Add new SentenceTransformer model.
Browse files- .gitattributes +1 -0
- 1_Pooling/config.json +10 -0
- README.md +1861 -0
- config.json +29 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- sentencepiece.bpe.model +3 -0
- special_tokens_map.json +51 -0
- tokenizer.json +3 -0
- tokenizer_config.json +61 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,1861 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: []
|
3 |
+
library_name: sentence-transformers
|
4 |
+
tags:
|
5 |
+
- sentence-transformers
|
6 |
+
- sentence-similarity
|
7 |
+
- feature-extraction
|
8 |
+
- dataset_size:100K<n<1M
|
9 |
+
- loss:AnglELoss
|
10 |
+
base_model: sentence-transformers/paraphrase-multilingual-mpnet-base-v2
|
11 |
+
metrics:
|
12 |
+
- pearson_cosine
|
13 |
+
- spearman_cosine
|
14 |
+
- pearson_manhattan
|
15 |
+
- spearman_manhattan
|
16 |
+
- pearson_euclidean
|
17 |
+
- spearman_euclidean
|
18 |
+
- pearson_dot
|
19 |
+
- spearman_dot
|
20 |
+
- pearson_max
|
21 |
+
- spearman_max
|
22 |
+
widget:
|
23 |
+
- source_sentence: 有些人在路上溜达。
|
24 |
+
sentences:
|
25 |
+
- Folk går
|
26 |
+
- Otururken gitar çalan adam.
|
27 |
+
- ארה"ב קבעה שסוריה השתמשה בנשק כימי
|
28 |
+
- source_sentence: 緬甸以前稱為緬甸。
|
29 |
+
sentences:
|
30 |
+
- 缅甸以前叫缅甸。
|
31 |
+
- This is very contradictory.
|
32 |
+
- 한 남자가 아기를 안고 의자에 앉아 잠들어 있다.
|
33 |
+
- source_sentence: אדם כותב.
|
34 |
+
sentences:
|
35 |
+
- האדם כותב.
|
36 |
+
- questa non è una risposta.
|
37 |
+
- 7 שוטרים נהרגו ו-4 שוטרים נפצעו.
|
38 |
+
- source_sentence: הם מפחדים.
|
39 |
+
sentences:
|
40 |
+
- liên quan đến rủi ro đáng kể;
|
41 |
+
- A man is playing a guitar.
|
42 |
+
- A man is playing a piano.
|
43 |
+
- source_sentence: 一个女人正在洗澡。
|
44 |
+
sentences:
|
45 |
+
- A woman is taking a bath.
|
46 |
+
- En jente børster håret sitt
|
47 |
+
- אדם מחלק תפוח אדמה.
|
48 |
+
pipeline_tag: sentence-similarity
|
49 |
+
model-index:
|
50 |
+
- name: SentenceTransformer based on sentence-transformers/paraphrase-multilingual-mpnet-base-v2
|
51 |
+
results:
|
52 |
+
- task:
|
53 |
+
type: semantic-similarity
|
54 |
+
name: Semantic Similarity
|
55 |
+
dataset:
|
56 |
+
name: sts dev
|
57 |
+
type: sts-dev
|
58 |
+
metrics:
|
59 |
+
- type: pearson_cosine
|
60 |
+
value: 0.9551466915019567
|
61 |
+
name: Pearson Cosine
|
62 |
+
- type: spearman_cosine
|
63 |
+
value: 0.9592676437617756
|
64 |
+
name: Spearman Cosine
|
65 |
+
- type: pearson_manhattan
|
66 |
+
value: 0.9270103565661432
|
67 |
+
name: Pearson Manhattan
|
68 |
+
- type: spearman_manhattan
|
69 |
+
value: 0.9382925369644322
|
70 |
+
name: Spearman Manhattan
|
71 |
+
- type: pearson_euclidean
|
72 |
+
value: 0.9278315400036575
|
73 |
+
name: Pearson Euclidean
|
74 |
+
- type: spearman_euclidean
|
75 |
+
value: 0.9393641949848517
|
76 |
+
name: Spearman Euclidean
|
77 |
+
- type: pearson_dot
|
78 |
+
value: 0.8760113280718741
|
79 |
+
name: Pearson Dot
|
80 |
+
- type: spearman_dot
|
81 |
+
value: 0.8864509380027734
|
82 |
+
name: Spearman Dot
|
83 |
+
- type: pearson_max
|
84 |
+
value: 0.9551466915019567
|
85 |
+
name: Pearson Max
|
86 |
+
- type: spearman_max
|
87 |
+
value: 0.9592676437617756
|
88 |
+
name: Spearman Max
|
89 |
+
- task:
|
90 |
+
type: semantic-similarity
|
91 |
+
name: Semantic Similarity
|
92 |
+
dataset:
|
93 |
+
name: sts test
|
94 |
+
type: sts-test
|
95 |
+
metrics:
|
96 |
+
- type: pearson_cosine
|
97 |
+
value: 0.9479585032380113
|
98 |
+
name: Pearson Cosine
|
99 |
+
- type: spearman_cosine
|
100 |
+
value: 0.9514910354916427
|
101 |
+
name: Spearman Cosine
|
102 |
+
- type: pearson_manhattan
|
103 |
+
value: 0.925192141913064
|
104 |
+
name: Pearson Manhattan
|
105 |
+
- type: spearman_manhattan
|
106 |
+
value: 0.9351648026362221
|
107 |
+
name: Spearman Manhattan
|
108 |
+
- type: pearson_euclidean
|
109 |
+
value: 0.9258239806908134
|
110 |
+
name: Pearson Euclidean
|
111 |
+
- type: spearman_euclidean
|
112 |
+
value: 0.9363652577900217
|
113 |
+
name: Spearman Euclidean
|
114 |
+
- type: pearson_dot
|
115 |
+
value: 0.8442947652156254
|
116 |
+
name: Pearson Dot
|
117 |
+
- type: spearman_dot
|
118 |
+
value: 0.8435104766124126
|
119 |
+
name: Spearman Dot
|
120 |
+
- type: pearson_max
|
121 |
+
value: 0.9479585032380113
|
122 |
+
name: Pearson Max
|
123 |
+
- type: spearman_max
|
124 |
+
value: 0.9514910354916427
|
125 |
+
name: Spearman Max
|
126 |
+
- type: pearson_cosine
|
127 |
+
value: 0.9725274765440489
|
128 |
+
name: Pearson Cosine
|
129 |
+
- type: spearman_cosine
|
130 |
+
value: 0.9766335692570665
|
131 |
+
name: Spearman Cosine
|
132 |
+
- type: pearson_manhattan
|
133 |
+
value: 0.9382317294386867
|
134 |
+
name: Pearson Manhattan
|
135 |
+
- type: spearman_manhattan
|
136 |
+
value: 0.948654920505423
|
137 |
+
name: Spearman Manhattan
|
138 |
+
- type: pearson_euclidean
|
139 |
+
value: 0.9392057529290415
|
140 |
+
name: Pearson Euclidean
|
141 |
+
- type: spearman_euclidean
|
142 |
+
value: 0.9500099103637895
|
143 |
+
name: Spearman Euclidean
|
144 |
+
- type: pearson_dot
|
145 |
+
value: 0.8531236460319379
|
146 |
+
name: Pearson Dot
|
147 |
+
- type: spearman_dot
|
148 |
+
value: 0.8611492409185547
|
149 |
+
name: Spearman Dot
|
150 |
+
- type: pearson_max
|
151 |
+
value: 0.9725274765440489
|
152 |
+
name: Pearson Max
|
153 |
+
- type: spearman_max
|
154 |
+
value: 0.9766335692570665
|
155 |
+
name: Spearman Max
|
156 |
+
- type: pearson_cosine
|
157 |
+
value: 0.8026922386812214
|
158 |
+
name: Pearson Cosine
|
159 |
+
- type: spearman_cosine
|
160 |
+
value: 0.8124393788492182
|
161 |
+
name: Spearman Cosine
|
162 |
+
- type: pearson_manhattan
|
163 |
+
value: 0.7839394479918361
|
164 |
+
name: Pearson Manhattan
|
165 |
+
- type: spearman_manhattan
|
166 |
+
value: 0.7899571854314883
|
167 |
+
name: Spearman Manhattan
|
168 |
+
- type: pearson_euclidean
|
169 |
+
value: 0.7835912695413444
|
170 |
+
name: Pearson Euclidean
|
171 |
+
- type: spearman_euclidean
|
172 |
+
value: 0.7920219916708612
|
173 |
+
name: Spearman Euclidean
|
174 |
+
- type: pearson_dot
|
175 |
+
value: 0.7698701769634279
|
176 |
+
name: Pearson Dot
|
177 |
+
- type: spearman_dot
|
178 |
+
value: 0.781996122357711
|
179 |
+
name: Spearman Dot
|
180 |
+
- type: pearson_max
|
181 |
+
value: 0.8026922386812214
|
182 |
+
name: Pearson Max
|
183 |
+
- type: spearman_max
|
184 |
+
value: 0.8124393788492182
|
185 |
+
name: Spearman Max
|
186 |
+
- type: pearson_cosine
|
187 |
+
value: 0.7795928581740468
|
188 |
+
name: Pearson Cosine
|
189 |
+
- type: spearman_cosine
|
190 |
+
value: 0.7703365842088069
|
191 |
+
name: Spearman Cosine
|
192 |
+
- type: pearson_manhattan
|
193 |
+
value: 0.7903764226370217
|
194 |
+
name: Pearson Manhattan
|
195 |
+
- type: spearman_manhattan
|
196 |
+
value: 0.7829879213871844
|
197 |
+
name: Spearman Manhattan
|
198 |
+
- type: pearson_euclidean
|
199 |
+
value: 0.7911863454505806
|
200 |
+
name: Pearson Euclidean
|
201 |
+
- type: spearman_euclidean
|
202 |
+
value: 0.7841695636601043
|
203 |
+
name: Spearman Euclidean
|
204 |
+
- type: pearson_dot
|
205 |
+
value: 0.7077312955932407
|
206 |
+
name: Pearson Dot
|
207 |
+
- type: spearman_dot
|
208 |
+
value: 0.6914225616023565
|
209 |
+
name: Spearman Dot
|
210 |
+
- type: pearson_max
|
211 |
+
value: 0.7911863454505806
|
212 |
+
name: Pearson Max
|
213 |
+
- type: spearman_max
|
214 |
+
value: 0.7841695636601043
|
215 |
+
name: Spearman Max
|
216 |
+
- type: pearson_cosine
|
217 |
+
value: 0.9112700251605085
|
218 |
+
name: Pearson Cosine
|
219 |
+
- type: spearman_cosine
|
220 |
+
value: 0.9109414091487618
|
221 |
+
name: Spearman Cosine
|
222 |
+
- type: pearson_manhattan
|
223 |
+
value: 0.8969826303560867
|
224 |
+
name: Pearson Manhattan
|
225 |
+
- type: spearman_manhattan
|
226 |
+
value: 0.8934356058163047
|
227 |
+
name: Spearman Manhattan
|
228 |
+
- type: pearson_euclidean
|
229 |
+
value: 0.8986106629139636
|
230 |
+
name: Pearson Euclidean
|
231 |
+
- type: spearman_euclidean
|
232 |
+
value: 0.8954517657266873
|
233 |
+
name: Spearman Euclidean
|
234 |
+
- type: pearson_dot
|
235 |
+
value: 0.884386067267308
|
236 |
+
name: Pearson Dot
|
237 |
+
- type: spearman_dot
|
238 |
+
value: 0.8922685778872441
|
239 |
+
name: Spearman Dot
|
240 |
+
- type: pearson_max
|
241 |
+
value: 0.9112700251605085
|
242 |
+
name: Pearson Max
|
243 |
+
- type: spearman_max
|
244 |
+
value: 0.9109414091487618
|
245 |
+
name: Spearman Max
|
246 |
+
- type: pearson_cosine
|
247 |
+
value: 0.9361870787330656
|
248 |
+
name: Pearson Cosine
|
249 |
+
- type: spearman_cosine
|
250 |
+
value: 0.9378741534997558
|
251 |
+
name: Spearman Cosine
|
252 |
+
- type: pearson_manhattan
|
253 |
+
value: 0.9230051982649123
|
254 |
+
name: Pearson Manhattan
|
255 |
+
- type: spearman_manhattan
|
256 |
+
value: 0.9244721677465636
|
257 |
+
name: Spearman Manhattan
|
258 |
