GauravDesai85
commited on
Commit
·
05f7011
1
Parent(s):
db71cc7
Upload PPO LunarLander-v2 trained agent
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 183.47 +/- 103.92
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f8b6165e830>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8b6165e8c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8b6165e950>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8b6165e9e0>", "_build": "<function ActorCriticPolicy._build at 0x7f8b6165ea70>", "forward": "<function ActorCriticPolicy.forward at 0x7f8b6165eb00>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8b6165eb90>", "_predict": "<function ActorCriticPolicy._predict at 0x7f8b6165ec20>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8b6165ecb0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8b6165ed40>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8b6165edd0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f8b616279c0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651816694.2362242, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAPNHvr17IqK6yEjWuj3VDra3F4A6Otz0OQAAgD8AAIA/mrbYPXsam7r9gIS3HoNgtlh2VLsHZqQ2AACAPwAAgD8zagQ+Q34ivG0T7TxQpFo7veynPI5P0rwAAIA/AACAPw3EFb4oDYY91vyBvbVpor6/ZJw6cvAZvgAAAAAAAAAA81qYPVx7rT9ga9A+S7+uvm8mDT0mkeY8AAAAAAAAAAAAvBo94Wyuuhbs2jrJbqc8eUC0u9xGkD0AAIA/AACAP8DQxr0pWD26xDqKPHueojj84To7xAKZNwAAgD8AAIA/TckVvRS2wLqmko05iXussnGQ8bq8QqG4AACAPwAAgD/aWrw9SiC8P3DaPD/gaZU9MK0OvVyajj0AAAAAAAAAACaxsr2Fq6i5pCFMOnKJEDyG/70706vyvAAAgD8AAIA/s9/oveHIiLpma4U5SYJctQSOtjr0wJy4AACAPwAAgD+AuNA99vxXupNYbbo86zW2ts8cug2SijkAAIA/AACAP2YkVT1cq1e6kJKKu11dnDgsILs5TEoWOgAAgD8AAIA/WgbDPa4ZlLrIPkk6g/uINg4lB7njNWi5AACAPwAAgD/a5Ni9FMCPutjkzDwCQIo1RmYhONiggDQAAIA/AAAAAJqn7jwN9mI/xgWAPRpzA78gafS7O2/ovAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVZxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMInUgw1czARECUhpRSlIwBbJRLmIwBdJRHQJcQ5cJMQEp1fZQoaAZoCWgPQwgUXRd+cHI0QJSGlFKUaBVLqmgWR0CXEr48EFGHdX2UKGgGaAloD0MIVhADXftkVECUhpRSlGgVTegDaBZHQJcS5TOxB3R1fZQoaAZoCWgPQwhiaeBHNZxDQJSGlFKUaBVLqmgWR0CXFOgL7XQMdX2UKGgGaAloD0MIjdKlf0kZZkCUhpRSlGgVTegDaBZHQJcVb1+RYA91fZQoaAZoCWgPQwjEBaBRuuQqQJSGlFKUaBVLv2gWR0CXGCSpBHCodX2UKGgGaAloD0MIB5j5Dv5qYkCUhpRSlGgVTegDaBZHQJcZZDb8FZB1fZQoaAZoCWgPQwhjDoKOVj0vQJSGlFKUaBVLp2gWR0CXG66Skj5cdX2UKGgGaAloD0MIyH4WS5GAMECUhpRSlGgVS6loFkdAlx+CpR4yGnV9lChoBmgJaA9DCOpBQSlaUFpAlIaUUpRoFU3oA2gWR0CXILH6uW8idX2UKGgGaAloD0MILJ/leXAhYUCUhpRSlGgVTegDaBZHQJcpM+4b0e51fZQoaAZoCWgPQwgKL8GpD1hRQJSGlFKUaBVLqGgWR0CXLAUA1ejVdX2UKGgGaAloD0MI+KqVCb9WXECUhpRSlGgVTegDaBZHQJc8Jf8dgfF1fZQoaAZoCWgPQwjGGFjHcTdmQJSGlFKUaBVN6ANoFkdAl0nyEUTL4nV9lChoBmgJaA9DCLRWtDlO5WVAlIaUUpRoFU3oA2gWR0CXSq6VdHDrdX2UKGgGaAloD0MIrWhznNvkXUCUhpRSlGgVTegDaBZHQJdM06nzg/F1fZQoaAZoCWgPQwgyOEpeHehjQJSGlFKUaBVN6ANoFkdAl06N4/u9e3V9lChoBmgJaA9DCPrsgOsKBGVAlIaUUpRoFU3oA2gWR0CXUjTRIBikdX2UKGgGaAloD0MIIQclzLQ1Y0CUhpRSlGgVTegDaBZHQJd2kqrilzl1fZQoaAZoCWgPQwidgvxs5EVdQJSGlFKUaBVN6ANoFkdAl3b+qBEroXV9lChoBmgJaA9DCNi4/l2fmTBAlIaUUpRoFUvGaBZHQJd4ZsFdLQJ1fZQoaAZoCWgPQwi+3v3xXhZYQJSGlFKUaBVN6ANoFkdAl3lb6xgRb3V9lChoBmgJaA9DCMJQhxVu/l1AlIaUUpRoFU3oA2gWR0CXe8ZF5OafdX2UKGgGaAloD0MI3lm77UL3XECUhpRSlGgVTegDaBZHQJd/sBwMpgF1fZQoaAZoCWgPQwhZ+PpaFzxgQJSGlFKUaBVN6ANoFkdAl4EixZ+x4nV9lChoBmgJaA9DCGuBPSZSB1BAlIaUUpRoFU3oA2gWR0CXg4fWMCLddX2UKGgGaAloD0MIyqZc4V1WSECUhpRSlGgVS79oFkdAl4Qy7wrlNnV9lChoBmgJaA9DCKn4vyMqH2RAlIaUUpRoFU3oA2gWR0CXhppu/DcedX2UKGgGaAloD0MIggNauoLRSkCUhpRSlGgVS8VoFkdAl40gyhzvJHV9lChoBmgJaA9DCGKE8GjjeChAlIaUUpRoFUu0aBZHQJePnR1HOKR1fZQoaAZoCWgPQwglQE0tW4RgQJSGlFKUaBVN6ANoFkdAl5Ao0Q9RrXV9lChoBmgJaA9DCE6dR8X/YmJAlIaUUpRoFU3oA2gWR0CXku3SKFZgdX2UKGgGaAloD0MI3Lkw0gsYY0CUhpRSlGgVTegDaBZHQJejRreqJdl1fZQoaAZoCWgPQwhd34eDhDRbQJSGlFKUaBVN6ANoFkdAl7J9y925hHV9lChoBmgJaA9DCAZn8PeLGmFAlIaUUpRoFU3oA2gWR0CXtOvTgEU1dX2UKGgGaAloD0MI8bioFhEcXECUhpRSlGgVTegDaBZHQJe3Cvq1PWR1fZQoaAZoCWgPQwgOTdnpB3tbQJSGlFKUaBVN6ANoFkdAl7toU34sVnV9lChoBmgJaA9DCCI17WKaIVNAlIaUUpRoFU3oA2gWR0CX4DntOVPfdX2UKGgGaAloD0MISs/0EmPtYECUhpRSlGgVTegDaBZHQJfgsMTewcJ1fZQoaAZoCWgPQwiRfCWQko1iQJSGlFKUaBVN6ANoFkdAl+N+pfhMrXV9lChoBmgJaA9DCKPMBplkwF9AlIaUUpRoFU3oA2gWR0CX5kg3Lmp3dX2UKGgGaAloD0MIpFLsaBwwUkCUhpRSlGgVTegDaBZHQJfquVu76Hl1fZQoaAZoCWgPQwgwYp8AihlXQJSGlFKUaBVN6ANoFkdAl+9Ar6LwWnV9lChoBmgJaA9DCNlaXyS0slFAlIaUUpRoFUvMaBZHQJfvhmvnr6d1fZQoaAZoCWgPQwhfQC/cueFRQJSGlFKUaBVN6ANoFkdAl/MGGucME3V9lChoBmgJaA9DCLd6TnrfXV5AlIaUUpRoFU3oA2gWR0CX+m6XBxgidX2UKGgGaAloD0MIMWDJVSziX0CUhpRSlGgVTegDaBZHQJf9IhxHXmN1fZQoaAZoCWgPQwjEBaBRuvlbQJSGlFKUaBVN6ANoFkdAl/29NJvo/3V9lChoBmgJaA9DCGYv205bJmRAlIaUUpRoFU3oA2gWR0CYAK0+TvAodX2UKGgGaAloD0MIn+V5cHduKECUhpRSlGgVS8RoFkdAmAp3cxj8UHV9lChoBmgJaA9DCFVpi2t8lh/AlIaUUpRoFUvbaBZHQJgMuWWyC4B1fZQoaAZoCWgPQwiil1Est1xjQJSGlFKUaBVN6ANoFkdAmA/FawD/2nV9lChoBmgJaA9DCHALluoCEjJAlIaUUpRoFUvGaBZHQJgbW5paibl1fZQoaAZoCWgPQwhO7QxTW/5dQJSGlFKUaBVN6ANoFkdAmByMK5TZQHV9lChoBmgJaA9DCAk4hCo102BAlIaUUpRoFU3oA2gWR0CYHo4B3iaRdX2UKGgGaAloD0MIEOfhBKYzUECUhpRSlGgVTegDaBZHQJggUffXPJJ1fZQoaAZoCWgPQwgqjC0EuW5jQJSGlFKUaBVN6ANoFkdAmCP+yiVSoHV9lChoBmgJaA9DCHAofLYO7GNAlIaUUpRoFU3oA2gWR0CYKAxKQJXydX2UKGgGaAloD0MI+n3/5sUdS0CUhpRSlGgVS6xoFkdAmEovMKTjenV9lChoBmgJaA9DCBwJNNjUPmJAlIaUUpRoFU3oA2gWR0CYSoOxjawmdX2UKGgGaAloD0MIV7H4TWH+XkCUhpRSlGgVTegDaBZHQJhM/JzT4L11fZQoaAZoCWgPQwjEQNe+gOZbQJSGlFKUaBVN6ANoFkdAmFD7LQokRnV9lChoBmgJaA9DCDgQkgVMIGBAlIaUUpRoFU3oA2gWR0CYVV0JF9a2dX2UKGgGaAloD0MIkNeDSfE+W0CUhpRSlGgVTegDaBZHQJhVoL1EmY11fZQoaAZoCWgPQwiHokCfyEsiQJSGlFKUaBVLtGgWR0CYVl6SDAaedX2UKGgGaAloD0MIBYcXRKTsR0CUhpRSlGgVTegDaBZHQJhYzqVyFPB1fZQoaAZoCWgPQwjhRPRr68BeQJSGlFKUaBVN6ANoFkdAmF/QEZBLPHV9lChoBmgJaA9DCBK8IY2KNWNAlIaUUpRoFU3oA2gWR0CYZdI55qubdX2UKGgGaAloD0MIrfiGwuctY0CUhpRSlGgVTegDaBZHQJhwssJ6Y3N1fZQoaAZoCWgPQwjysFBrGithQJSGlFKUaBVN6ANoFkdAmHYaP8yeqnV9lChoBmgJaA9DCEnyXN+H60VAlIaUUpRoFU3oA2gWR0CYgcJJXhfjdX2UKGgGaAloD0MInWfsSzZCQ0CUhpRSlGgVS6JoFkdAmIJAZ4wAVHV9lChoBmgJaA9DCJ8ENufgoWJAlIaUUpRoFU3oA2gWR0CYgvZBcAzYdX2UKGgGaAloD0MIbRtGQXAUY0CUhpRSlGgVTegDaBZHQJiGoXtShrZ1fZQoaAZoCWgPQwiEud3Lfa1iQJSGlFKUaBVN6ANoFkdAmIpVYISlFnV9lChoBmgJaA9DCBYXR+Wm0GjAlIaUUpRoFU0XAmgWR0CYjSXPZ7HAdX2UKGgGaAloD0MIn1VmSutLYECUhpRSlGgVTegDaBZHQJiObAi3XqZ1fZQoaAZoCWgPQwixprIo7CL9v5SGlFKUaBVLymgWR0CYsPWepXIVdX2UKGgGaAloD0MIUfcBSG1dXkCUhpRSlGgVTegDaBZHQJixXEETxoZ1fZQoaAZoCWgPQwgT9Bd6xKwzwJSGlFKUaBVLdmgWR0CYsrEIPbwjdX2UKGgGaAloD0MIz4O7s3YFYkCUhpRSlGgVTegDaBZHQJi0GhtcfNl1fZQoaAZoCWgPQwjzO01mvBFgQJSGlFKUaBVN6ANoFkdAmLfgZOzpo3V9lChoBmgJaA9DCL+AXrhzGSxAlIaUUpRoFUvFaBZHQJi6D5BTn7p1fZQoaAZoCWgPQwjsa11qBJRkQJSGlFKUaBVN6ANoFkdAmLvWMwUQCnV9lChoBmgJaA9DCHi0ccTap2VAlIaUUpRoFU3oA2gWR0CYvBaLXL/0dX2UKGgGaAloD0MIzVg0nR0PY0CUhpRSlGgVTegDaBZHQJi8wEpy6tl1fZQoaAZoCWgPQwjjpgaaz25bQJSGlFKUaBVN6ANoFkdAmL7TY/Vy3nV9lChoBmgJaA9DCDlDccebnBRAlIaUUpRoFUvOaBZHQJjAUDW9US91fZQoaAZoCWgPQwjBNuLJbvRAQJSGlFKUaBVLzGgWR0CYw6mgrYoRdX2UKGgGaAloD0MIvY44ZANfQ0CUhpRSlGgVS7JoFkdAmMQ/ICEHuHV9lChoBmgJaA9DCOkrSDOWhGNAlIaUUpRoFU3oA2gWR0CYxIgUUO/ddX2UKGgGaAloD0MIaK8+HvrWPkCUhpRSlGgVS5VoFkdAmM1yOzY29HV9lChoBmgJaA9DCDwTmiSWvC5AlIaUUpRoFUuuaBZHQJjOfeGfwql1fZQoaAZoCWgPQwjUfJV87KxhQJSGlFKUaBVN6ANoFkdAmNPkVrRBvHV9lChoBmgJaA9DCMMRpFJsSGNAlIaUUpRoFU3oA2gWR0CY5m7Sy+pPdX2UKGgGaAloD0MIAKlNnNyjZkCUhpRSlGgVTegDaBZHQJjnxTho/Rp1fZQoaAZoCWgPQwiFfTuJCOthQJSGlFKUaBVN6ANoFkdAmOwHQ2MsH3V9lChoBmgJaA9DCIZyol2FD2JAlIaUUpRoFU3oA2gWR0CY9WdbgTAWdX2UKGgGaAloD0MIBthHp65PY0CUhpRSlGgVTegDaBZHQJj3/USZjQR1fZQoaAZoCWgPQwhuwr0y7+BjQJSGlFKUaBVN6ANoFkdAmPiBN7BwdnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bc901dbcec31a4cce1ccb03e8b17098bac1f9a0c30c99ef79597e18722a40dcc
|
3 |
+
size 144016
