Text Generation
Transformers
PyTorch
Safetensors
English
Chinese
llama
text-generation-inference
Inference Endpoints
File size: 3,569 Bytes
080d9e7
 
12ed104
 
 
 
 
 
 
 
c0cec05
6e4667b
080d9e7
12ed104
8b7dd2b
 
9c3aad6
 
 
8b7dd2b
39564ba
15c315a
8b7dd2b
 
 
 
c0b0f9a
8b7dd2b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a2f9d6
8b7dd2b
54c59d1
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
---
license: apache-2.0
datasets:
- EleutherAI/pile
- togethercomputer/RedPajama-Data-1T
- p208p2002/wudao
language:
- en
- zh
library_name: transformers
widget:
- text: "<s> 4 + 3 ="
---

## MiniMA-3B

πŸ“‘ [arXiv](https://arxiv.org/abs/2311.07052) | πŸ‘» [GitHub](https://github.com/GeneZC/MiniMA) | πŸ€— [HuggingFace-MiniMA](https://huggingface.co/GeneZC/MiniMA-3B) | πŸ€— [HuggingFace-MiniChat](https://huggingface.co/GeneZC/MiniChat-3B) | πŸ€— [HuggingFace-MiniChat-1.5](https://huggingface.co/GeneZC/MiniChat-1.5-3B) | πŸ€– [ModelScope-MiniMA](https://modelscope.cn/models/GeneZC/MiniMA-3B) | πŸ€– [ModelScope-MiniChat](https://modelscope.cn/models/GeneZC/MiniChat-3B)

πŸ†• **Updates: MiniChat-1.5-3B**

❗ Must comply with LICENSE of LLaMA2 since it is derived from LLaMA2.

A language model distilled from an adapted version of LLaMA2-7B following "Towards the Law of Capacity Gap in Distilling Language Models".

Establishing a new compute-performance pareto frontier.

<img src="./teaser_a.jpg" alt="teaser_a" width="700" />

The following is an example code snippet to use MiniMA-3B:

```python
import torch

from transformers import AutoModelForCausalLM, AutoTokenizer

# MiniMA
tokenizer = AutoTokenizer.from_pretrained("GeneZC/MiniMA-3B", use_fast=False)
# GPU.
model = AutoModelForCausalLM.from_pretrained("GeneZC/MiniMA-3B", use_cache=True, device_map="auto", torch_dtype=torch.float16).eval()
# CPU.
# model = AutoModelForCausalLM.from_pretrained("GeneZC/MiniMA-3B", use_cache=True, device_map="cpu", torch_dtype=torch.float16).eval()

prompt = "Question: Sherrie tells the truth. Vernell says Sherrie tells the truth. Alexis says Vernell lies. Michaela says Alexis tells the truth. Elanor says Michaela tells the truth. Does Elanor tell the truth?\nAnswer: No\n\nQuestion: Kristian lies. Sherrie says Kristian lies. Delbert says Sherrie lies. Jerry says Delbert tells the truth. Shalonda says Jerry tells the truth. Does Shalonda tell the truth?\nAnswer: No\n\nQuestion: Vina tells the truth. Helene says Vina lies. Kandi says Helene tells the truth. Jamey says Kandi lies. Ka says Jamey lies. Does Ka tell the truth?\nAnswer: No\n\nQuestion: Christie tells the truth. Ka says Christie tells the truth. Delbert says Ka lies. Leda says Delbert tells the truth. Lorine says Leda tells the truth. Does Lorine tell the truth?\nAnswer:"
input_ids = tokenizer([prompt]).input_ids
output_ids = model.generate(
    torch.as_tensor(input_ids).cuda(),
    do_sample=True,
    temperature=0.7,
    max_new_tokens=1024,
)
output_ids = output_ids[0][len(input_ids[0]):]
output = tokenizer.decode(output_ids, skip_special_tokens=True).strip()
# output: "No"
```

## Bibtex

```bibtex
@article{zhang2023law,
    title={Towards the Law of Capacity Gap in Distilling Language Models},
    author={Zhang, Chen and Song, Dawei and Ye, Zheyu and Gao, Yan},
    year={2023},
    url={https://arxiv.org/abs/2311.07052}
}
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_GeneZC__MiniMA-3B)

| Metric                | Value                     |
|-----------------------|---------------------------|
| Avg.                  | 36.2   |
| ARC (25-shot)         | 43.43          |
| HellaSwag (10-shot)   | 68.06    |
| MMLU (5-shot)         | 28.69         |
| TruthfulQA (0-shot)   | 39.76   |
| Winogrande (5-shot)   | 65.98   |
| GSM8K (5-shot)        | 2.73        |
| DROP (3-shot)         | 4.72         |