+
- type: pearson_euclidean
|
259 |
+
value: 0.9230904520135751
|
260 |
+
name: Pearson Euclidean
|
261 |
+
- type: spearman_euclidean
|
262 |
+
value: 0.9251248730902872
|
263 |
+
name: Spearman Euclidean
|
264 |
+
- type: pearson_dot
|
265 |
+
value: 0.9069963151228692
|
266 |
+
name: Pearson Dot
|
267 |
+
- type: spearman_dot
|
268 |
+
value: 0.9185797530151516
|
269 |
+
name: Spearman Dot
|
270 |
+
- type: pearson_max
|
271 |
+
value: 0.9361870787330656
|
272 |
+
name: Pearson Max
|
273 |
+
- type: spearman_max
|
274 |
+
value: 0.9378741534997558
|
275 |
+
name: Spearman Max
|
276 |
+
- type: pearson_cosine
|
277 |
+
value: 0.8048757108412675
|
278 |
+
name: Pearson Cosine
|
279 |
+
- type: spearman_cosine
|
280 |
+
value: 0.7987027653005363
|
281 |
+
name: Spearman Cosine
|
282 |
+
- type: pearson_manhattan
|
283 |
+
value: 0.8017660413612523
|
284 |
+
name: Pearson Manhattan
|
285 |
+
- type: spearman_manhattan
|
286 |
+
value: 0.7828168153285264
|
287 |
+
name: Spearman Manhattan
|
288 |
+
- type: pearson_euclidean
|
289 |
+
value: 0.8006665075585622
|
290 |
+
name: Pearson Euclidean
|
291 |
+
- type: spearman_euclidean
|
292 |
+
value: 0.7824761741785664
|
293 |
+
name: Spearman Euclidean
|
294 |
+
- type: pearson_dot
|
295 |
+
value: 0.7894710045147775
|
296 |
+
name: Pearson Dot
|
297 |
+
- type: spearman_dot
|
298 |
+
value: 0.7819409907917216
|
299 |
+
name: Spearman Dot
|
300 |
+
- type: pearson_max
|
301 |
+
value: 0.8048757108412675
|
302 |
+
name: Pearson Max
|
303 |
+
- type: spearman_max
|
304 |
+
value: 0.7987027653005363
|
305 |
+
name: Spearman Max
|
306 |
+
- type: pearson_cosine
|
307 |
+
value: 0.8520160385093393
|
308 |
+
name: Pearson Cosine
|
309 |
+
- type: spearman_cosine
|
310 |
+
value: 0.8553203530552356
|
311 |
+
name: Spearman Cosine
|
312 |
+
- type: pearson_manhattan
|
313 |
+
value: 0.8464006282913296
|
314 |
+
name: Pearson Manhattan
|
315 |
+
- type: spearman_manhattan
|
316 |
+
value: 0.8409514527398295
|
317 |
+
name: Spearman Manhattan
|
318 |
+
- type: pearson_euclidean
|
319 |
+
value: 0.8467543977447098
|
320 |
+
name: Pearson Euclidean
|
321 |
+
- type: spearman_euclidean
|
322 |
+
value: 0.8458591066828018
|
323 |
+
name: Spearman Euclidean
|
324 |
+
- type: pearson_dot
|
325 |
+
value: 0.8093136598158064
|
326 |
+
name: Pearson Dot
|
327 |
+
- type: spearman_dot
|
328 |
+
value: 0.8153571493902085
|
329 |
+
name: Spearman Dot
|
330 |
+
- type: pearson_max
|
331 |
+
value: 0.8520160385093393
|
332 |
+
name: Pearson Max
|
333 |
+
- type: spearman_max
|
334 |
+
value: 0.8553203530552356
|
335 |
+
name: Spearman Max
|
336 |
+
- type: pearson_cosine
|
337 |
+
value: 0.8751983236341568
|
338 |
+
name: Pearson Cosine
|
339 |
+
- type: spearman_cosine
|
340 |
+
value: 0.872701191632785
|
341 |
+
name: Spearman Cosine
|
342 |
+
- type: pearson_manhattan
|
343 |
+
value: 0.8744834146908832
|
344 |
+
name: Pearson Manhattan
|
345 |
+
- type: spearman_manhattan
|
346 |
+
value: 0.8661385734785878
|
347 |
+
name: Spearman Manhattan
|
348 |
+
- type: pearson_euclidean
|
349 |
+
value: 0.874802989814616
|
350 |
+
name: Pearson Euclidean
|
351 |
+
- type: spearman_euclidean
|
352 |
+
value: 0.8668384026485944
|
353 |
+
name: Spearman Euclidean
|
354 |
+
- type: pearson_dot
|
355 |
+
value: 0.8603441420083793
|
356 |
+
name: Pearson Dot
|
357 |
+
- type: spearman_dot
|
358 |
+
value: 0.8519571499551175
|
359 |
+
name: Spearman Dot
|
360 |
+
- type: pearson_max
|
361 |
+
value: 0.8751983236341568
|
362 |
+
name: Pearson Max
|
363 |
+
- type: spearman_max
|
364 |
+
value: 0.872701191632785
|
365 |
+
name: Spearman Max
|
366 |
+
- type: pearson_cosine
|
367 |
+
value: 0.9082404991830442
|
368 |
+
name: Pearson Cosine
|
369 |
+
- type: spearman_cosine
|
370 |
+
value: 0.9067607122592818
|
371 |
+
name: Spearman Cosine
|
372 |
+
- type: pearson_manhattan
|
373 |
+
value: 0.8908378724095692
|
374 |
+
name: Pearson Manhattan
|
375 |
+
- type: spearman_manhattan
|
376 |
+
value: 0.885184918244054
|
377 |
+
name: Spearman Manhattan
|
378 |
+
- type: pearson_euclidean
|
379 |
+
value: 0.8907567800603056
|
380 |
+
name: Pearson Euclidean
|
381 |
+
- type: spearman_euclidean
|
382 |
+
value: 0.8850799779856109
|
383 |
+
name: Spearman Euclidean
|
384 |
+
- type: pearson_dot
|
385 |
+
value: 0.8888621290344544
|
386 |
+
name: Pearson Dot
|
387 |
+
- type: spearman_dot
|
388 |
+
value: 0.8965880419316619
|
389 |
+
name: Spearman Dot
|
390 |
+
- type: pearson_max
|
391 |
+
value: 0.9082404991830442
|
392 |
+
name: Pearson Max
|
393 |
+
- type: spearman_max
|
394 |
+
value: 0.9067607122592818
|
395 |
+
name: Spearman Max
|
396 |
+
- type: pearson_cosine
|
397 |
+
value: 0.9249796814520836
|
398 |
+
name: Pearson Cosine
|
399 |
+
- type: spearman_cosine
|
400 |
+
value: 0.9246785886944904
|
401 |
+
name: Spearman Cosine
|
402 |
+
- type: pearson_manhattan
|
403 |
+
value: 0.9083667986520362
|
404 |
+
name: Pearson Manhattan
|
405 |
+
- type: spearman_manhattan
|
406 |
+
value: 0.90288714821411
|
407 |
+
name: Spearman Manhattan
|
408 |
+
- type: pearson_euclidean
|
409 |
+
value: 0.9115880396459031
|
410 |
+
name: Pearson Euclidean
|
411 |
+
- type: spearman_euclidean
|
412 |
+
value: 0.9083794061358542
|
413 |
+
name: Spearman Euclidean
|
414 |
+
- type: pearson_dot
|
415 |
+
value: 0.9000889923763985
|
416 |
+
name: Pearson Dot
|
417 |
+
- type: spearman_dot
|
418 |
+
value: 0.9070443969139744
|
419 |
+
name: Spearman Dot
|
420 |
+
- type: pearson_max
|
421 |
+
value: 0.9249796814520836
|
422 |
+
name: Pearson Max
|
423 |
+
- type: spearman_max
|
424 |
+
value: 0.9246785886944904
|
425 |
+
name: Spearman Max
|
426 |
+
- type: pearson_cosine
|
427 |
+
value: 0.9133091498737149
|
428 |
+
name: Pearson Cosine
|
429 |
+
- type: spearman_cosine
|
430 |
+
value: 0.9114826394926738
|
431 |
+
name: Spearman Cosine
|
432 |
+
- type: pearson_manhattan
|
433 |
+
value: 0.8977113793113364
|
434 |
+
name: Pearson Manhattan
|
435 |
+
- type: spearman_manhattan
|
436 |
+
value: 0.8933433506440468
|
437 |
+
name: Spearman Manhattan
|
438 |
+
- type: pearson_euclidean
|
439 |
+
value: 0.8979058595014344
|
440 |
+
name: Pearson Euclidean
|
441 |
+
- type: spearman_euclidean
|
442 |
+
value: 0.8937323599537337
|
443 |
+
name: Spearman Euclidean
|
444 |
+
- type: pearson_dot
|
445 |
+
value: 0.891219202934611
|
446 |
+
name: Pearson Dot
|
447 |
+
- type: spearman_dot
|
448 |
+
value: 0.8987764114969254
|
449 |
+
name: Spearman Dot
|
450 |
+
- type: pearson_max
|
451 |
+
value: 0.9133091498737149
|
452 |
+
name: Pearson Max
|
453 |
+
- type: spearman_max
|
454 |
+
value: 0.9114826394926738
|
455 |
+
name: Spearman Max
|
456 |
+
- type: pearson_cosine
|
457 |
+
value: 0.8984578585216539
|
458 |
+
name: Pearson Cosine
|
459 |
+
- type: spearman_cosine
|
460 |
+
value: 0.8451542547285167
|
461 |
+
name: Spearman Cosine
|
462 |
+
- type: pearson_manhattan
|
463 |
+
value: 0.8714879175346363
|
464 |
+
name: Pearson Manhattan
|
465 |
+
- type: spearman_manhattan
|
466 |
+
value: 0.8451542547285167
|
467 |
+
name: Spearman Manhattan
|
468 |
+
- type: pearson_euclidean
|
469 |
+
value: 0.8809190484217423
|
470 |
+
name: Pearson Euclidean
|
471 |
+
- type: spearman_euclidean
|
472 |
+
value: 0.8451542547285167
|
473 |
+
name: Spearman Euclidean
|
474 |
+
- type: pearson_dot
|
475 |
+
value: 0.8537957222589418
|
476 |
+
name: Pearson Dot
|
477 |
+
- type: spearman_dot
|
478 |
+
value: 0.8451542547285167
|
479 |
+
name: Spearman Dot
|
480 |
+
- type: pearson_max
|
481 |
+
value: 0.8984578585216539
|
482 |
+
name: Pearson Max
|
483 |
+
- type: spearman_max
|
484 |
+
value: 0.8451542547285167
|
485 |
+
name: Spearman Max
|
486 |
+
- type: pearson_cosine
|
487 |
+
value: 0.6494815112978085
|
488 |
+
name: Pearson Cosine
|
489 |
+
- type: spearman_cosine
|
490 |
+
value: 0.6385354535483773
|
491 |
+
name: Spearman Cosine
|
492 |
+
- type: pearson_manhattan
|
493 |
+
value: 0.6429493098908716
|
494 |
+
name: Pearson Manhattan
|
495 |
+
- type: spearman_manhattan
|
496 |
+
value: 0.6473666993823523
|
497 |
+
name: Spearman Manhattan
|
498 |
+
- type: pearson_euclidean
|
499 |
+
value: 0.6442945700268683
|
500 |
+
name: Pearson Euclidean
|
501 |
+
- type: spearman_euclidean
|
502 |
+
value: 0.6444758519763731
|
503 |
+
name: Spearman Euclidean
|
504 |
+
- type: pearson_dot
|
505 |
+
value: 0.6128358976757747
|
506 |
+
name: Pearson Dot
|
507 |
+
- type: spearman_dot
|
508 |
+
value: 0.6108258021881942
|
509 |
+
name: Spearman Dot
|
510 |
+
- type: pearson_max
|
511 |
+
value: 0.6494815112978085
|
512 |
+
name: Pearson Max
|
513 |
+
- type: spearman_max
|
514 |
+
value: 0.6473666993823523
|
515 |
+
name: Spearman Max
|
516 |
+
- type: pearson_cosine
|
517 |
+
value: 0.7441341150359049
|
518 |
+
name: Pearson Cosine
|
519 |
+
- type: spearman_cosine
|
520 |
+
