train RL Agent for Lunar Lander environment
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 283.34 +/- 14.84
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fa37da7ddc0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa37da7de50>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa37da7dee0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa37da7df70>", "_build": "<function ActorCriticPolicy._build at 0x7fa37da81040>", "forward": "<function ActorCriticPolicy.forward at 0x7fa37da810d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa37da81160>", "_predict": "<function ActorCriticPolicy._predict at 0x7fa37da811f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa37da81280>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa37da81310>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa37da813a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fa37da79570>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 10010624, "_total_timesteps": 10000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671548207638110223, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAACyQTzpASi8HRvmPVHpYT2tLYa8k2vUvAAAgD8AAIA/htwyvrxeoT8zsAO/e8ogv+52nr72X1K+AAAAAAAAAABNLB09hfOlu2KYE77Mpcs8BTOUPLiTnT0AAIA/AACAPwDoKzzWGnc9pWohvXquvL7TSpq9CNbGvAAAAAAAAAAAAMzHO9HbsT9Y9co9H+14vvUyWzzMfQk+AAAAAAAAAACzDKw935wSPnrM3b4k7bC+PX4wvuQeu74AAAAAAAAAAM0EEjyuLYO6qPPwPKzAkbJjyZ86nXD4swAAgD8AAIA/ZjIxPJz9CrxgKBi77olFPBwbWz2Gqyi9AACAPwAAgD+akZK8pJYCu3b23jt0IKQ8k73ZO4Ybjb0AAIA/AACAP5qa9zzSJp274rOAvlvl3b3bVO48o96GPwAAgD8AAIA/AKoVvdfmLruORW48rruTPO0vFjytfX69AACAPwAAgD8a/2E9alsnPrEqjr6geLi+Nsu3vc25Ub4AAAAAAAAAAGYICD1XpSs+o/XQvTC48L6Eg5K8e/s5vgAAAAAAAAAAZvZEOxQIgboVQn6+3+o5vk3Fqr3ILWg/AACAPwAAAACay4K9i3XTPUqvij6W1pK+y2twPA2xFj4AAAAAAAAAAA133L29+qg/R1KOvikwF7872he+zfvtvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0010623999999999079, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIWb+ZmO4+cECUhpRSlIwBbJRLo4wBdJRHQMCl5pDmbLF1fZQoaAZoCWgPQwjn+6nxkgBxQJSGlFKUaBVLu2gWR0DApeecOLBLdX2UKGgGaAloD0MIoTGTqBdgckCUhpRSlGgVS65oFkdAwKXsCiAUcnV9lChoBmgJaA9DCEQ0uoOYgXNAlIaUUpRoFUvHaBZHQMCl/fFJg9h1fZQoaAZoCWgPQwgPXru0YdRyQJSGlFKUaBVLvmgWR0DApf+sq8UVdX2UKGgGaAloD0MIHv6arFF7b0CUhpRSlGgVS7JoFkdAwKYDDFZPmHV9lChoBmgJaA9DCJ0v9l4813FAlIaUUpRoFUvDaBZHQMCmAxNIsiB1fZQoaAZoCWgPQwhdUrXdxCNwQJSGlFKUaBVLsGgWR0DApggFcIJJdX2UKGgGaAloD0MIPGwiM1dnc0CUhpRSlGgVS7doFkdAwKiLs54nnnV9lChoBmgJaA9DCH3PSISGQnBAlIaUUpRoFUuraBZHQMCojbROUMZ1fZQoaAZoCWgPQwiFe2XeakRyQJSGlFKUaBVLw2gWR0DAqJG0mdAgdX2UKGgGaAloD0MIvFmD9xU0ckCUhpRSlGgVS6loFkdAwKiWBtDUmXV9lChoBmgJaA9DCJ1M3CrIO3FAlIaUUpRoFUu0aBZHQMCol0Ltu1p1fZQoaAZoCWgPQwhwJxHh389xQJSGlFKUaBVLxGgWR0DAqJfrnkksdX2UKGgGaAloD0MIYHZPHpbVcUCUhpRSlGgVS6VoFkdAwKiZrZ8KHHV9lChoBmgJaA9DCCs1e6CVunFAlIaUUpRoFUuxaBZHQMCoqZ9mYjV1fZQoaAZoCWgPQwgsR8hAXu5xQJSGlFKUaBVLr2gWR0DAqKmnn+yadX2UKGgGaAloD0MIJnMs7+oSckCUhpRSlGgVS8ZoFkdAwKiv9QXQ+nV9lChoBmgJaA9DCIW1MXYCHXBAlIaUUpRoFUujaBZHQMCourn1WbR1fZQoaAZoCWgPQwivQPSkjHV0QJSGlFKUaBVLzmgWR0DAqL8cGTs6dX2UKGgGaAloD0MIhC7h0Ns1ckCUhpRSlGgVS6NoFkdAwKjACW/rSnV9lChoBmgJaA9DCPrVHCCYInNAlIaUUpRoFUvAaBZHQMCozJO32El1fZQoaAZoCWgPQwhKYHMOnjxzQJSGlFKUaBVLyWgWR0DAqNUv4/NadX2UKGgGaAloD0MIU8xB0FHkcUCUhpRSlGgVS6VoFkdAwKjtWsA/93V9lChoBmgJaA9DCGSRJt6BnXNAlIaUUpRoFUvwaBZHQMCo8k1VHWl1fZQoaAZoCWgPQwjpJ5zdmrBxQJSGlFKUaBVLuGgWR0DAqPNc4YJmdX2UKGgGaAloD0MIM9yAzw9hb0CUhpRSlGgVS6xoFkdAwKj38E3bVXV9lChoBmgJaA9DCMYWghxUOnFAlIaUUpRoFUuxaBZHQMCo+Z2yLQ51fZQoaAZoCWgPQwhYq3ZNiHFyQJSGlFKUaBVLv2gWR0DAqPmPYFq0dX2UKGgGaAloD0MIFK+ytqmhckCUhpRSlGgVS7VoFkdAwKj/aYeDF3V9lChoBmgJaA9DCAcMkj7t03BAlIaUUpRoFUvCaBZHQMCpBDTz/ZN1fZQoaAZoCWgPQwizz2OUZ79yQJSGlFKUaBVLsWgWR0DAqQ0OskprdX2UKGgGaAloD0MINCxGXavNcECUhpRSlGgVS75oFkdAwKkaoF3Y+XV9lChoBmgJaA9DCFn7O9tjGXNAlIaUUpRoFUvOaBZHQMCpHMXaakR1fZQoaAZoCWgPQwhjRQ2mIe1yQJSGlFKUaBVLs2gWR0DAqST7MxGldX2UKGgGaAloD0MIq1lnfN/hc0CUhpRSlGgVS8hoFkdAwKkraFEiMnV9lChoBmgJaA9DCE7wTdNn0nNAlIaUUpRoFUvPaBZHQMCpM5VOsT51fZQoaAZoCWgPQwg8vr1rEENzQJSGlFKUaBVLwmgWR0DAqToP9UCJdX2UKGgGaAloD0MIpS2u8Vl/cUCUhpRSlGgVS7NoFkdAwKk6VB2OhnV9lChoBmgJaA9DCM2wUdbvDnBAlIaUUpRoFUuoaBZHQMCpSb04BFN1fZQoaAZoCWgPQwilaOVeYCtyQJSGlFKUaBVLmGgWR0DAqUuC5EtvdX2UKGgGaAloD0MIpYKKqt+dcUCUhpRSlGgVS6poFkdAwKlPc8kleHV9lChoBmgJaA9DCJkNMslIIHRAlIaUUpRoFUu7aBZHQMCpV0bkwN91fZQoaAZoCWgPQwgbRkHwOJZxQJSGlFKUaBVLs2gWR0DAqVgJXyRTdX2UKGgGaAloD0MIM8Lbg5AgcECUhpRSlGgVS6BoFkdAwKlaEkjX4HV9lChoBmgJaA9DCEeSIFxBc3FAlIaUUpRoFUuqaBZHQMCpWmj9GZx1fZQoaAZoCWgPQwgSL0/nSntzQJSGlFKUaBVLumgWR0DAqV2EPDpDdX2UKGgGaAloD0MIjGZl+1BWcECUhpRSlGgVS7hoFkdAwKlwUliSaHV9lChoBmgJaA9DCAdA3NXrpHBAlIaUUpRoFUugaBZHQMCpcZt3wCt1fZQoaAZoCWgPQwj8juGxX19yQJSGlFKUaBVLpWgWR0DAqXY9s7+2dX2UKGgGaAloD0MIV1wclRuEckCUhpRSlGgVS6loFkdAwKmG61b7j3V9lChoBmgJaA9DCNNLjGX6OUVAlIaUUpRoFUtWaBZHQMCphpV81Gd1fZQoaAZoCWgPQwjiWu1h7+BxQJSGlFKUaBVLuGgWR0DAqZ5IMBp6dX2UKGgGaAloD0MIIXam0DnGckCUhpRSlGgVS6JoFkdAwKmldWQwK3V9lChoBmgJaA9DCNrmxvREH3NAlIaUUpRoFUvTaBZHQMCpqCzTnaF1fZQoaAZoCWgPQwi0WIrkq6FzQJSGlFKUaBVLzGgWR0DAqasqFyq/dX2UKGgGaAloD0MIskgT74BKcUCUhpRSlGgVS6doFkdAwKmtSBshxHV9lChoBmgJaA9DCJ87wf4rznNAlIaUUpRoFUv7aBZHQMCpsIfjjrB1fZQoaAZoCWgPQwhOf/YjRVpzQJSGlFKUaBVLumgWR0DAqbIAGSpzdX2UKGgGaAloD0MIFXR7SSP4cECUhpRSlGgVS6doFkdAwKm7VSXMQnV9lChoBmgJaA9DCNZvJqYLynJAlIaUUpRoFUuuaBZHQMCpvIpH7P91fZQoaAZoCWgPQwjvrrMhv/pwQJSGlFKUaBVLs2gWR0DAqb7YdyT7dX2UKGgGaAloD0MICMkCJrCuckCUhpRSlGgVS7poFkdAwKnAZRbbDnV9lChoBmgJaA9DCAqA8QwasHFAlIaUUpRoFUuaaBZHQMCpxtW+49Z1fZQoaAZoCWgPQwgbEvdY+gR0QJSGlFKUaBVLw2gWR0DAqd0xM36zdX2UKGgGaAloD0MI6Pf9m1c4cUCUhpRSlGgVS6toFkdAwKnmJm/WUnV9lChoBmgJaA9DCCAldm0vCXNAlIaUUpRoFUvPaBZHQMCp6fMOf/Z1fZQoaAZoCWgPQwj93NCUnXFyQJSGlFKUaBVLtWgWR0DAqeyFZgXudX2UKGgGaAloD0MI7gc8MICQc0CUhpRSlGgVS7doFkdAwKoIDvmYB3V9lChoBmgJaA9DCIDz4sRXmnJAlIaUUpRoFUumaBZHQMCqEVJtix51fZQoaAZoCWgPQwgogGJkiYtyQJSGlFKUaBVLwmgWR0DAqhtLg4wRdX2UKGgGaAloD0MIFRkdkETWcUCUhpRSlGgVS7poFkdAwKob6Tnq3XV9lChoBmgJaA9DCAdi2cyhO3NAlIaUUpRoFUvPaBZHQMCqHbWmP5p1fZQoaAZoCWgPQwh8KxIT1ApBQJSGlFKUaBVLZWgWR0DAqiTc0tROdX2UKGgGaAloD0MI4V8Ejdm4cECUhpRSlGgVS9BoFkdAwKol+so2GnV9lChoBmgJaA9DCIfe4uE9w3BAlIaUUpRoFUuvaBZHQMCqJevIOpd1fZQoaAZoCWgPQwjpuvCDM5NyQJSGlFKUaBVLtmgWR0DAqiY4ACGOdX2UKGgGaAloD0MIjzhkA6k3cUCUhpRSlGgVS6poFkdAwKorXT3IuHV9lChoBmgJaA9DCBXKwtdXfHJAlIaUUpRoFUvEaBZHQMCqLeLehwl1fZQoaAZoCWgPQwg7rHDLhzp0QJSGlFKUaBVL62gWR0DAqi8figkDdX2UKGgGaAloD0MIZ2DkZU1bc0CUhpRSlGgVS8doFkdAwKoy9bor4HV9lChoBmgJaA9DCHbicrzCnXFAlIaUUpRoFUu1aBZHQMCqRXYL9dh1fZQoaAZoCWgPQwhWmSmtvw5xQJSGlFKUaBVLtWgWR0DAqlKa9bosdX2UKGgGaAloD0MI8Nx7uKQVc0CUhpRSlGgVS8JoFkdAwKpXdsSCe3V9lChoBmgJaA9DCDwXRnoRanJAlIaUUpRoFUvCaBZHQMCqcwoCuEF1fZQoaAZoCWgPQwh7aYoAZxlyQJSGlFKUaBVLmGgWR0DAqne5H3DfdX2UKGgGaAloD0MITDRIwRNDcECUhpRSlGgVS61oFkdAwKp6FdLQHHV9lChoBmgJaA