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f8b6165e830>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8b6165e8c0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8b6165e950>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8b6165e9e0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f8b6165ea70>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f8b6165eb00>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8b6165eb90>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f8b6165ec20>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8b6165ecb0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8b6165ed40>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8b6165edd0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f8b616279c0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 507904,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1651816694.2362242,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAPNHvr17IqK6yEjWuj3VDra3F4A6Otz0OQAAgD8AAIA/mrbYPXsam7r9gIS3HoNgtlh2VLsHZqQ2AACAPwAAgD8zagQ+Q34ivG0T7TxQpFo7veynPI5P0rwAAIA/AACAPw3EFb4oDYY91vyBvbVpor6/ZJw6cvAZvgAAAAAAAAAA81qYPVx7rT9ga9A+S7+uvm8mDT0mkeY8AAAAAAAAAAAAvBo94Wyuuhbs2jrJbqc8eUC0u9xGkD0AAIA/AACAP8DQxr0pWD26xDqKPHueojj84To7xAKZNwAAgD8AAIA/TckVvRS2wLqmko05iXussnGQ8bq8QqG4AACAPwAAgD/aWrw9SiC8P3DaPD/gaZU9MK0OvVyajj0AAAAAAAAAACaxsr2Fq6i5pCFMOnKJEDyG/70706vyvAAAgD8AAIA/s9/oveHIiLpma4U5SYJctQSOtjr0wJy4AACAPwAAgD+AuNA99vxXupNYbbo86zW2ts8cug2SijkAAIA/AACAP2YkVT1cq1e6kJKKu11dnDgsILs5TEoWOgAAgD8AAIA/WgbDPa4ZlLrIPkk6g/uINg4lB7njNWi5AACAPwAAgD/a5Ni9FMCPutjkzDwCQIo1RmYhONiggDQAAIA/AAAAAJqn7jwN9mI/xgWAPRpzA78gafS7O2/ovAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVZxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMInUgw1czARECUhpRSlIwBbJRLmIwBdJRHQJcQ5cJMQEp1fZQoaAZoCWgPQwgUXRd+cHI0QJSGlFKUaBVLqmgWR0CXEr48EFGHdX2UKGgGaAloD0MIVhADXftkVECUhpRSlGgVTegDaBZHQJcS5TOxB3R1fZQoaAZoCWgPQwhiaeBHNZxDQJSGlFKUaBVLqmgWR0CXFOgL7XQMdX2UKGgGaAloD0MIjdKlf0kZZkCUhpRSlGgVTegDaBZHQJcVb1+RYA91fZQoaAZoCWgPQwjEBaBRuuQqQJSGlFKUaBVLv2gWR0CXGCSpBHCodX2UKGgGaAloD0MIB5j5Dv5qYkCUhpRSlGgVTegDaBZHQJcZZDb8FZB1fZQoaAZoCWgPQwhjDoKOVj0vQJSGlFKUaBVLp2gWR0CXG66Skj5cdX2UKGgGaAloD0MIyH4WS5GAMECUhpRSlGgVS6loFkdAlx+CpR4yGnV9lChoBmgJaA9DCOpBQSlaUFpAlIaUUpRoFU3oA2gWR0CXILH6uW8idX2UKGgGaAloD0MILJ/leXAhYUCUhpRSlGgVTegDaBZHQJcpM+4b0e51fZQoaAZoCWgPQwgKL8GpD1hRQJSGlFKUaBVLqGgWR0CXLAUA1ejVdX2UKGgGaAloD0MI+KqVCb9WXECUhpRSlGgVTegDaBZHQJc8Jf8dgfF1fZQoaAZoCWgPQwjGGFjHcTdmQJSGlFKUaBVN6ANoFkdAl0nyEUTL4nV9lChoBmgJaA9DCLRWtDlO5WVAlIaUUpRoFU3oA2gWR0CXSq6VdHDrdX2UKGgGaAloD0MIrWhznNvkXUCUhpRSlGgVTegDaBZHQJdM06nzg/F1fZQoaAZoCWgPQwgyOEpeHehjQJSGlFKUaBVN6ANoFkdAl06N4/u9e3V9lChoBmgJaA9DCPrsgOsKBGVAlIaUUpRoFU3oA2gWR0CXUjTRIBikdX2UKGgGaAloD0MIIQclzLQ1Y0CUhpRSlGgVTegDaBZHQJd2kqrilzl1fZQoaAZoCWgPQwidgvxs5EVdQJSGlFKUaBVN6ANoFkdAl3b+qBEroXV9lChoBmgJaA9DCNi4/l2fmTBAlIaUUpRoFUvGaBZHQJd4ZsFdLQJ1fZQoaAZoCWgPQwi+3v3xXhZYQJSGlFKUaBVN6ANoFkdAl3lb6xgRb3V9lChoBmgJaA9DCMJQhxVu/l1AlIaUUpRoFU3oA2gWR0CXe8ZF5OafdX2UKGgGaAloD0MI3lm77UL3XECUhpRSlGgVTegDaBZHQJd/sBwMpgF1fZQoaAZoCWgPQwhZ+PpaFzxgQJSGlFKUaBVN6ANoFkdAl4EixZ+x4nV9lChoBmgJaA9DCGuBPSZSB1BAlIaUUpRoFU3oA2gWR0CXg4fWMCLddX2UKGgGaAloD0MIyqZc4V1WSECUhpRSlGgVS79oFkdAl4Qy7wrlNnV9lChoBmgJaA9DCKn4vyMqH2RAlIaUUpRoFU3oA2gWR0CXhppu/DcedX2UKGgGaAloD0MIggNauoLRSkCUhpRSlGgVS8VoFkdAl40gyhzvJHV9lChoBmgJaA9DCGKE8GjjeChAlIaUUpRoFUu0aBZHQJePnR1HOKR1fZQoaAZoCWgPQwglQE0tW4RgQJSGlFKUaBVN6ANoFkdAl5Ao0Q9RrXV9lChoBmgJaA9DCE6dR8X/YmJAlIaUUpRoFU3oA2gWR0CXku3SKFZgdX2UKGgGaAloD0MI3Lkw0gsYY0CUhpRSlGgVTegDaBZHQJejRreqJdl1fZQoaAZoCWgPQwhd34eDhDRbQJSGlFKUaBVN6ANoFkdAl7J9y925hHV9lChoBmgJaA9DCAZn8PeLGmFAlIaUUpRoFU3oA2gWR0CXtOvTgEU1dX2UKGgGaAloD0MI8bioFhEcXECUhpRSlGgVTegDaBZHQJe3Cvq1PWR1fZQoaAZoCWgPQwgOTdnpB3tbQJSGlFKUaBVN6ANoFkdAl7toU34sVnV9lChoBmgJaA9DCCI17WKaIVNAlIaUUpRoFU3oA2gWR0CX4DntOVPfdX2UKGgGaAloD0MISs/0EmPtYECUhpRSlGgVTegDaBZHQJfgsMTewcJ1fZQoaAZoCWgPQwiRfCWQko1iQJSGlFKUaBVN6ANoFkdAl+N+pfhMrXV9lChoBmgJaA9DCKPMBplkwF9AlIaUUpRoFU3oA2gWR0CX5kg3Lmp3dX2UKGgGaAloD0MIpFLsaBwwUkCUhpRSlGgVTegDaBZHQJfquVu76Hl1fZQoaAZoCWgPQwgwYp8AihlXQJSGlFKUaBVN6ANoFkdAl+9Ar6LwWnV9lChoBmgJaA9DCNlaXyS0slFAlIaUUpRoFUvMaBZHQJfvhmvnr6d1fZQoaAZoCWgPQwhfQC/cueFRQJSGlFKUaBVN6ANoFkdAl/MGGucME3V9lChoBmgJaA9DCLd6TnrfXV5AlIaUUpRoFU3oA2gWR0CX+m6XBxgidX2UKGgGaAloD0MIMWDJVSziX0CUhpRSlGgVTegDaBZHQJf9IhxHXmN1fZQoaAZoCWgPQwjEBaBRuvlbQJSGlFKUaBVN6ANoFkdAl/29NJvo/3V9lChoBmgJaA9DCGYv205bJmRAlIaUUpRoFU3oA2gWR0CYAK0+TvAodX2UKGgGaAloD0MIn+V5cHduKECUhpRSlGgVS8RoFkdAmAp3cxj8UHV9lChoBmgJaA9DCFVpi2t8lh/AlIaUUpRoFUvbaBZHQJgMuWWyC4B1fZQoaAZoCWgPQwiil1Est1xjQJSGlFKUaBVN6ANoFkdAmA/FawD/2nV9lChoBmgJaA9DCHALluoCEjJAlIaUUpRoFUvGaBZHQJgbW5paibl1fZQoaAZoCWgPQwhO7QxTW/5dQJSGlFKUaBVN6ANoFkdAmByMK5TZQHV9lChoBmgJaA9DCAk4hCo102BAlIaUUpRoFU3oA2gWR0CYHo4B3iaRdX2UKGgGaAloD0MIEOfhBKYzUECUhpRSlGgVTegDaBZHQJggUffXPJJ1fZQoaAZoCWgPQwgqjC0EuW5jQJSGlFKUaBVN6ANoFkdAmCP+yiVSoHV9lChoBmgJaA9DCHAofLYO7GNAlIaUUpRoFU3oA2gWR0CYKAxKQJXydX2UKGgGaAloD0MI+n3/5sUdS0CUhpRSlGgVS6xoFkdAmEovMKTjenV9lChoBmgJaA9DCBwJNNjUPmJAlIaUUpRoFU3oA2gWR0CYSoOxjawmdX2UKGgGaAloD0MIV7H4TWH+XkCUhpRSlGgVTegDaBZHQJhM/JzT4L11fZQoaAZoCWgPQwjEQNe+gOZbQJSGlFKUaBVN6ANoFkdAmFD7LQokRnV9lChoBmgJaA9DCDgQkgVMIGBAlIaUUpRoFU3oA2gWR0CYVV0JF9a2dX2UKGgGaAloD0MIkNeDSfE+W0CUhpRSlGgVTegDaBZHQJhVoL1EmY11fZQoaAZoCWgPQwiHokCfyEsiQJSGlFKUaBVLtGgWR0CYVl6SDAaedX2UKGgGaAloD0MIBYcXRKTsR0CUhpRSlGgVTegDaBZHQJhYzqVyFPB1fZQoaAZoCWgPQwjhRPRr68BeQJSGlFKUaBVN6ANoFkdAmF/QEZBLPHV9lChoBmgJaA9DCBK8IY2KNWNAlIaUUpRoFU3oA2gWR0CYZdI55qubdX2UKGgGaAloD0MIrfiGwuctY0CUhpRSlGgVTegDaBZHQJhwssJ6Y3N1fZQoaAZoCWgPQwjysFBrGithQJSGlFKUaBVN6ANoFkdAmHYaP8yeqnV9lChoBmgJaA9DCEnyXN+H60VAlIaUUpRoFU3oA2gWR0CYgcJJXhfjdX2UKGgGaAloD0MInWfsSzZCQ0CUhpRSlGgVS6JoFkdAmIJAZ4wAVHV9lChoBmgJaA9DCJ8ENufgoWJAlIaUUpRoFU3oA2gWR0CYgvZBcAzYdX2UKGgGaAloD0MIbRtGQXAUY0CUhpRSlGgVTegDaBZHQJiGoXtShrZ1fZQoaAZoCWgPQwiEud3Lfa1iQJSGlFKUaBVN6ANoFkdAmIpVYISlFnV9lChoBmgJaA9DCBYXR+Wm0GjAlIaUUpRoFU0XAmgWR0CYjSXPZ7HAdX2UKGgGaAloD0MIn1VmSutLYECUhpRSlGgVTegDaBZHQJiObAi3XqZ1fZQoaAZoCWgPQwixprIo7CL9v5SGlFKUaBVLymgWR0CYsPWepXIVdX2UKGgGaAloD0MIUfcBSG1dXkCUhpRSlGgVTegDaBZHQJixXEETxoZ1fZQoaAZoCWgPQwgT9Bd6xKwzwJSGlFKUaBVLdmgWR0CYsrEIPbwjdX2UKGgGaAloD0MIz4O7s3YFYkCUhpRSlGgVTegDaBZHQJi0GhtcfNl1fZQoaAZoCWgPQwjzO01mvBFgQJSGlFKUaBVN6ANoFkdAmLfgZOzpo3V9lChoBmgJaA9DCL+AXrhzGSxAlIaUUpRoFUvFaBZHQJi6D5BTn7p1fZQoaAZoCWgPQwjsa11qBJRkQJSGlFKUaBVN6ANoFkdAmLvWMwUQCnV9lChoBmgJaA9DCHi0ccTap2VAlIaUUpRoFU3oA2gWR0CYvBaLXL/0dX2UKGgGaAloD0MIzVg0nR0PY0CUhpRSlGgVTegDaBZHQJi8wEpy6tl1fZQoaAZoCWgPQwjjpgaaz25bQJSGlFKUaBVN6ANoFkdAmL7TY/Vy3nV9lChoBmgJaA9DCDlDccebnBRAlIaUUpRoFUvOaBZHQJjAUDW9US91fZQoaAZoCWgPQwjBNuLJbvRAQJSGlFKUaBVLzGgWR0CYw6mgrYoRdX2UKGgGaAloD0MIvY44ZANfQ0CUhpRSlGgVS7JoFkdAmMQ/ICEHuHV9lChoBmgJaA9DCOkrSDOWhGNAlIaUUpRoFU3oA2gWR0CYxIgUUO/ddX2UKGgGaAloD0MIaK8+HvrWPkCUhpRSlGgVS5VoFkdAmM1yOzY29HV9lChoBmgJaA9DCDwTmiSWvC5AlIaUUpRoFUuuaBZHQJjOfeGfwql1fZQoaAZoCWgPQwjUfJV87KxhQJSGlFKUaBVN6ANoFkdAmNPkVrRBvHV9lChoBmgJaA9DCMMRpFJsSGNAlIaUUpRoFU3oA2gWR0CY5m7Sy+pPdX2UKGgGaAloD0MIAKlNnNyjZkCUhpRSlGgVTegDaBZHQJjnxTho/Rp1fZQoaAZoCWgPQwiFfTuJCOthQJSGlFKUaBVN6ANoFkdAmOwHQ2MsH3V9lChoBmgJaA9DCIZyol2FD2JAlIaUUpRoFU3oA2gWR0CY9WdbgTAWdX2UKGgGaAloD0MIBthHp65PY0CUhpRSlGgVTegDaBZHQJj3/USZjQR1fZQoaAZoCWgPQwhuwr0y7+BjQJSGlFKUaBVN6ANoFkdAmPiBN7BwdnVlLg=="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 124,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ddedd6dc6fb971795d5aa354de02225675d62d26525b7ab685efb5817e24f1ae
|
3 |
+
size 84829
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7e0da3c493e2c3be8ee1718003bde8cd954d79e5b2f9d70ba59a4c91d34c8bca
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ea921149c40f242196dd26afc11db2d288587e3bb200d7bf52b6934f0c1fa301
|
3 |
+
size 179386
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 183.46554832969576, "std_reward": 103.92390599753239, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-06T06:30:38.378211"}
|