value: 0.7518021273920814
|
521 |
+
name: Spearman Cosine
|
522 |
+
- type: pearson_manhattan
|
523 |
+
value: 0.7339108684091178
|
524 |
+
name: Pearson Manhattan
|
525 |
+
- type: spearman_manhattan
|
526 |
+
value: 0.7367402927783612
|
527 |
+
name: Spearman Manhattan
|
528 |
+
- type: pearson_euclidean
|
529 |
+
value: 0.7336764576613932
|
530 |
+
name: Pearson Euclidean
|
531 |
+
- type: spearman_euclidean
|
532 |
+
value: 0.734241088471987
|
533 |
+
name: Spearman Euclidean
|
534 |
+
- type: pearson_dot
|
535 |
+
value: 0.6886320720189693
|
536 |
+
name: Pearson Dot
|
537 |
+
- type: spearman_dot
|
538 |
+
value: 0.698561864698337
|
539 |
+
name: Spearman Dot
|
540 |
+
- type: pearson_max
|
541 |
+
value: 0.7441341150359049
|
542 |
+
name: Pearson Max
|
543 |
+
- type: spearman_max
|
544 |
+
value: 0.7518021273920814
|
545 |
+
name: Spearman Max
|
546 |
+
- type: pearson_cosine
|
547 |
+
value: 0.6278594754203957
|
548 |
+
name: Pearson Cosine
|
549 |
+
- type: spearman_cosine
|
550 |
+
value: 0.6319430830291571
|
551 |
+
name: Spearman Cosine
|
552 |
+
- type: pearson_manhattan
|
553 |
+
value: 0.543548091135791
|
554 |
+
name: Pearson Manhattan
|
555 |
+
- type: spearman_manhattan
|
556 |
+
value: 0.6002053211770223
|
557 |
+
name: Spearman Manhattan
|
558 |
+
- type: pearson_euclidean
|
559 |
+
value: 0.5399866615749636
|
560 |
+
name: Pearson Euclidean
|
561 |
+
- type: spearman_euclidean
|
562 |
+
value: 0.5955360076924765
|
563 |
+
name: Spearman Euclidean
|
564 |
+
- type: pearson_dot
|
565 |
+
value: 0.5657998544710718
|
566 |
+
name: Pearson Dot
|
567 |
+
- type: spearman_dot
|
568 |
+
value: 0.6068611192160528
|
569 |
+
name: Spearman Dot
|
570 |
+
- type: pearson_max
|
571 |
+
value: 0.6278594754203957
|
572 |
+
name: Pearson Max
|
573 |
+
- type: spearman_max
|
574 |
+
value: 0.6319430830291571
|
575 |
+
name: Spearman Max
|
576 |
+
- type: pearson_cosine
|
577 |
+
value: 0.7778538763931996
|
578 |
+
name: Pearson Cosine
|
579 |
+
- type: spearman_cosine
|
580 |
+
value: 0.7875616631597785
|
581 |
+
name: Spearman Cosine
|
582 |
+
- type: pearson_manhattan
|
583 |
+
value: 0.7425757616272681
|
584 |
+
name: Pearson Manhattan
|
585 |
+
- type: spearman_manhattan
|
586 |
+
value: 0.7789392103102715
|
587 |
+
name: Spearman Manhattan
|
588 |
+
- type: pearson_euclidean
|
589 |
+
value: 0.7437054735775576
|
590 |
+
name: Pearson Euclidean
|
591 |
+
- type: spearman_euclidean
|
592 |
+
value: 0.780583955651507
|
593 |
+
name: Spearman Euclidean
|
594 |
+
- type: pearson_dot
|
595 |
+
value: 0.7214423493083364
|
596 |
+
name: Pearson Dot
|
597 |
+
- type: spearman_dot
|
598 |
+
value: 0.7489073787091952
|
599 |
+
name: Spearman Dot
|
600 |
+
- type: pearson_max
|
601 |
+
value: 0.7778538763931996
|
602 |
+
name: Pearson Max
|
603 |
+
- type: spearman_max
|
604 |
+
value: 0.7875616631597785
|
605 |
+
name: Spearman Max
|
606 |
+
- type: pearson_cosine
|
607 |
+
value: 0.526790729806662
|
608 |
+
name: Pearson Cosine
|
609 |
+
- type: spearman_cosine
|
610 |
+
value: 0.5774252131250034
|
611 |
+
name: Spearman Cosine
|
612 |
+
- type: pearson_manhattan
|
613 |
+
value: 0.41713442172065224
|
614 |
+
name: Pearson Manhattan
|
615 |
+
- type: spearman_manhattan
|
616 |
+
value: 0.5599676717727231
|
617 |
+
name: Spearman Manhattan
|
618 |
+
- type: pearson_euclidean
|
619 |
+
value: 0.42192411421528214
|
620 |
+
name: Pearson Euclidean
|
621 |
+
- type: spearman_euclidean
|
622 |
+
value: 0.5665444422359257
|
623 |
+
name: Spearman Euclidean
|
624 |
+
- type: pearson_dot
|
625 |
+
value: 0.49809047501575476
|
626 |
+
name: Pearson Dot
|
627 |
+
- type: spearman_dot
|
628 |
+
value: 0.5367148143234142
|
629 |
+
name: Spearman Dot
|
630 |
+
- type: pearson_max
|
631 |
+
value: 0.526790729806662
|
632 |
+
name: Pearson Max
|
633 |
+
- type: spearman_max
|
634 |
+
value: 0.5774252131250034
|
635 |
+
name: Spearman Max
|
636 |
+
- type: pearson_cosine
|
637 |
+
value: 0.6306061651851392
|
638 |
+
name: Pearson Cosine
|
639 |
+
- type: spearman_cosine
|
640 |
+
value: 0.6383757017928495
|
641 |
+
name: Spearman Cosine
|
642 |
+
- type: pearson_manhattan
|
643 |
+
value: 0.603366556372183
|
644 |
+
name: Pearson Manhattan
|
645 |
+
- type: spearman_manhattan
|
646 |
+
value: 0.6167955278711116
|
647 |
+
name: Spearman Manhattan
|
648 |
+
- type: pearson_euclidean
|
649 |
+
value: 0.6081018686388112
|
650 |
+
name: Pearson Euclidean
|
651 |
+
- type: spearman_euclidean
|
652 |
+
value: 0.6219639110001453
|
653 |
+
name: Spearman Euclidean
|
654 |
+
- type: pearson_dot
|
655 |
+
value: 0.5767081284665276
|
656 |
+
name: Pearson Dot
|
657 |
+
- type: spearman_dot
|
658 |
+
value: 0.5831358067917275
|
659 |
+
name: Spearman Dot
|
660 |
+
- type: pearson_max
|
661 |
+
value: 0.6306061651851392
|
662 |
+
name: Pearson Max
|
663 |
+
- type: spearman_max
|
664 |
+
value: 0.6383757017928495
|
665 |
+
name: Spearman Max
|
666 |
+
- type: pearson_cosine
|
667 |
+
value: 0.5568482062575557
|
668 |
+
name: Pearson Cosine
|
669 |
+
- type: spearman_cosine
|
670 |
+
value: 0.5866853707548388
|
671 |
+
name: Spearman Cosine
|
672 |
+
- type: pearson_manhattan
|
673 |
+
value: 0.49244450938868833
|
674 |
+
name: Pearson Manhattan
|
675 |
+
- type: spearman_manhattan
|
676 |
+
value: 0.5737511662255662
|
677 |
+
name: Spearman Manhattan
|
678 |
+
- type: pearson_euclidean
|
679 |
+
value: 0.49058760093828624
|
680 |
+
name: Pearson Euclidean
|
681 |
+
- type: spearman_euclidean
|
682 |
+
value: 0.5762095703672849
|
683 |
+
name: Spearman Euclidean
|
684 |
+
- type: pearson_dot
|
685 |
+
value: 0.4306984514506903
|
686 |
+
name: Pearson Dot
|
687 |
+
- type: spearman_dot
|
688 |
+
value: 0.5470683854030187
|
689 |
+
name: Spearman Dot
|
690 |
+
- type: pearson_max
|
691 |
+
value: 0.5568482062575557
|
692 |
+
name: Pearson Max
|
693 |
+
- type: spearman_max
|
694 |
+
value: 0.5866853707548388
|
695 |
+
name: Spearman Max
|
696 |
+
- type: pearson_cosine
|
697 |
+
value: 0.5776222742798018
|
698 |
+
name: Pearson Cosine
|
699 |
+
- type: spearman_cosine
|
700 |
+
value: 0.5749790581441845
|
701 |
+
name: Spearman Cosine
|
702 |
+
- type: pearson_manhattan
|
703 |
+
value: 0.571787148920759
|
704 |
+
name: Pearson Manhattan
|
705 |
+
- type: spearman_manhattan
|
706 |
+
value: 0.5500811027014174
|
707 |
+
name: Spearman Manhattan
|
708 |
+
- type: pearson_euclidean
|
709 |
+
value: 0.5695499775959532
|
710 |
+
name: Pearson Euclidean
|
711 |
+
- type: spearman_euclidean
|
712 |
+
value: 0.5532223379017994
|
713 |
+
name: Spearman Euclidean
|
714 |
+
- type: pearson_dot
|
715 |
+
value: 0.53146407233978
|
716 |
+
name: Pearson Dot
|
717 |
+
- type: spearman_dot
|
718 |
+
value: 0.5190797374963447
|
719 |
+
name: Spearman Dot
|
720 |
+
- type: pearson_max
|
721 |
+
value: 0.5776222742798018
|
722 |
+
name: Pearson Max
|
723 |
+
- type: spearman_max
|
724 |
+
value: 0.5749790581441845
|
725 |
+
name: Spearman Max
|
726 |
+
- type: pearson_cosine
|
727 |
+
value: 0.3571900232473057
|
728 |
+
name: Pearson Cosine
|
729 |
+
- type: spearman_cosine
|
730 |
+
value: 0.4335552432730643
|
731 |
+
name: Spearman Cosine
|
732 |
+
- type: pearson_manhattan
|
733 |
+
value: 0.20808854264339055
|
734 |
+
name: Pearson Manhattan
|
735 |
+
- type: spearman_manhattan
|
736 |
+
value: 0.4354537154533896
|
737 |
+
name: Spearman Manhattan
|
738 |
+
- type: pearson_euclidean
|
739 |
+
value: 0.208616390027902
|
740 |
+
name: Pearson Euclidean
|
741 |
+
- type: spearman_euclidean
|
742 |
+
value: 0.440246452767669
|
743 |
+
name: Spearman Euclidean
|
744 |
+
- type: pearson_dot
|
745 |
+
value: 0.22336496195751424
|
746 |
+
name: Pearson Dot
|
747 |
+
- type: spearman_dot
|
748 |
+
value: 0.3706905558756734
|
749 |
+
name: Spearman Dot
|
750 |
+
- type: pearson_max
|
751 |
+
value: 0.3571900232473057
|
752 |
+
name: Pearson Max
|
753 |
+
- type: spearman_max
|
754 |
+
value: 0.440246452767669
|
755 |
+
name: Spearman Max
|
756 |
+
- type: pearson_cosine
|
757 |
+
value: 0.6863427356006826
|
758 |
+
name: Pearson Cosine
|
759 |
+
- type: spearman_cosine
|
760 |
+
value: 0.6620948502618977
|
761 |
+
name: Spearman Cosine
|
762 |
+
- type: pearson_manhattan
|
763 |
+
value: 0.6428578762643233
|
764 |
+
name: Pearson Manhattan
|
765 |
+
- type: spearman_manhattan
|
766 |
+
value: 0.6483663123081533
|
767 |
+
name: Spearman Manhattan
|
768 |
+
- type: pearson_euclidean
|
769 |
+
value: 0.6424050032110411
|
770 |
+
name: Pearson Euclidean
|
771 |
+
- type: spearman_euclidean
|
772 |
+
value: 0.6485902628925195
|
773 |
+
name: Spearman Euclidean
|
774 |
+
- type: pearson_dot
|
775 |
+
value: 0.6352371374824808
|
776 |
+
name: Pearson Dot
|
777 |
+
- type: spearman_dot
|
778 |
+
value: 0.6159110999161411
|
779 |
+
name: Spearman Dot
|
780 |
+
- type: pearson_max
|
781 |
+
value: 0.6863427356006826