9DCHmymxk9ZnJAlIaUUpRoFUukaBZHQMCqfwCjk+51fZQoaAZoCWgPQwgXKCmwgFFyQJSGlFKUaBVLtWgWR0DAqn9XiiqRdX2UKGgGaAloD0MIG6GfqVc1ckCUhpRSlGgVS6poFkdAwKqCm1pj+nV9lChoBmgJaA9DCLIv2Xiwf3FAlIaUUpRoFUu5aBZHQMCqg1u76Hl1fZQoaAZoCWgPQwj75ZMVw4VwQJSGlFKUaBVLlGgWR0DAqoUVnEl3dX2UKGgGaAloD0MIUWfuIeFeckCUhpRSlGgVS6FoFkdAwKqGeo1k2HV9lChoBmgJaA9DCMnIWdiTPXRAlIaUUpRoFUvVaBZHQMCqh1p0wJx1fZQoaAZoCWgPQwjyKJXwBBRxQJSGlFKUaBVLqmgWR0DAqowYR/VidX2UKGgGaAloD0MItOVciivpcUCUhpRSlGgVS7poFkdAwKqQClJpWXV9lChoBmgJaA9DCGZNLPCVq3JAlIaUUpRoFUvSaBZHQMCqlSw4bS91fZQoaAZoCWgPQwgIxyx7kplzQJSGlFKUaBVLv2gWR0DAqqy8vmHQdX2UKGgGaAloD0MI+nspPGjpcECUhpRSlGgVS6toFkdAwKqvnuiN83V9lChoBmgJaA9DCO2ZJQHqGHNAlIaUUpRoFUu+aBZHQMCqvqVY6n11ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 2444, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:545b80052fae261bc4b3cab3fa26f7fe254a677ac0a593a3c93d691e992c1de6
|
3 |
+
size 147090
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.2
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fa37da7ddc0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa37da7de50>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa37da7dee0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa37da7df70>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fa37da81040>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fa37da810d0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa37da81160>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fa37da811f0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa37da81280>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa37da81310>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa37da813a0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fa37da79570>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 10010624,
|
46 |
+
"_total_timesteps": 10000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1671548207638110223,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAACyQTzpASi8HRvmPVHpYT2tLYa8k2vUvAAAgD8AAIA/htwyvrxeoT8zsAO/e8ogv+52nr72X1K+AAAAAAAAAABNLB09hfOlu2KYE77Mpcs8BTOUPLiTnT0AAIA/AACAPwDoKzzWGnc9pWohvXquvL7TSpq9CNbGvAAAAAAAAAAAAMzHO9HbsT9Y9co9H+14vvUyWzzMfQk+AAAAAAAAAACzDKw935wSPnrM3b4k7bC+PX4wvuQeu74AAAAAAAAAAM0EEjyuLYO6qPPwPKzAkbJjyZ86nXD4swAAgD8AAIA/ZjIxPJz9CrxgKBi77olFPBwbWz2Gqyi9AACAPwAAgD+akZK8pJYCu3b23jt0IKQ8k73ZO4Ybjb0AAIA/AACAP5qa9zzSJp274rOAvlvl3b3bVO48o96GPwAAgD8AAIA/AKoVvdfmLruORW48rruTPO0vFjytfX69AACAPwAAgD8a/2E9alsnPrEqjr6geLi+Nsu3vc25Ub4AAAAAAAAAAGYICD1XpSs+o/XQvTC48L6Eg5K8e/s5vgAAAAAAAAAAZvZEOxQIgboVQn6+3+o5vk3Fqr3ILWg/AACAPwAAAACay4K9i3XTPUqvij6W1pK+y2twPA2xFj4AAAAAAAAAAA133L29+qg/R1KOvikwF7872he+zfvtvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.0010623999999999079,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIWb+ZmO4+cECUhpRSlIwBbJRLo4wBdJRHQMCl5pDmbLF1fZQoaAZoCWgPQwjn+6nxkgBxQJSGlFKUaBVLu2gWR0DApeecOLBLdX2UKGgGaAloD0MIoTGTqBdgckCUhpRSlGgVS65oFkdAwKXsCiAUcnV9lChoBmgJaA9DCEQ0uoOYgXNAlIaUUpRoFUvHaBZHQMCl/fFJg9h1fZQoaAZoCWgPQwgPXru0YdRyQJSGlFKUaBVLvmgWR0DApf+sq8UVdX2UKGgGaAloD0MIHv6arFF7b0CUhpRSlGgVS7JoFkdAwKYDDFZPmHV9lChoBmgJaA9DCJ0v9l4813FAlIaUUpRoFUvDaBZHQMCmAxNIsiB1fZQoaAZoCWgPQwhdUrXdxCNwQJSGlFKUaBVLsGgWR0DApggFcIJJdX2UKGgGaAloD0MIPGwiM1dnc0CUhpRSlGgVS7doFkdAwKiLs54nnnV9lChoBmgJaA9DCH3PSISGQnBAlIaUUpRoFUuraBZHQMCojbROUMZ1fZQoaAZoCWgPQwiFe2XeakRyQJSGlFKUaBVLw2gWR0DAqJG0mdAgdX2UKGgGaAloD0MIvFmD9xU0ckCUhpRSlGgVS6loFkdAwKiWBtDUmXV9lChoBmgJaA9DCJ1M3CrIO3FAlIaUUpRoFUu0aBZHQMCol0Ltu1p1fZQoaAZoCWgPQwhwJxHh389xQJSGlFKUaBVLxGgWR0DAqJfrnkksdX2UKGgGaAloD0MIYHZPHpbVcUCUhpRSlGgVS6VoFkdAwKiZrZ8KHHV9lChoBmgJaA9DCCs1e6CVunFAlIaUUpRoFUuxaBZHQMCoqZ9mYjV1fZQoaAZoCWgPQwgsR8hAXu5xQJSGlFKUaBVLr2gWR0DAqKmnn+yadX2UKGgGaAloD0MIJnMs7+oSckCUhpRSlGgVS8ZoFkdAwKiv9QXQ+nV9lChoBmgJaA9DCIW1MXYCHXBAlIaUUpRoFUujaBZHQMCourn1WbR1fZQoaAZoCWgPQwivQPSkjHV0QJSGlFKUaBVLzmgWR0DAqL8cGTs6dX2UKGgGaAloD0MIhC7h0Ns1ckCUhpRSlGgVS6NoFkdAwKjACW/rSnV9lChoBmgJaA9DCPrVHCCYInNAlIaUUpRoFUvAaBZHQMCozJO32El1fZQoaAZoCWgPQwhKYHMOnjxzQJSGlFKUaBVLyWgWR0DAqNUv4/NadX2UKGgGaAloD0MIU8xB0FHkcUCUhpRSlGgVS6VoFkdAwKjtWsA/93V9lChoBmgJaA9DCGSRJt6BnXNAlIaUUpRoFUvwaBZHQMCo8k1VHWl1fZQoaAZoCWgPQwjpJ5zdmrBxQJSGlFKUaBVLuGgWR0DAqPNc4YJmdX2UKGgGaAloD0MIM9yAzw9hb0CUhpRSlGgVS6xoFkdAwKj38E3bVXV9lChoBmgJaA9DCMYWghxUOnFAlIaUUpRoFUuxaBZHQMCo+Z2yLQ51fZQoaAZoCWgPQwhYq3ZNiHFyQJSGlFKUaBVLv2gWR0DAqPmPYFq0dX2UKGgGaAloD0MIFK+ytqmhckCUhpRSlGgVS7VoFkdAwKj/aYeDF3V9lChoBmgJaA9DCAcMkj7t03BAlIaUUpRoFUvCaBZHQMCpBDTz/ZN1fZQoaAZoCWgPQwizz2OUZ79yQJSGlFKUaBVLsWgWR0DAqQ0OskprdX2UKGgGaAloD0MINCxGXavNcECUhpRSlGgVS75oFkdAwKkaoF3Y+XV9lChoBmgJaA9DCFn7O9tjGXNAlIaUUpRoFUvOaBZHQMCpHMXaakR1fZQoaAZoCWgPQwhjRQ2mIe1yQJSGlFKUaBVLs2gWR0DAqST7MxGldX2UKGgGaAloD0MIq1lnfN/hc0CUhpRSlGgVS8hoFkdAwKkraFEiMnV9lChoBmgJaA9DCE7wTdNn0nNAlIaUUpRoFUvPaBZHQMCpM5VOsT51fZQoaAZoCWgPQwg8vr1rEENzQJSGlFKUaBVLwmgWR0DAqToP9UCJdX2UKGgGaAloD0MIpS2u8Vl/cUCUhpRSlGgVS7NoFkdAwKk6VB2OhnV9lChoBmgJaA9DCM2wUdbvDnBAlIaUUpRoFUuoaBZHQMCpSb04BFN1fZQoaAZoCWgPQwilaOVeYCtyQJSGlFKUaBVLmGgWR0DAqUuC5EtvdX2UKGgGaAloD0MIpYKKqt+dcUCUhpRSlGgVS6poFkdAwKlPc8kleHV9lChoBmgJaA9DCJkNMslIIHRAlIaUUpRoFUu7aBZHQMCpV0bkwN91fZQoaAZoCWgPQwgbRkHwOJZxQJSGlFKUaBVLs2gWR0DAqVgJXyRTdX2UKGgGaAloD0MIM8Lbg5AgcECUhpRSlGgVS6BoFkdAwKlaEkjX4HV9lChoBmgJaA9DCEeSIFxBc3FAlIaUUpRoFUuqaBZHQMCpWmj9GZx1fZQoaAZoCWgPQwgSL0/nSntzQJSGlFKUaBVLumgWR0DAqV2EPDpDdX2UKGgGaAloD0MIjGZl+1BWcECUhpRSlGgVS7hoFkdAwKlwUliSaHV9lChoBmgJaA9DCAdA3NXrpHBAlIaUUpRoFUugaBZHQMCpcZt3wCt1fZQoaAZoCWgPQwj8juGxX19yQJSGlFKUaBVLpWgWR0DAqXY9s7+2dX2UKGgGaAloD0MIV1wclRuEckCUhpRSlGgVS6loFkdAwKmG61b7j3V9lChoBmgJaA9DCNNLjGX6OUVAlIaUUpRoFUtWaBZHQMCphpV81Gd1fZQoaAZoCWgPQwjiWu1h7+BxQJSGlFKUaBVLuGgWR0DAqZ5IMBp6dX2UKGgGaAloD0MIIXam0DnGckCUhpRSlGgVS6JoFkdAwKmldWQwK3V9lChoBmgJaA9DCNrmxvREH3NAlIaUUpRoFUvTaBZHQMCpqCzTnaF1fZQoaAZoCWgPQwi0WIrkq6FzQJSGlFKUaBVLzGgWR0DAqasqFyq/dX2UKGgGaAloD0MIskgT74BKcUCUhpRSlGgVS6doFkdAwKmtSBshxHV9lChoBmgJaA9DCJ87wf4rznNAlIaUUpRoFUv7aBZHQMCpsIfjjrB1fZQoaAZoCWgPQwhOf/YjRVpzQJSGlFKUaBVLumgWR0DAqbIAGSpzdX2UKGgGaAloD0MIFXR7SSP4cECUhpRSlGgVS6doFkdAwKm7VSXMQnV9lChoBmgJaA9DCNZvJqYLynJAlIaUUpRoFUuuaBZHQMCpvIpH7P91fZQoaAZoCWgPQwjvrrMhv/pwQJSGlFKUaBVLs2gWR0DAqb7YdyT7dX2UKGgGaAloD0MICMkCJrCuckCUhpRSlGgVS7poFkdAwKnAZRbbDnV9lChoBmgJaA9DCAqA8QwasHFAlIaUUpRoFUuaaBZHQMCpxtW+49Z1fZQoaAZoCWgPQwgbEvdY+gR0QJSGlFKUaBVLw2gWR0DAqd0xM36zdX2UKGgGaAloD0MI6Pf9m1c4cUCUhpRSlGgVS6toFkdAwKnmJm/WUnV9lChoBmgJaA9DCCAldm0vCXNAlIaUUpRoFUvPaBZHQMCp6fMOf/Z1fZQoaAZoCWgPQwj93NCUnXFyQJSGlFKUaBVLtWgWR0DAqeyFZgXudX2UKGgGaAloD0MI7gc8MICQc0CUhpRSlGgVS7doFkdAwKoIDvmYB3V9lChoBmgJaA9DCIDz4sRXmnJAlIaUUpRoFUumaBZHQMCqEVJtix51fZQoaAZoCWgPQwgogGJkiYtyQJSGlFKUaBVLwmgWR0DAqhtLg4wRdX2UKGgGaAloD0MIFRkdkETWcUCUhpRSlGgVS7poFkdAwKob6Tnq3XV9lChoBmgJaA9DCAdi2cyhO3NAlIaUUpRoFUvPaBZHQMCqHbWmP5p1fZQoaAZoCWgPQwh8KxIT1ApBQJSGlFKUaBVLZWgWR0DAqiTc0tROdX2UKGgGaAloD0MI4V8Ejdm4cECUhpRSlGgVS9BoFkdAwKol+so2GnV9lChoBmgJaA9DCIfe4uE9w3BAlIaUUpRoFUuvaBZHQMCqJevIOpd1fZQoaAZoCWgPQwjpuvCDM5NyQJSGlFKUaBVLtmgWR0DAqiY4ACGOdX2UKGgGaAloD0MIjzhkA6k3cUCUhpRSlGgVS6poFkdAwKorXT3IuHV9lChoBmgJaA9DCBXKwtdXfHJAlIaUUpRoFUvEaBZHQMCqLeLehwl1fZQoaAZoCWgPQwg7rHDLhzp0QJSGlFKUaBVL62gWR0DAqi8figkDdX2UKGgGaAloD0MIZ2DkZU1bc0CUhpRSlGgVS8doFkdAwKoy9bor4HV9lChoBmgJaA9DCHbicrzCnXFAlIaUUpRoFUu1aBZHQMCqRXYL9dh1fZQoaAZoCWgPQwhWmSmtvw5xQJSGlFKUaBVLtWgWR0DAqlKa9bosdX2UKGgGaAloD0MI8Nx7uKQVc0CUhpRSlGgVS8JoFkdAwKpXdsSCe3V9lChoBmgJaA9DCDwXRnoRanJAlIaUUpRoFUvCaBZHQMCqcwoCuEF1fZQoaAZoCWgPQwh7aYoAZxlyQJSGlFKUaBVLmGgWR0DAqne5H3DfdX2UKGgGaAloD0MITDRIwRNDcECUhpRSlGgVS61oFkdAwKp6FdLQHHV9lChoBmgJaA9DCHmymxk9ZnJAlIaUUpRoFUukaBZHQMCqfwCjk+51fZQoaAZoCWgPQwgXKCmwgFFyQJSGlFKUaBVLtWgWR0DAqn9XiiqRdX2UKGgGaAloD0MIG6GfqVc1ckCUhpRSlGgVS6poFkdAwKqCm1pj+nV9lChoBmgJaA9DCLIv2Xiwf3FAlIaUUpRoFUu5aBZHQMCqg1u76Hl1fZQoaAZoCWgPQwj75ZMVw4VwQJSGlFKUaBVLlGgWR0DAqoUVnEl3dX2UKGgGaAloD0MIUWfuIeFeckCUhpRSlGgVS6FoFkdAwKqGeo1k2HV9lChoBmgJaA9DCMnIWdiTPXRAlIaUUpRoFUvVaBZHQMCqh1p0wJx1fZQoaAZoCWgPQwjyKJXwBBRxQJSGlFKUaBVLqmgWR0DAqowYR/VidX2UKGgGaAloD0MItOVciivpcUCUhpRSlGgVS7poFkdAwKqQClJpWXV9lChoBmgJaA9DCGZNLPCVq3JAlIaUUpRoFUvSaBZHQMCqlSw4bS91fZQoaAZoCWgPQwgIxyx7kplzQJSGlFKUaBVLv2gWR0DAqqy8vmHQdX2UKGgGaAloD0MI+nspPGjpcECUhpRSlGgVS6toFkdAwKqvnuiN83V9lChoBmgJaA9DCO2ZJQHqGHNAlIaUUpRoFUu+aBZHQMCqvqVY6n11ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 2444,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:df53d56f2730d8053a52dd8e2c91ea25faacf6b2f567f03760656dcc4d891762
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:02d2bc20e632736bb50957efec1c432b8189ef542ad2a35b61f37e9b723dc66f
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
|
2 |
+
Python: 3.8.16
|
3 |
+
Stable-Baselines3: 1.6.2
|
4 |
+
PyTorch: 1.13.0+cu116
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (206 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 283.34071259303283, "std_reward": 14.841348544511652, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-20T16:52:06.192545"}
|