llamafile
English
GGUF
ddiddi commited on
Commit
ddcfccd
·
verified ·
1 Parent(s): 4ab3236

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +90 -3
README.md CHANGED
@@ -1,3 +1,90 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ datasets:
4
+ - cerebras/SlimPajama-627B
5
+ - bigcode/starcoderdata
6
+ - OpenAssistant/oasst_top1_2023-08-25
7
+ language:
8
+ - en
9
+ tags:
10
+ - GGUF
11
+ - llamafile
12
+ model_creator: TinyLlama
13
+ model_name: TinyLlama-1.1B-Chat v1.0
14
+ model_type: Pythia
15
+ quantized_by: jartine
16
+ ---
17
+
18
+ # TinyLlama-1.1B-Chat v1.0 w/ GGUF + llamafile
19
+
20
+ - Model creator: [TinyLlama](https://huggingface.co/TinyLlama)
21
+ - Original model: [TinyLlama-1.1B-Chat-v1.0](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0)
22
+
23
+ <!-- description start -->
24
+ ## Description
25
+
26
+ This repo contains both:
27
+
28
+ - Prebuilt llamafiles for each quantization format that can be executed to launch a web server or cli interface
29
+
30
+ - GGUF weights data files for each quantization format, which require either the [llamafile](https://github.com/mozilla-Ocho/llamafile) or [llama.cpp](https://github.com/ggerganov/llama.cpp) software to run
31
+
32
+ ## Prompt Template: ChatML
33
+
34
+ ```
35
+ <|im_start|>system
36
+ {system_message}<|im_end|>
37
+ <|im_start|>user
38
+ {prompt}<|im_end|>
39
+ <|im_start|>assistant
40
+ ```
41
+
42
+ ---
43
+
44
+ # TinyLlama-1.1B
45
+ </div>
46
+
47
+ https://github.com/jzhang38/TinyLlama
48
+
49
+ The TinyLlama project aims to **pretrain** a **1.1B Llama model on 3 trillion tokens**. With some proper optimization, we can achieve this within a span of "just" 90 days using 16 A100-40G GPUs 🚀🚀. The training has started on 2023-09-01.
50
+
51
+
52
+ We adopted exactly the same architecture and tokenizer as Llama 2. This means TinyLlama can be plugged and played in many open-source projects built upon Llama. Besides, TinyLlama is compact with only 1.1B parameters. This compactness allows it to cater to a multitude of applications demanding a restricted computation and memory footprint.
53
+
54
+ #### This Model
55
+ This is the chat model finetuned on top of [TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T](https://huggingface.co/TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T). **We follow [HF's Zephyr](https://huggingface.co/HuggingFaceH4/zephyr-7b-alpha/edit/main/README.md)'s training recipe.** The model was " initially fine-tuned on a variant of the [`UltraChat`](https://huggingface.co/datasets/stingning/ultrachat) dataset, which contains a diverse range of synthetic dialogues generated by ChatGPT.
56
+ We then further aligned the model with [🤗 TRL's](https://github.com/huggingface/trl) `DPOTrainer` on the [openbmb/UltraFeedback](https://huggingface.co/datasets/openbmb/UltraFeedback) dataset, which contain 64k prompts and model completions that are ranked by GPT-4."
57
+
58
+
59
+ #### How to use
60
+ You will need the transformers>=4.34
61
+ Do check the [TinyLlama](https://github.com/jzhang38/TinyLlama) github page for more information.
62
+
63
+ ```python
64
+ # Install transformers from source - only needed for versions <= v4.34
65
+ # pip install git+https://github.com/huggingface/transformers.git
66
+ # pip install accelerate
67
+
68
+ import torch
69
+ from transformers import pipeline
70
+
71
+ pipe = pipeline("text-generation", model="TinyLlama/TinyLlama-1.1B-Chat-v1.0", torch_dtype=torch.bfloat16, device_map="auto")
72
+
73
+ # We use the tokenizer's chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating
74
+ messages = [
75
+ {
76
+ "role": "system",
77
+ "content": "You are a friendly chatbot who always responds in the style of a pirate",
78
+ },
79
+ {"role": "user", "content": "How many helicopters can a human eat in one sitting?"},
80
+ ]
81
+ prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
82
+ outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
83
+ print(outputs[0]["generated_text"])
84
+ # <|system|>
85
+ # You are a friendly chatbot who always responds in the style of a pirate.</s>
86
+ # <|user|>
87
+ # How many helicopters can a human eat in one sitting?</s>
88
+ # <|assistant|>
89
+ # ...
90
+ ```