|
782 |
+
name: Pearson Max
|
783 |
+
- type: spearman_max
|
784 |
+
value: 0.6620948502618977
|
785 |
+
name: Spearman Max
|
786 |
+
- type: pearson_cosine
|
787 |
+
value: 0.7570295008280781
|
788 |
+
name: Pearson Cosine
|
789 |
+
- type: spearman_cosine
|
790 |
+
value: 0.7510805416538202
|
791 |
+
name: Spearman Cosine
|
792 |
+
- type: pearson_manhattan
|
793 |
+
value: 0.7191097960855934
|
794 |
+
name: Pearson Manhattan
|
795 |
+
- type: spearman_manhattan
|
796 |
+
value: 0.7140422377894933
|
797 |
+
name: Spearman Manhattan
|
798 |
+
- type: pearson_euclidean
|
799 |
+
value: 0.7204228437397647
|
800 |
+
name: Pearson Euclidean
|
801 |
+
- type: spearman_euclidean
|
802 |
+
value: 0.7257632200250398
|
803 |
+
name: Spearman Euclidean
|
804 |
+
- type: pearson_dot
|
805 |
+
value: 0.7144336778935939
|
806 |
+
name: Pearson Dot
|
807 |
+
- type: spearman_dot
|
808 |
+
value: 0.7284199759984302
|
809 |
+
name: Spearman Dot
|
810 |
+
- type: pearson_max
|
811 |
+
value: 0.7570295008280781
|
812 |
+
name: Pearson Max
|
813 |
+
- type: spearman_max
|
814 |
+
value: 0.7510805416538202
|
815 |
+
name: Spearman Max
|
816 |
+
- type: pearson_cosine
|
817 |
+
value: 0.6502825737911098
|
818 |
+
name: Pearson Cosine
|
819 |
+
- type: spearman_cosine
|
820 |
+
value: 0.6624635951676386
|
821 |
+
name: Spearman Cosine
|
822 |
+
- type: pearson_manhattan
|
823 |
+
value: 0.647419285100459
|
824 |
+
name: Pearson Manhattan
|
825 |
+
- type: spearman_manhattan
|
826 |
+
value: 0.6589805549915764
|
827 |
+
name: Spearman Manhattan
|
828 |
+
- type: pearson_euclidean
|
829 |
+
value: 0.6516956762905051
|
830 |
+
name: Pearson Euclidean
|
831 |
+
- type: spearman_euclidean
|
832 |
+
value: 0.6667221229271868
|
833 |
+
name: Spearman Euclidean
|
834 |
+
- type: pearson_dot
|
835 |
+
value: 0.5646710115576599
|
836 |
+
name: Pearson Dot
|
837 |
+
- type: spearman_dot
|
838 |
+
value: 0.570198719868156
|
839 |
+
name: Spearman Dot
|
840 |
+
- type: pearson_max
|
841 |
+
value: 0.6516956762905051
|
842 |
+
name: Pearson Max
|
843 |
+
- type: spearman_max
|
844 |
+
value: 0.6667221229271868
|
845 |
+
name: Spearman Max
|
846 |
+
- type: pearson_cosine
|
847 |
+
value: 0.6774230420538705
|
848 |
+
name: Pearson Cosine
|
849 |
+
- type: spearman_cosine
|
850 |
+
value: 0.6537294853166558
|
851 |
+
name: Spearman Cosine
|
852 |
+
- type: pearson_manhattan
|
853 |
+
value: 0.6824702119604247
|
854 |
+
name: Pearson Manhattan
|
855 |
+
- type: spearman_manhattan
|
856 |
+
value: 0.6324707043840341
|
857 |
+
name: Spearman Manhattan
|
858 |
+
- type: pearson_euclidean
|
859 |
+
value: 0.6905615468119815
|
860 |
+
name: Pearson Euclidean
|
861 |
+
- type: spearman_euclidean
|
862 |
+
value: 0.640725065351179
|
863 |
+
name: Spearman Euclidean
|
864 |
+
- type: pearson_dot
|
865 |
+
value: 0.5834798827905125
|
866 |
+
name: Pearson Dot
|
867 |
+
- type: spearman_dot
|
868 |
+
value: 0.5962447037764929
|
869 |
+
name: Spearman Dot
|
870 |
+
- type: pearson_max
|
871 |
+
value: 0.6905615468119815
|
872 |
+
name: Pearson Max
|
873 |
+
- type: spearman_max
|
874 |
+
value: 0.6537294853166558
|
875 |
+
name: Spearman Max
|
876 |
+
- type: pearson_cosine
|
877 |
+
value: 0.6709478850576526
|
878 |
+
name: Pearson Cosine
|
879 |
+
- type: spearman_cosine
|
880 |
+
value: 0.6847049462613332
|
881 |
+
name: Spearman Cosine
|
882 |
+
- type: pearson_manhattan
|
883 |
+
value: 0.6612883666796053
|
884 |
+
name: Pearson Manhattan
|
885 |
+
- type: spearman_manhattan
|
886 |
+
value: 0.6906896123993531
|
887 |
+
name: Spearman Manhattan
|
888 |
+
- type: pearson_euclidean
|
889 |
+
value: 0.66070522554664
|
890 |
+
name: Pearson Euclidean
|
891 |
+
- type: spearman_euclidean
|
892 |
+
value: 0.6880796473119815
|
893 |
+
name: Spearman Euclidean
|
894 |
+
- type: pearson_dot
|
895 |
+
value: 0.609762034287328
|
896 |
+
name: Pearson Dot
|
897 |
+
- type: spearman_dot
|
898 |
+
value: 0.6194587632000961
|
899 |
+
name: Spearman Dot
|
900 |
+
- type: pearson_max
|
901 |
+
value: 0.6709478850576526
|
902 |
+
name: Pearson Max
|
903 |
+
- type: spearman_max
|
904 |
+
value: 0.6906896123993531
|
905 |
+
name: Spearman Max
|
906 |
+
- type: pearson_cosine
|
907 |
+
value: 0.5977420246846783
|
908 |
+
name: Pearson Cosine
|
909 |
+
- type: spearman_cosine
|
910 |
+
value: 0.5798716781400349
|
911 |
+
name: Spearman Cosine
|
912 |
+
- type: pearson_manhattan
|
913 |
+
value: 0.5974348978243684
|
914 |
+
name: Pearson Manhattan
|
915 |
+
- type: spearman_manhattan
|
916 |
+
value: 0.5952597125560467
|
917 |
+
name: Spearman Manhattan
|
918 |
+
- type: pearson_euclidean
|
919 |
+
value: 0.5949256850264925
|
920 |
+
name: Pearson Euclidean
|
921 |
+
- type: spearman_euclidean
|
922 |
+
value: 0.5935900431326085
|
923 |
+
name: Spearman Euclidean
|
924 |
+
- type: pearson_dot
|
925 |
+
value: 0.5042542872226021
|
926 |
+
name: Pearson Dot
|
927 |
+
- type: spearman_dot
|
928 |
+
value: 0.4968394689744579
|
929 |
+
name: Spearman Dot
|
930 |
+
- type: pearson_max
|
931 |
+
value: 0.5977420246846783
|
932 |
+
name: Pearson Max
|
933 |
+
- type: spearman_max
|
934 |
+
value: 0.5952597125560467
|
935 |
+
name: Spearman Max
|
936 |
+
- type: pearson_cosine
|
937 |
+
value: 0.45623521030042163
|
938 |
+
name: Pearson Cosine
|
939 |
+
- type: spearman_cosine
|
940 |
+
value: 0.44220332625465214
|
941 |
+
name: Spearman Cosine
|
942 |
+
- type: pearson_manhattan
|
943 |
+
value: 0.4154787596532877
|
944 |
+
name: Pearson Manhattan
|
945 |
+
- type: spearman_manhattan
|
946 |
+
value: 0.3836945296053597
|
947 |
+
name: Spearman Manhattan
|
948 |
+
- type: pearson_euclidean
|
949 |
+
value: 0.4111357738180186
|
950 |
+
name: Pearson Euclidean
|
951 |
+
- type: spearman_euclidean
|
952 |
+
value: 0.3821548244303783
|
953 |
+
name: Spearman Euclidean
|
954 |
+
- type: pearson_dot
|
955 |
+
value: 0.48625234725541483
|
956 |
+
name: Pearson Dot
|
957 |
+
- type: spearman_dot
|
958 |
+
value: 0.5302744622635869
|
959 |
+
name: Spearman Dot
|
960 |
+
- type: pearson_max
|
961 |
+
value: 0.48625234725541483
|
962 |
+
name: Pearson Max
|
963 |
+
- type: spearman_max
|
964 |
+
value: 0.5302744622635869
|
965 |
+
name: Spearman Max
|
966 |
+
- type: pearson_cosine
|
967 |
+
value: 0.5929570742517215
|
968 |
+
name: Pearson Cosine
|
969 |
+
- type: spearman_cosine
|
970 |
+
value: 0.6266361518449931
|
971 |
+
name: Spearman Cosine
|
972 |
+
- type: pearson_manhattan
|
973 |
+
value: 0.5608268850302591
|
974 |
+
name: Pearson Manhattan
|
975 |
+
- type: spearman_manhattan
|
976 |
+
value: 0.6228972623939251
|
977 |
+
name: Spearman Manhattan
|
978 |
+
- type: pearson_euclidean
|
979 |
+
value: 0.5579847474929831
|
980 |
+
name: Pearson Euclidean
|
981 |
+
- type: spearman_euclidean
|
982 |
+
value: 0.6202030126844109
|
983 |
+
name: Spearman Euclidean
|
984 |
+
- type: pearson_dot
|
985 |
+
value: 0.4578333834889949
|
986 |
+
name: Pearson Dot
|
987 |
+
- type: spearman_dot
|
988 |
+
value: 0.5628471668594075
|
989 |
+
name: Spearman Dot
|
990 |
+
- type: pearson_max
|
991 |
+
value: 0.5929570742517215
|
992 |
+
name: Pearson Max
|
993 |
+
- type: spearman_max
|
994 |
+
value: 0.6266361518449931
|
995 |
+
name: Spearman Max
|
996 |
+
---
|
997 |
+
|
998 |
+
# SentenceTransformer based on sentence-transformers/paraphrase-multilingual-mpnet-base-v2
|
999 |
+
|
1000 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
1001 |
+
|
1002 |
+
## Model Details
|
1003 |
+
|
1004 |
+
### Model Description
|
1005 |
+
- **Model Type:** Sentence Transformer
|
1006 |
+
- **Base model:** [sentence-transformers/paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2) <!-- at revision 79f2382ceacceacdf38563d7c5d16b9ff8d725d6 -->
|
1007 |
+
- **Maximum Sequence Length:** 128 tokens
|
1008 |
+
- **Output Dimensionality:** 768 tokens
|
1009 |
+
- **Similarity Function:** Cosine Similarity
|
1010 |
+
<!-- - **Training Dataset:** Unknown -->
|
1011 |
+
<!-- - **Language:** Unknown -->
|
1012 |
+
<!-- - **License:** Unknown -->
|
1013 |
+
|
1014 |
+
### Model Sources
|
1015 |
+
|
1016 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
1017 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
1018 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
1019 |
+
|
1020 |
+
### Full Model Architecture
|
1021 |
+
|
1022 |
+
```
|
1023 |
+
SentenceTransformer(
|
1024 |
+
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
|
1025 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
1026 |
+
)
|
1027 |
+
```
|
1028 |
+
|
1029 |
+
## Usage
|
1030 |
+
|
1031 |
+
### Direct Usage (Sentence Transformers)
|
1032 |
+
|
1033 |
+
First install the Sentence Transformers library:
|
1034 |
+
|
1035 |
+
```bash
|
1036 |
+
pip install -U sentence-transformers
|
1037 |
+
```
|
1038 |
+
|
1039 |
+
Then you can load this model and run inference.
