjMYUCUhpRSlGgVTegDaBZHQKFf1K1XvH91fZQoaAZoCWgPQwgpBHKJI7JtQJSGlFKUaBVNKgNoFkdAoWTvdweeWnV9lChoBmgJaA9DCH5WmSmtL2NAlIaUUpRoFU3oA2gWR0ChZ1dxyXD4dX2UKGgGaAloD0MISIld21tPYkCUhpRSlGgVTegDaBZHQKFnouEEkjZ1fZQoaAZoCWgPQwgK2A5GbKlhQJSGlFKUaBVN6ANoFkdAoWvhCngpB3V9lChoBmgJaA9DCFe0Oc5t62VAlIaUUpRoFU3oA2gWR0ChbnRu0kWzdX2UKGgGaAloD0MIW9JRDuZAY0CUhpRSlGgVTegDaBZHQKFu1Kp1ifB1fZQoaAZoCWgPQwhGe7yQDgpmQJSGlFKUaBVN6ANoFkdAoW/vI8yN43V9lChoBmgJaA9DCD3wMVhxXGRAlIaUUpRoFU3oA2gWR0ChcNn6VMVUdX2UKGgGaAloD0MIP+YDAh0bYUCUhpRSlGgVTegDaBZHQKFx/8VHnU51fZQoaAZoCWgPQwiokCv1rABkQJSGlFKUaBVN6ANoFkdAoYapOYYzi3V9lChoBmgJaA9DCL0d4bRgAGNAlIaUUpRoFU3oA2gWR0Chh7ZlWfbsdX2UKGgGaAloD0MIYkok0UvZZECUhpRSlGgVTegDaBZHQKGJFjYI0Il1fZQoaAZoCWgPQwhBDkqY6dxjQJSGlFKUaBVN6ANoFkdAoY6ocm0E5nV9lChoBmgJaA9DCLNg4o+iSGRAlIaUUpRoFU3oA2gWR0ChkgCuEEkjdX2UKGgGaAloD0MI3jr/dlkKY0CUhpRSlGgVTegDaBZHQKGS0/yGzrx1fZQoaAZoCWgPQwi63ct98o9mQJSGlFKUaBVN6ANoFkdAoZQ4m3OObXV9lChoBmgJaA9DCNfCLLRzVWVAlIaUUpRoFU3oA2gWR0ChmTeqR2bHdX2UKGgGaAloD0MIv4I0Y9HvYkCUhpRSlGgVTegDaBZHQKGbjQeFL391fZQoaAZoCWgPQwjh7qzd9nhiQJSGlFKUaBVN6ANoFkdAoZvVJ6IFeXV9lChoBmgJaA9DCMZRuYlaGmNAlIaUUpRoFU3oA2gWR0ChoCYU34sVdX2UKGgGaAloD0MILlc/NkmMYUCUhpRSlGgVTegDaBZHQKGi0EBbOeJ1fZQoaAZoCWgPQwg/yLJg4rNmQJSGlFKUaBVN6ANoFkdAoaM0lXzUZ3V9lChoBmgJaA9DCBUBTu9iA2dAlIaUUpRoFU3oA2gWR0ChpEuB19v1dX2UKGgGaAloD0MI2T7kLVfBZ0CUhpRSlGgVTegDaBZHQKGlO6Lfk3l1fZQoaAZoCWgPQwhAFqJD4DRdQJSGlFKUaBVN6ANoFkdAoaZcPrfLtHV9lChoBmgJaA9DCLe0GhL3wGFAlIaUUpRoFU3oA2gWR0Chu4fNqxkedX2UKGgGaAloD0MIQup29hVEZUCUhpRSlGgVTegDaBZHQKG8mJx//ed1fZQoaAZoCWgPQwifceFAyAZgQJSGlFKUaBVN6ANoFkdAob4PYUWVNnV9lChoBmgJaA9DCNNnB1zX82ZAlIaUUpRoFU3oA2gWR0Chw9UqpcX4dX2UKGgGaAloD0MI43FRLaJvYUCUhpRSlGgVTegDaBZHQKHHSvX9R791fZQoaAZoCWgPQwgT7pV5q8plQJSGlFKUaBVN6ANoFkdAocgo5T6zmnV9lChoBmgJaA9DCBTNA1hk1WNAlIaUUpRoFU3oA2gWR0ChyaN4A0bcdX2UKGgGaAloD0MIgjrl0Y2JXECUhpRSlGgVTegDaBZHQKHO86tDD0l1fZQoaAZoCWgPQwggYRiwZDhiQJSGlFKUaBVN6ANoFkdAodF0it7rs3V9lChoBmgJaA9DCLwGfeltfWFAlIaUUpRoFU3oA2gWR0Ch0cZ4Oc2BdX2UKGgGaAloD0MI3LjF/FwwYkCUhpRSlGgVTegDaBZHQKHWKp6yB091fZQoaAZoCWgPQwjFjPD2ILNjQJSGlFKUaBVN6ANoFkdAodjMe0XxfHV9lChoBmgJaA9DCBVUVP3KfmVAlIaUUpRoFU3oA2gWR0Ch2TDRMN+cdX2UKGgGaAloD0MInE8dq5SVZECUhpRSlGgVTegDaBZHQKHaXTI/7i11fZQoaAZoCWgPQwjToGgewH1iQJSGlFKUaBVN6ANoFkdAodtKZUkv9XV9lChoBmgJaA9DCJhr0QI0emRAlIaUUpRoFU3oA2gWR0Ch3GGCAc1gdX2UKGgGaAloD0MIF2ahndMSY0CUhpRSlGgVTegDaBZHQKHxYs/Y8Md1fZQoaAZoCWgPQwh6xVOPtJtjQJSGlFKUaBVN6ANoFkdAofJ3VXmvGXV9lChoBmgJaA9DCOGVJM91QGJAlIaUUpRoFU3oA2gWR0Ch8+ILG7z1dX2UKGgGaAloD0MIVHJO7KGTXUCUhpRSlGgVTegDaBZHQKH5rtzCDVZ1fZQoaAZoCWgPQwjS/DGtTV9iQJSGlFKUaBVN6ANoFkdAof0eu5jH43V9lChoBmgJaA9DCHQn2H8dhGJAlIaUUpRoFU3oA2gWR0Ch/fRuKoAGdX2UKGgGaAloD0MIjj17LtPZY0CUhpRSlGgVTegDaBZHQKH/br9ETg51fZQoaAZoCWgPQwiQuwhTlANiQJSGlFKUaBVN6ANoFkdAogSDc6/7BXV9lChoBmgJaA9DCF4UPfAx72NAlIaUUpRoFU3oA2gWR0CiBt/VAiV0dX2UKGgGaAloD0MInbtdL838Y0CUhpRSlGgVTegDaBZHQKIHL/LDAJt1fZQoaAZoCWgPQwhtVn2uNqptQJSGlFKUaBVNxwFoFkdAogqm4AjptHV9lChoBmgJaA9DCKN1VDVBnF1AlIaUUpRoFU3oA2gWR0CiC2iKaXrudX2UKGgGaAloD0MIzR5oBQamZ0CUhpRSlGgVTegDaBZHQKIN2C3gDRt1fZQoaAZoCWgPQwjyQc9m1SxnQJSGlFKUaBVN6ANoFkdAog434EfT1HV9lChoBmgJaA9DCPqa5bLR52ZAlIaUUpRoFU3oA2gWR0CiDz6naWX1dX2UKGgGaAloD0MItHbbheZrUECUhpRSlGgVS/toFkdAog/rELpiZ3V9lChoBmgJaA9DCLyUumScGWFAlIaUUpRoFU3oA2gWR0CiEBI4uK4ydX2UKGgGaAloD0MInzvB/uujXECUhpRSlGgVTegDaBZHQKIQ+p1ie/Z1fZQoaAZoCWgPQwimC7H6IypiQJSGlFKUaBVN6ANoFkdAoiS3T/hl2HV9lChoBmgJaA9DCO9v0F692nFAlIaUUpRoFU2wAmgWR0CiJVrxAjY7dX2UKGgGaAloD0MIv2INF7l0Y0CUhpRSlGgVTegDaBZHQKIloxwAEMd1fZQoaAZoCWgPQwjNBplk5JZBQJSGlFKUaBVL5WgWR0CiJqEc0cfedX2UKGgGaAloD0MIMX4a9+YhYUCUhpRSlGgVTegDaBZHQKIm6iMYMv11fZQoaAZoCWgPQwjqspjYfF9gQJSGlFKUaBVN6ANoFkdAoi7/7WNFSnV9lChoBmgJaA9DCLCvdamRzmRAlIaUUpRoFU3oA2gWR0CiMUe0ojOcdX2UKGgGaAloD0MIz2VqEnyOcECUhpRSlGgVTX8DaBZHQKIyicinpB51fZQoaAZoCWgPQwg3je21oO9wQJSGlFKUaBVNrAJoFkdAojR33g1m8XV9lChoBmgJaA9DCEKwql7+jmRAlIaUUpRoFU3oA2gWR0CiOOiiItUXdX2UKGgGaAloD0MIVkrP9BLvW0CUhpRSlGgVTegDaBZHQKI8XHxSYPZ1fZQoaAZoCWgPQwjDD86nDtViQJSGlFKUaBVN6ANoFkdAoj0U5U96knV9lChoBmgJaA9DCAGmDBzQk2JAlIaUUpRoFU3oA2gWR0CiP1ysCDEndX2UKGgGaAloD0MIZfuQt1wzRECUhpRSlGgVS9NoFkdAokBENWluWXV9lChoBmgJaA9DCAuXVdiMemdAlIaUUpRoFU3oA2gWR0CiQKkTQE6ldX2UKGgGaAloD0MI4PPDCOGmY0CUhpRSlGgVTegDaBZHQKJBQ7p3X7N1fZQoaAZoCWgPQwhZbJOKRtNkQJSGlFKUaBVN6ANoFkdAokJczbeuWHV9lChoBmgJaA9DCF6fOetTPHFAlIaUUpRoFU1xA2gWR0CiRQ2fChvjdWUu"
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 296,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6ab61fb3b0d3c3b6785d028ac4a0802496cff45a3573fbf40be943464e7e3ab5
|
3 |
+
size 84893
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2428bda0ca366776e4542de9eecdcabac98c4635677bb10fe46f65ac72aa6dd6
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:938d3cc0695c7faa58e57b726c1767f7bf7abbf487f006b04bb3ee975f1c582d
|
3 |
+
size 190405
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 256.2283739006337, "std_reward": 11.729343163476019, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-06T09:52:49.361880"}
|