|
1040 |
+
```python
|
1041 |
+
from sentence_transformers import SentenceTransformer
|
1042 |
+
|
1043 |
+
# Download from the 🤗 Hub
|
1044 |
+
model = SentenceTransformer("Gameselo/STS-multilingual-mpnet-base-v2")
|
1045 |
+
# Run inference
|
1046 |
+
sentences = [
|
1047 |
+
'一个女人正在洗澡。',
|
1048 |
+
'A woman is taking a bath.',
|
1049 |
+
'En jente børster håret sitt',
|
1050 |
+
]
|
1051 |
+
embeddings = model.encode(sentences)
|
1052 |
+
print(embeddings.shape)
|
1053 |
+
# [3, 768]
|
1054 |
+
|
1055 |
+
# Get the similarity scores for the embeddings
|
1056 |
+
similarities = model.similarity(embeddings, embeddings)
|
1057 |
+
print(similarities.shape)
|
1058 |
+
# [3, 3]
|
1059 |
+
```
|
1060 |
+
|
1061 |
+
<!--
|
1062 |
+
### Direct Usage (Transformers)
|
1063 |
+
|
1064 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
1065 |
+
|
1066 |
+
</details>
|
1067 |
+
-->
|
1068 |
+
|
1069 |
+
<!--
|
1070 |
+
### Downstream Usage (Sentence Transformers)
|
1071 |
+
|
1072 |
+
You can finetune this model on your own dataset.
|
1073 |
+
|
1074 |
+
<details><summary>Click to expand</summary>
|
1075 |
+
|
1076 |
+
</details>
|
1077 |
+
-->
|
1078 |
+
|
1079 |
+
<!--
|
1080 |
+
### Out-of-Scope Use
|
1081 |
+
|
1082 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
1083 |
+
-->
|
1084 |
+
|
1085 |
+
## Evaluation
|
1086 |
+
|
1087 |
+
### Metrics
|
1088 |
+
|
1089 |
+
#### Semantic Similarity
|
1090 |
+
* Dataset: `sts-dev`
|
1091 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
1092 |
+
|
1093 |
+
| Metric | Value |
|
1094 |
+
|:--------------------|:-----------|
|
1095 |
+
| pearson_cosine | 0.9551 |
|
1096 |
+
| **spearman_cosine** | **0.9593** |
|
1097 |
+
| pearson_manhattan | 0.927 |
|
1098 |
+
| spearman_manhattan | 0.9383 |
|
1099 |
+
| pearson_euclidean | 0.9278 |
|
1100 |
+
| spearman_euclidean | 0.9394 |
|
1101 |
+
| pearson_dot | 0.876 |
|
1102 |
+
| spearman_dot | 0.8865 |
|
1103 |
+
| pearson_max | 0.9551 |
|
1104 |
+
| spearman_max | 0.9593 |
|
1105 |
+
|
1106 |
+
#### Semantic Similarity
|
1107 |
+
* Dataset: `sts-test`
|
1108 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
1109 |
+
|
1110 |
+
| Metric | Value |
|
1111 |
+
|:--------------------|:-----------|
|
1112 |
+
| pearson_cosine | 0.948 |
|
1113 |
+
| **spearman_cosine** | **0.9515** |
|
1114 |
+
| pearson_manhattan | 0.9252 |
|
1115 |
+
| spearman_manhattan | 0.9352 |
|
1116 |
+
| pearson_euclidean | 0.9258 |
|
1117 |
+
| spearman_euclidean | 0.9364 |
|
1118 |
+
| pearson_dot | 0.8443 |
|
1119 |
+
| spearman_dot | 0.8435 |
|
1120 |
+
| pearson_max | 0.948 |
|
1121 |
+
| spearman_max | 0.9515 |
|
1122 |
+
|
1123 |
+
#### Semantic Similarity
|
1124 |
+
* Dataset: `sts-test`
|
1125 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
1126 |
+
|
1127 |
+
| Metric | Value |
|
1128 |
+
|:--------------------|:-----------|
|
1129 |
+
| pearson_cosine | 0.9725 |
|
1130 |
+
| **spearman_cosine** | **0.9766** |
|
1131 |
+
| pearson_manhattan | 0.9382 |
|
1132 |
+
| spearman_manhattan | 0.9487 |
|
1133 |
+
| pearson_euclidean | 0.9392 |
|
1134 |
+
| spearman_euclidean | 0.95 |
|
1135 |
+
| pearson_dot | 0.8531 |
|
1136 |
+
| spearman_dot | 0.8611 |
|
1137 |
+
| pearson_max | 0.9725 |
|
1138 |
+
| spearman_max | 0.9766 |
|
1139 |
+
|
1140 |
+
#### Semantic Similarity
|
1141 |
+
* Dataset: `sts-test`
|
1142 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
1143 |
+
|
1144 |
+
| Metric | Value |
|
1145 |
+
|:--------------------|:-----------|
|
1146 |
+
| pearson_cosine | 0.8027 |
|
1147 |
+
| **spearman_cosine** | **0.8124** |
|
1148 |
+
| pearson_manhattan | 0.7839 |
|
1149 |
+
| spearman_manhattan | 0.79 |
|
1150 |
+
| pearson_euclidean | 0.7836 |
|
1151 |
+
| spearman_euclidean | 0.792 |
|
1152 |
+
| pearson_dot | 0.7699 |
|
1153 |
+
| spearman_dot | 0.782 |
|
1154 |
+
| pearson_max | 0.8027 |
|
1155 |
+
| spearman_max | 0.8124 |
|
1156 |
+
|
1157 |
+
#### Semantic Similarity
|
1158 |
+
* Dataset: `sts-test`
|
1159 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
1160 |
+
|
1161 |
+
| Metric | Value |
|
1162 |
+
|:--------------------|:-----------|
|
1163 |
+
| pearson_cosine | 0.7796 |
|
1164 |
+
| **spearman_cosine** | **0.7703** |
|
1165 |
+
| pearson_manhattan | 0.7904 |
|
1166 |
+
| spearman_manhattan | 0.783 |
|
1167 |
+
| pearson_euclidean | 0.7912 |
|
1168 |
+
| spearman_euclidean | 0.7842 |
|
1169 |
+
| pearson_dot | 0.7077 |
|
1170 |
+
| spearman_dot | 0.6914 |
|
1171 |
+
| pearson_max | 0.7912 |
|
1172 |
+
| spearman_max | 0.7842 |
|
1173 |
+
|
1174 |
+
#### Semantic Similarity
|
1175 |
+
* Dataset: `sts-test`
|
1176 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
1177 |
+
|
1178 |
+
| Metric | Value |
|
1179 |
+
|:--------------------|:-----------|
|
1180 |
+
| pearson_cosine | 0.9113 |
|
1181 |
+
| **spearman_cosine** | **0.9109** |
|
1182 |
+
| pearson_manhattan | 0.897 |
|
1183 |
+
| spearman_manhattan | 0.8934 |
|
1184 |
+
| pearson_euclidean | 0.8986 |
|
1185 |
+
| spearman_euclidean | 0.8955 |
|
1186 |
+
| pearson_dot | 0.8844 |
|
1187 |
+
| spearman_dot | 0.8923 |
|
1188 |
+
| pearson_max | 0.9113 |
|
1189 |
+
| spearman_max | 0.9109 |
|
1190 |
+
|
1191 |
+
#### Semantic Similarity
|
1192 |
+
* Dataset: `sts-test`
|
1193 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
1194 |
+
|
1195 |
+
| Metric | Value |
|
1196 |
+
|:--------------------|:-----------|
|
1197 |
+
| pearson_cosine | 0.9362 |
|
1198 |
+
| **spearman_cosine** | **0.9379** |
|
1199 |
+
| pearson_manhattan | 0.923 |
|
1200 |
+
| spearman_manhattan | 0.9245 |
|
1201 |
+
| pearson_euclidean | 0.9231 |
|
1202 |
+
| spearman_euclidean | 0.9251 |
|
1203 |
+
| pearson_dot | 0.907 |
|
1204 |
+
| spearman_dot | 0.9186 |
|
1205 |
+
| pearson_max | 0.9362 |
|
1206 |
+
| spearman_max | 0.9379 |
|
1207 |
+
|
1208 |
+
#### Semantic Similarity
|
1209 |
+
* Dataset: `sts-test`
|
1210 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
1211 |
+
|
1212 |
+
| Metric | Value |
|
1213 |
+
|:--------------------|:-----------|
|
1214 |
+
| pearson_cosine | 0.8049 |
|
1215 |
+
| **spearman_cosine** | **0.7987** |
|
1216 |
+
| pearson_manhattan | 0.8018 |
|
1217 |
+
| spearman_manhattan | 0.7828 |
|
1218 |
+
| pearson_euclidean | 0.8007 |
|
1219 |
+
| spearman_euclidean | 0.7825 |
|
1220 |
+
| pearson_dot | 0.7895 |
|
1221 |
+
| spearman_dot | 0.7819 |
|
1222 |
+
| pearson_max | 0.8049 |
|
1223 |
+
| spearman_max | 0.7987 |
|
1224 |
+
|
1225 |
+
#### Semantic Similarity
|
1226 |
+
* Dataset: `sts-test`
|
1227 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
1228 |
+
|
1229 |
+
| Metric | Value |
|
1230 |
+
|:--------------------|:-----------|
|
1231 |
+
| pearson_cosine | 0.852 |
|
1232 |
+
| **spearman_cosine** | **0.8553** |
|
1233 |
+
| pearson_manhattan | 0.8464 |
|
1234 |
+
| spearman_manhattan | 0.841 |
|
1235 |
+
| pearson_euclidean | 0.8468 |
|
1236 |
+
| spearman_euclidean | 0.8459 |
|
1237 |
+
| pearson_dot | 0.8093 |
|
1238 |
+
| spearman_dot | 0.8154 |
|
1239 |
+
| pearson_max | 0.852 |
|
1240 |
+
| spearman_max | 0.8553 |
|
1241 |
+
|
1242 |
+
#### Semantic Similarity
|
1243 |
+
* Dataset: `sts-test`
|
1244 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
1245 |
+
|
1246 |
+
| Metric | Value |
|
1247 |
+
|:--------------------|:-----------|
|
1248 |
+
| pearson_cosine | 0.8752 |
|
1249 |
+
| **spearman_cosine** | **0.8727** |
|
1250 |
+
| pearson_manhattan | 0.8745 |
|
1251 |
+
| spearman_manhattan | 0.8661 |
|
1252 |
+
| pearson_euclidean | 0.8748 |
|
1253 |
+
| spearman_euclidean | 0.8668 |
|
1254 |
+
| pearson_dot | 0.8603 |
|
1255 |
+
| spearman_dot | 0.852 |
|
1256 |
+
| pearson_max | 0.8752 |
|
1257 |
+
| spearman_max | 0.8727 |
|
1258 |
+
|
1259 |
+
#### Semantic Similarity
|
1260 |
+
* Dataset: `sts-test`
|
1261 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
1262 |
+
|
1263 |
+
| Metric | Value |
|
1264 |
+
|:--------------------|:-----------|
|
1265 |
+
| pearson_cosine | 0.9082 |
|
1266 |
+
| **spearman_cosine** | **0.9068** |
|
1267 |
+
| pearson_manhattan | 0.8908 |
|
1268 |
+
| spearman_manhattan | 0.8852 |
|
1269 |
+
| pearson_euclidean | 0.8908 |
|
1270 |
+
| spearman_euclidean | 0.8851 |
|
1271 |
+
| pearson_dot | 0.8889 |
|
1272 |
+
| spearman_dot | 0.8966 |
|
1273 |
+
| pearson_max | 0.9082 |
|
1274 |
+
| spearman_max | 0.9068 |
|
1275 |
+
|
1276 |
+
#### Semantic Similarity
|
1277 |
+
* Dataset: `sts-test`
|
1278 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
1279 |
+
|
1280 |
+
| Metric | Value |
|
1281 |
+
|:--------------------|:-----------|
|
1282 |
+
| pearson_cosine | 0.925 |
|
1283 |
+
| **spearman_cosine** | **0.9247** |
|
1284 |
+
| pearson_manhattan | 0.9084 |
|
1285 |
+
| spearman_manhattan | 0.9029 |
|
1286 |
+
| pearson_euclidean | 0.9116 |
|
1287 |
+
| spearman_euclidean | 0.9084 |
|
1288 |
+
| pearson_dot | 0.9001 |
|
1289 |
+
| spearman_dot | 0.907 |
|
1290 |
+
| pearson_max | 0.925 |
|
1291 |
+
| spearman_max | 0.9247 |
|
1292 |
+
|
1293 |
+
#### Semantic Similarity
|
1294 |
+
* Dataset: `sts-test`
|
1295 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
1296 |
+
|
1297 |
+
| Metric | Value |
|
1298 |
+
|:--------------------|:-----------|
|
1299 |
+
| pearson_cosine | 0.9133 |
|
1300 |
+
| **spearman_cosine** | **0.9115** |
|
1301 |
+
| pearson_manhattan | 0.8977 |
|
1302 |
+
| spearman_manhattan | 0.8933 |
|
1303 |
+
| pearson_euclidean | 0.8979 |
|
1304 |
+
| spearman_euclidean | 0.8937 |
|
1305 |
+
| pearson_dot | 0.8912 |
|
1306 |
+
| spearman_dot | 0.8988 |
|
1307 |
+
| pearson_max | 0.9133 |
|
1308 |
+
| spearman_max | 0.9115 |
|
1309 |
+
|
1310 |
+
#### Semantic Similarity
|
1311 |
+
* Dataset: `sts-test`
|
1312 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
1313 |
+
|
1314 |
+
| Metric | Value |
|
1315 |
+
|:--------------------|:-----------|
|
1316 |
+
| pearson_cosine | 0.8985 |
|
1317 |
+
| **spearman_cosine** | **0.8452** |
|
1318 |
+
| pearson_manhattan | 0.8715 |
|
1319 |
+
| spearman_manhattan | 0.8452 |
|
1320 |
+
| pearson_euclidean | 0.8809 |
|
1321 |
+
| spearman_euclidean | 0.8452 |
|
1322 |
+
| pearson_dot | 0.8538 |
|
1323 |
+
| spearman_dot | 0.8452 |
|
1324 |
+
| pearson_max | 0.8985 |
|
1325 |
+
| spearman_max | 0.8452 |
|
1326 |
+
|
1327 |
+
#### Semantic Similarity
|
1328 |
+
* Dataset: `sts-test`
|
1329 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
1330 |
+
|
1331 |
+
| Metric | Value |
|
1332 |
+
|:--------------------|:-----------|
|
1333 |
+
| pearson_cosine | 0.6495 |
|
1334 |
+
| **spearman_cosine** | **0.6385** |
|
1335 |
+
| pearson_manhattan | 0.6429 |
|
1336 |
+
| spearman_manhattan | 0.6474 |
|
1337 |
+
| pearson_euclidean | 0.6443 |
|
1338 |
+
| spearman_euclidean | 0.6445 |
|
1339 |
+
| pearson_dot | 0.6128 |
|
1340 |
+
| spearman_dot | 0.6108 |
|
1341 |
+
| pearson_max | 0.6495 |
|
1342 |
+
| spearman_max | 0.6474 |
|
1343 |
+
|
1344 |
+
#### Semantic Similarity
|
1345 |
+
* Dataset: `sts-test`
|
1346 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
1347 |
+
|
1348 |
+
| Metric | Value |
|
1349 |
+
|:--------------------|:-----------|
|
1350 |
+
| pearson_cosine | 0.7441 |
|
1351 |
+
| **spearman_cosine** | **0.7518** |
|
1352 |
+
| pearson_manhattan | 0.7339 |
|
1353 |
+
| spearman_manhattan | 0.7367 |
|
1354 |
+
| pearson_euclidean | 0.7337 |
|
1355 |
+
| spearman_euclidean | 0.7342 |
|
1356 |
+
| pearson_dot | 0.6886 |
|
1357 |
+
| spearman_dot | 0.6986 |
|
1358 |
+
| pearson_max | 0.7441 |
|
1359 |
+
| spearman_max | 0.7518 |
|
1360 |
+
|
1361 |
+
#### Semantic Similarity
|
1362 |
+
* Dataset: `sts-test`
|
1363 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
1364 |
+
|
1365 |
+
| Metric | Value |
|
1366 |
+
|:--------------------|:-----------|
|
1367 |
+
| pearson_cosine | 0.6279 |
|
1368 |
+
| **spearman_cosine** | **0.6319** |
|
1369 |
+
| pearson_manhattan | 0.5435 |
|
1370 |
+
| spearman_manhattan | 0.6002 |
|
1371 |
+
| pearson_euclidean | 0.54 |
|
1372 |
+
| spearman_euclidean | 0.5955 |
|
1373 |
+
| pearson_dot | 0.5658 |
|
1374 |
+
| spearman_dot | 0.6069 |
|
1375 |
+
| pearson_max | 0.6279 |
|
1376 |
+
| spearman_max | 0.6319 |
|
1377 |
+
|
1378 |
+
#### Semantic Similarity
|
1379 |
+
* Dataset: `sts-test`
|
1380 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
1381 |
+
|
1382 |
+
| Metric | Value |
|
1383 |
+
|:--------------------|:-----------|
|
1384 |
+
| pearson_cosine | 0.7779 |
|
1385 |
+
| **spearman_cosine** | **0.7876** |
|
1386 |
+
| pearson_manhattan | 0.7426 |
|
1387 |
+
| spearman_manhattan | 0.7789 |
|
1388 |
+
| pearson_euclidean | 0.7437 |
|
1389 |
+
| spearman_euclidean | 0.7806 |
|
1390 |
+
| pearson_dot | 0.7214 |
|
1391 |
+
| spearman_dot | 0.7489 |
|
1392 |
+
| pearson_max | 0.7779 |
|
1393 |
+
| spearman_max | 0.7876 |
|
1394 |
+
|
1395 |
+
#### Semantic Similarity
|
1396 |
+
* Dataset: `sts-test`
|
1397 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
1398 |
+
|
1399 |
+
| Metric | Value |
|
1400 |
+
|:--------------------|:-----------|
|
1401 |
+
| pearson_cosine | 0.5268 |
|
1402 |
+
| **spearman_cosine** | **0.5774** |
|
1403 |
+
| pearson_manhattan | 0.4171 |
|
1404 |
+
| spearman_manhattan | 0.56 |
|
1405 |
+
| pearson_euclidean | 0.4219 |
|
1406 |
+
| spearman_euclidean | 0.5665 |
|
1407 |
+
| pearson_dot | 0.4981 |
|
1408 |
+
| spearman_dot | 0.5367 |
|
1409 |
+
| pearson_max | 0.5268 |
|
1410 |
+
| spearman_max | 0.5774 |
|
1411 |
+
|
1412 |
+
#### Semantic Similarity
|
1413 |
+
* Dataset: `sts-test`
|
1414 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
1415 |
+
|
1416 |
+
| Metric | Value |
|
1417 |
+
|:--------------------|:-----------|
|
1418 |
+
| pearson_cosine | 0.6306 |
|
1419 |
+
| **spearman_cosine** | **0.6384** |
|
1420 |
+
| pearson_manhattan | 0.6034 |
|
1421 |
+
| spearman_manhattan | 0.6168 |
|
1422 |
+
| pearson_euclidean | 0.6081 |
|
1423 |
+
| spearman_euclidean | 0.622 |
|
1424 |
+
| pearson_dot | 0.5767 |
|
1425 |
+
| spearman_dot | 0.5831 |
|
1426 |
+
| pearson_max | 0.6306 |
|
1427 |
+
| spearman_max | 0.6384 |
|
1428 |
+
|
1429 |
+
#### Semantic Similarity
|
1430 |
+
* Dataset: `sts-test`
|
1431 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
1432 |
+
|
1433 |
+
| Metric | Value |
|
1434 |
+
|:--------------------|:-----------|
|
1435 |
+
| pearson_cosine | 0.5568 |
|
1436 |
+
| **spearman_cosine** | **0.5867** |
|
1437 |
+
| pearson_manhattan | 0.4924 |
|
1438 |
+
| spearman_manhattan | 0.5738 |
|
1439 |
+
| pearson_euclidean | 0.4906 |
|
1440 |
+
| spearman_euclidean | 0.5762 |
|
1441 |
+
| pearson_dot | 0.4307 |
|
1442 |
+
| spearman_dot | 0.5471 |
|
1443 |
+
| pearson_max | 0.5568 |
|
1444 |
+
| spearman_max | 0.5867 |
|
1445 |
+
|
1446 |
+
#### Semantic Similarity
|
1447 |
+
* Dataset: `sts-test`
|
1448 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
1449 |
+
|
1450 |
+
| Metric | Value |
|
1451 |
+
|:--------------------|:----------|
|
1452 |
+
| pearson_cosine | 0.5776 |
|
1453 |
+
| **spearman_cosine** | **0.575** |
|
1454 |
+
| pearson_manhattan | 0.5718 |
|
1455 |
+
| spearman_manhattan | 0.5501 |
|
1456 |
+
| pearson_euclidean | 0.5695 |
|
1457 |
+
| spearman_euclidean | 0.5532 |
|
1458 |
+
| pearson_dot | 0.5315 |
|
1459 |
+
| spearman_dot | 0.5191 |
|
1460 |
+
| pearson_max | 0.5776 |
|
1461 |
+
| spearman_max | 0.575 |
|
1462 |
+
|
1463 |
+
#### Semantic Similarity
|
1464 |
+
* Dataset: `sts-test`
|
1465 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
1466 |
+
|
1467 |
+
| Metric | Value |
|
1468 |
+
|:--------------------|:-----------|
|
1469 |
+
| pearson_cosine | 0.3572 |
|
1470 |
+
| **spearman_cosine** | **0.4336** |
|
1471 |
+
| pearson_manhattan | 0.2081 |
|
1472 |
+
| spearman_manhattan | 0.4355 |
|
1473 |
+
| pearson_euclidean | 0.2086 |
|
1474 |
+
| spearman_euclidean | 0.4402 |
|
1475 |
+
| pearson_dot | 0.2234 |
|
1476 |
+
| spearman_dot | 0.3707 |
|
1477 |
+
| pearson_max | 0.3572 |
|
1478 |
+
| spearman_max | 0.4402 |
|
1479 |
+
|
1480 |
+
#### Semantic Similarity
|
1481 |
+
* Dataset: `sts-test`
|
1482 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
1483 |
+
|
1484 |
+
| Metric | Value |
|
1485 |
+
|:--------------------|:-----------|
|
1486 |
+
| pearson_cosine | 0.6863 |
|
1487 |
+
| **spearman_cosine** | **0.6621** |
|
1488 |
+
| pearson_manhattan | 0.6429 |
|
1489 |
+
| spearman_manhattan | 0.6484 |
|
1490 |
+
| pearson_euclidean | 0.6424 |
|
1491 |
+
| spearman_euclidean | 0.6486 |
|
1492 |
+
| pearson_dot | 0.6352 |
|
1493 |
+
| spearman_dot | 0.6159 |
|
1494 |
+
| pearson_max | 0.6863 |
|
1495 |
+
| spearman_max | 0.6621 |
|
1496 |
+
|
1497 |
+
#### Semantic Similarity
|
1498 |
+
* Dataset: `sts-test`
|
1499 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
1500 |
+
|
1501 |
+
| Metric | Value |
|
1502 |
+
|:--------------------|:-----------|
|
1503 |
+
| pearson_cosine | 0.757 |
|
1504 |
+
| **spearman_cosine** | **0.7511** |
|
1505 |
+
| pearson_manhattan | 0.7191 |
|
1506 |
+
| spearman_manhattan | 0.714 |
|
1507 |
+
| pearson_euclidean | 0.7204 |
|
1508 |
+
| spearman_euclidean | 0.7258 |
|
1509 |
+
| pearson_dot | 0.7144 |
|
1510 |
+
| spearman_dot | 0.7284 |
|
1511 |
+
| pearson_max | 0.757 |
|
1512 |
+
| spearman_max | 0.7511 |
|
1513 |
+
|
1514 |
+
#### Semantic Similarity
|
1515 |
+
* Dataset: `sts-test`
|
1516 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
1517 |
+
|
1518 |
+
| Metric | Value |
|
1519 |
+
|:--------------------|:-----------|
|
1520 |
+
| pearson_cosine | 0.6503 |
|
1521 |
+
| **spearman_cosine** | **0.6625** |
|
1522 |
+
| pearson_manhattan | 0.6474 |
|
1523 |
+
| spearman_manhattan | 0.659 |
|
1524 |
+
| pearson_euclidean | 0.6517 |
|
1525 |
+
| spearman_euclidean | 0.6667 |
|
1526 |
+
| pearson_dot | 0.5647 |
|
1527 |
+
| spearman_dot | 0.5702 |
|
1528 |
+
| pearson_max | 0.6517 |
|
1529 |
+
| spearman_max | 0.6667 |
|
1530 |
+
|
1531 |
+
#### Semantic Similarity
|
1532 |
+
* Dataset: `sts-test`
|
1533 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
1534 |
+
|
1535 |
+
| Metric | Value |
|
1536 |
+
|:--------------------|:-----------|
|
1537 |
+
| pearson_cosine | 0.6774 |
|
1538 |
+
| **spearman_cosine** | **0.6537** |
|
1539 |
+
| pearson_manhattan | 0.6825 |
|
1540 |
+
| spearman_manhattan | 0.6325 |
|
1541 |
+
| pearson_euclidean | 0.6906 |
|
1542 |
+
| spearman_euclidean | 0.6407 |
|
1543 |
+
| pearson_dot | 0.5835 |
|
1544 |
+
| spearman_dot | 0.5962 |
|
1545 |
+
| pearson_max | 0.6906 |
|
1546 |
+
| spearman_max | 0.6537 |
|
1547 |
+
|
1548 |
+
#### Semantic Similarity
|
1549 |
+
* Dataset: `sts-test`
|
1550 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
1551 |
+
|
1552 |
+
| Metric | Value |
|
1553 |
+
|:--------------------|:-----------|
|
1554 |
+
| pearson_cosine | 0.6709 |
|
1555 |
+
| **spearman_cosine** | **0.6847** |
|
1556 |
+
| pearson_manhattan | 0.6613 |
|
1557 |
+
| spearman_manhattan | 0.6907 |
|
1558 |
+
| pearson_euclidean | 0.6607 |
|
1559 |
+
| spearman_euclidean | 0.6881 |
|
1560 |
+
| pearson_dot | 0.6098 |
|
1561 |
+
| spearman_dot | 0.6195 |
|
1562 |
+
| pearson_max | 0.6709 |
|
1563 |
+
| spearman_max | 0.6907 |
|
1564 |
+
|
1565 |
+
#### Semantic Similarity
|
1566 |
+
* Dataset: `sts-test`
|
1567 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
1568 |
+
|
1569 |
+
| Metric | Value |
|
1570 |
+
|:--------------------|:-----------|
|
1571 |
+
| pearson_cosine | 0.5977 |
|
1572 |
+
| **spearman_cosine** | **0.5799** |
|
1573 |
+
| pearson_manhattan | 0.5974 |
|
1574 |
+
| spearman_manhattan | 0.5953 |
|
1575 |
+
| pearson_euclidean | 0.5949 |
|
1576 |
+
| spearman_euclidean | 0.5936 |
|
1577 |
+
| pearson_dot | 0.5043 |
|
1578 |
+
| spearman_dot | 0.4968 |
|
1579 |
+
| pearson_max | 0.5977 |
|
1580 |
+
| spearman_max | 0.5953 |
|
1581 |
+
|
1582 |
+
#### Semantic Similarity
|
1583 |
+
* Dataset: `sts-test`
|
1584 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
1585 |
+
|
1586 |
+
| Metric | Value |
|
1587 |
+
|:--------------------|:-----------|
|
1588 |
+
| pearson_cosine | 0.4562 |
|
1589 |
+
| **spearman_cosine** | **0.4422** |
|
1590 |
+
| pearson_manhattan | 0.4155 |
|
1591 |
+
| spearman_manhattan | 0.3837 |
|
1592 |
+
| pearson_euclidean | 0.4111 |
|
1593 |
+
| spearman_euclidean | 0.3822 |
|
1594 |
+
| pearson_dot | 0.4863 |
|
1595 |
+
| spearman_dot | 0.5303 |
|
1596 |
+
| pearson_max | 0.4863 |
|
1597 |
+
| spearman_max | 0.5303 |
|
1598 |
+
|
1599 |
+
#### Semantic Similarity
|
1600 |
+
* Dataset: `sts-test`
|
1601 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
1602 |
+
|
1603 |
+
| Metric | Value |
|
1604 |
+
|:--------------------|:-----------|
|
1605 |
+
| pearson_cosine | 0.593 |
|
1606 |
+
| **spearman_cosine** | **0.6266** |
|
1607 |
+
| pearson_manhattan | 0.5608 |
|
1608 |
+
| spearman_manhattan | 0.6229 |
|
1609 |
+
| pearson_euclidean | 0.558 |
|
1610 |
+
| spearman_euclidean | 0.6202 |
|
1611 |
+
| pearson_dot | 0.4578 |
|
1612 |
+
| spearman_dot | 0.5628 |
|
1613 |
+
| pearson_max | 0.593 |
|
1614 |
+
| spearman_max | 0.6266 |
|
1615 |
+
|
1616 |
+
<!--
|
1617 |
+
## Bias, Risks and Limitations
|
1618 |
+
|
1619 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
1620 |
+
-->
|
1621 |
+
|
1622 |
+
<!--
|
1623 |
+
### Recommendations
|
1624 |
+
|
1625 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
1626 |
+
-->
|
1627 |
+
|
1628 |
+
## Training Details
|
1629 |
+
|
1630 |
+
### Training Dataset
|
1631 |
+
|
1632 |
+
#### Unnamed Dataset
|
1633 |
+
|
1634 |
+
|
1635 |
+
* Size: 226,547 training samples
|
1636 |
+
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
|
1637 |
+
* Approximate statistics based on the first 1000 samples:
|
1638 |
+
| | sentence_0 | sentence_1 | label |
|
1639 |
+
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------|
|
1640 |
+
| type | string | string | float |
|
1641 |
+
| details | <ul><li>min: 3 tokens</li><li>mean: 20.05 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 19.94 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 1.92</li><li>max: 398.6</li></ul> |
|
1642 |
+
* Samples:
|
1643 |
+
| sentence_0 | sentence_1 | label |
|
1644 |
+
|:-------------------------------------------------------------------|:----------------------------------------------------------------|:---------------------------------|
|
1645 |
+
| <code>Bir kadın makineye dikiş dikiyor.</code> | <code>Bir kadın biraz et ekiyor.</code> | <code>0.12</code> |
|
1646 |
+
| <code>Snowden 'gegeven vluchtelingendocument door Ecuador'.</code> | <code>Snowden staat op het punt om uit Moskou te vliegen</code> | <code>0.24000000953674316</code> |
|
1647 |
+
| <code>Czarny pies idzie mostem przez wodę</code> | <code>Czarny pies nie idzie mostem przez wodę</code> | <code>0.74000000954</code> |
|
1648 |
+
* Loss: [<code>AnglELoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#angleloss) with these parameters:
|
1649 |
+
```json
|
1650 |
+
{
|
1651 |
+
"scale": 20.0,
|
1652 |
+
"similarity_fct": "pairwise_angle_sim"
|
1653 |
+
}
|
1654 |
+
```
|
1655 |
+
|
1656 |
+
### Training Hyperparameters
|
1657 |
+
#### Non-Default Hyperparameters
|
1658 |
+
|
1659 |
+
- `per_device_train_batch_size`: 256
|
1660 |
+
- `per_device_eval_batch_size`: 256
|
1661 |
+
- `num_train_epochs`: 10
|
1662 |
+
- `multi_dataset_batch_sampler`: round_robin
|
1663 |
+
|
1664 |
+
#### All Hyperparameters
|
1665 |
+
<details><summary>Click to expand</summary>
|
1666 |
+
|
1667 |
+
- `overwrite_output_dir`: False
|
1668 |
+
- `do_predict`: False
|
1669 |
+
- `prediction_loss_only`: True
|
1670 |
+
- `per_device_train_batch_size`: 256
|
1671 |
+
- `per_device_eval_batch_size`: 256
|
1672 |
+
- `per_gpu_train_batch_size`: None
|
1673 |
+
- `per_gpu_eval_batch_size`: None
|
1674 |
+
- `gradient_accumulation_steps`: 1
|
1675 |
+
- `eval_accumulation_steps`: None
|
1676 |
+
- `learning_rate`: 5e-05
|
1677 |
+
- `weight_decay`: 0.0
|
1678 |
+
- `adam_beta1`: 0.9
|
1679 |
+
- `adam_beta2`: 0.999
|
1680 |
+
- `adam_epsilon`: 1e-08
|
1681 |
+
- `max_grad_norm`: 1
|
1682 |
+
- `num_train_epochs`: 10
|
1683 |
+
- `max_steps`: -1
|
1684 |
+
- `lr_scheduler_type`: linear
|
1685 |
+
- `lr_scheduler_kwargs`: {}
|
1686 |
+
- `warmup_ratio`: 0.0
|
1687 |
+
- `warmup_steps`: 0
|
1688 |
+
- `log_level`: passive
|
1689 |
+
- `log_level_replica`: warning
|
1690 |
+
- `log_on_each_node`: True
|
1691 |
+
- `logging_nan_inf_filter`: True
|
1692 |
+
- `save_safetensors`: True
|
1693 |
+
- `save_on_each_node`: False
|
1694 |
+
- `save_only_model`: False
|
1695 |
+
- `no_cuda`: False
|
1696 |
+
- `use_cpu`: False
|
1697 |
+
- `use_mps_device`: False
|
1698 |
+
- `seed`: 42
|
1699 |
+
- `data_seed`: None
|
1700 |
+
- `jit_mode_eval`: False
|
1701 |
+
- `use_ipex`: False
|
1702 |
+
- `bf16`: False
|
1703 |
+
- `fp16`: False
|
1704 |
+
- `fp16_opt_level`: O1
|
1705 |
+
- `half_precision_backend`: auto
|
1706 |
+
- `bf16_full_eval`: False
|
1707 |
+
- `fp16_full_eval`: False
|
1708 |
+
- `tf32`: None
|
1709 |
+
- `local_rank`: 0
|
1710 |
+
- `ddp_backend`: None
|
1711 |
+
- `tpu_num_cores`: None
|
1712 |
+
- `tpu_metrics_debug`: False
|
1713 |
+
- `debug`: []
|
1714 |
+
- `dataloader_drop_last`: False
|
1715 |
+
- `dataloader_num_workers`: 0
|
1716 |
+
- `dataloader_prefetch_factor`: None
|
1717 |
+
- `past_index`: -1
|
1718 |
+
- `disable_tqdm`: False
|
1719 |
+
- `remove_unused_columns`: True
|
1720 |
+
- `label_names`: None
|
1721 |
+
- `load_best_model_at_end`: False
|
1722 |
+
- `ignore_data_skip`: False
|
1723 |
+
- `fsdp`: []
|
1724 |
+
- `fsdp_min_num_params`: 0
|
1725 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
1726 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
1727 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'gradient_accumulation_kwargs': None}
|
1728 |
+
- `deepspeed`: None
|
1729 |
+
- `label_smoothing_factor`: 0.0
|
1730 |
+
- `optim`: adamw_torch
|
1731 |
+
- `optim_args`: None
|
1732 |
+
- `adafactor`: False
|
1733 |
+
- `group_by_length`: False
|
1734 |
+
- `length_column_name`: length
|
1735 |
+
- `ddp_find_unused_parameters`: None
|
1736 |
+
- `ddp_bucket_cap_mb`: None
|
1737 |
+
- `ddp_broadcast_buffers`: False
|
1738 |
+
- `dataloader_pin_memory`: True
|
1739 |
+
- `dataloader_persistent_workers`: False
|
1740 |
+
- `skip_memory_metrics`: True
|
1741 |
+
- `use_legacy_prediction_loop`: False
|
1742 |
+
- `push_to_hub`: False
|
1743 |
+
- `resume_from_checkpoint`: None
|
1744 |
+
- `hub_model_id`: None
|
1745 |
+
- `hub_strategy`: every_save
|
1746 |
+
- `hub_private_repo`: False
|
1747 |
+
- `hub_always_push`: False
|
1748 |
+
- `gradient_checkpointing`: False
|
1749 |
+
- `gradient_checkpointing_kwargs`: None
|
1750 |
+
- `include_inputs_for_metrics`: False
|
1751 |
+
- `eval_do_concat_batches`: True
|
1752 |
+
- `fp16_backend`: auto
|
1753 |
+
- `push_to_hub_model_id`: None
|
1754 |
+
- `push_to_hub_organization`: None
|
1755 |
+
- `mp_parameters`:
|
1756 |
+
- `auto_find_batch_size`: False
|
1757 |
+
- `full_determinism`: False
|
1758 |
+
- `torchdynamo`: None
|
1759 |
+
- `ray_scope`: last
|
1760 |
+
- `ddp_timeout`: 1800
|
1761 |
+
- `torch_compile`: False
|
1762 |
+
- `torch_compile_backend`: None
|
1763 |
+
- `torch_compile_mode`: None
|
1764 |
+
- `dispatch_batches`: None
|
1765 |
+
- `split_batches`: None
|
1766 |
+
- `include_tokens_per_second`: False
|
1767 |
+
- `include_num_input_tokens_seen`: False
|
1768 |
+
- `neftune_noise_alpha`: None
|
1769 |
+
- `optim_target_modules`: None
|
1770 |
+
- `batch_sampler`: batch_sampler
|
1771 |
+
- `multi_dataset_batch_sampler`: round_robin
|
1772 |
+
|
1773 |
+
</details>
|
1774 |
+
|
1775 |
+
### Training Logs
|
1776 |
+
| Epoch | Step | Training Loss | sts-dev_spearman_cosine | sts-test_spearman_cosine |
|
1777 |
+
|:------:|:----:|:-------------:|:-----------------------:|:------------------------:|
|
1778 |
+
| 0.5650 | 500 | 10.9426 | - | - |
|
1779 |
+
| 1.0 | 885 | - | 0.9202 | - |
|
1780 |
+
| 1.1299 | 1000 | 9.7184 | - | - |
|
1781 |
+
| 1.6949 | 1500 | 9.5348 | - | - |
|
1782 |
+
| 2.0 | 1770 | - | 0.9400 | - |
|
1783 |
+
| 2.2599 | 2000 | 9.4412 | - | - |
|
1784 |
+
| 2.8249 | 2500 | 9.3097 | - | - |
|
1785 |
+
| 3.0 | 2655 | - | 0.9489 | - |
|
1786 |
+
| 3.3898 | 3000 | 9.2357 | - | - |
|
1787 |
+
| 3.9548 | 3500 | 9.1594 | - | - |
|
1788 |
+
| 4.0 | 3540 | - | 0.9528 | - |
|
1789 |
+
| 4.5198 | 4000 | 9.0963 | - | - |
|
1790 |
+
| 5.0 | 4425 | - | 0.9553 | - |
|
1791 |
+
| 5.0847 | 4500 | 9.0382 | - | - |
|
1792 |
+
| 5.6497 | 5000 | 8.9837 | - | - |
|
1793 |
+
| 6.0 | 5310 | - | 0.9567 | - |
|
1794 |
+
| 6.2147 | 5500 | 8.9403 | - | - |
|
1795 |
+
| 6.7797 | 6000 | 8.8841 | - | - |
|
1796 |
+
| 7.0 | 6195 | - | 0.9581 | - |
|
1797 |
+
| 7.3446 | 6500 | 8.8513 | - | - |
|
1798 |
+
| 7.9096 | 7000 | 8.81 | - | - |
|
1799 |
+
| 8.0 | 7080 | - | 0.9582 | - |
|
1800 |
+
| 8.4746 | 7500 | 8.8069 | - | - |
|
1801 |
+
| 9.0 | 7965 | - | 0.9589 | - |
|
1802 |
+
| 9.0395 | 8000 | 8.7616 | - | - |
|
1803 |
+
| 9.6045 | 8500 | 8.7521 | - | - |
|
1804 |
+
| 10.0 | 8850 | - | 0.9593 | 0.6266 |
|
1805 |
+
|
1806 |
+
|
1807 |
+
### Framework Versions
|
1808 |
+
- Python: 3.9.7
|
1809 |
+
- Sentence Transformers: 3.0.0
|
1810 |
+
- Transformers: 4.40.1
|
1811 |
+
- PyTorch: 2.3.0+cu121
|
1812 |
+
- Accelerate: 0.29.3
|
1813 |
+
- Datasets: 2.19.0
|
1814 |
+
- Tokenizers: 0.19.1
|
1815 |
+
|
1816 |
+
## Citation
|
1817 |
+
|
1818 |
+
### BibTeX
|
1819 |
+
|
1820 |
+
#### Sentence Transformers
|
1821 |
+
```bibtex
|
1822 |
+
@inproceedings{reimers-2019-sentence-bert,
|
1823 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
1824 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
1825 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
1826 |
+
month = "11",
|
1827 |
+
year = "2019",
|
1828 |
+
publisher = "Association for Computational Linguistics",
|
1829 |
+
url = "https://arxiv.org/abs/1908.10084",
|
1830 |
+
}
|
1831 |
+
```
|
1832 |
+
|
1833 |
+
#### AnglELoss
|
1834 |
+
```bibtex
|
1835 |
+
@misc{li2023angleoptimized,
|
1836 |
+
title={AnglE-optimized Text Embeddings},
|
1837 |
+
author={Xianming Li and Jing Li},
|
1838 |
+
year={2023},
|
1839 |
+
eprint={2309.12871},
|
1840 |
+
archivePrefix={arXiv},
|
1841 |
+
primaryClass={cs.CL}
|
1842 |
+
}
|
1843 |
+
```
|
1844 |
+
|
1845 |
+
<!--
|
1846 |
+
## Glossary
|
1847 |
+
|
1848 |
+
*Clearly define terms in order to be accessible across audiences.*
|
1849 |
+
-->
|
1850 |
+
|
1851 |
+
<!--
|
1852 |
+
## Model Card Authors
|
1853 |
+
|
1854 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
1855 |
+
-->
|
1856 |
+
|
1857 |
+
<!--
|
1858 |
+
## Model Card Contact
|
1859 |
+
|
1860 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
1861 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "sentence-transformers/paraphrase-multilingual-mpnet-base-v2",
|
3 |
+
"architectures": [
|
4 |
+
"XLMRobertaModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"gradient_checkpointing": false,
|
11 |
+
"hidden_act": "gelu",
|
12 |
+
"hidden_dropout_prob": 0.1,
|
13 |
+
"hidden_size": 768,
|
14 |
+
"initializer_range": 0.02,
|
15 |
+
"intermediate_size": 3072,
|
16 |
+
"layer_norm_eps": 1e-05,
|
17 |
+
"max_position_embeddings": 514,
|
18 |
+
"model_type": "xlm-roberta",
|
19 |
+
"num_attention_heads": 12,
|
20 |
+
"num_hidden_layers": 12,
|
21 |
+
"output_past": true,
|
22 |
+
"pad_token_id": 1,
|
23 |
+
"position_embedding_type": "absolute",
|
24 |
+
"torch_dtype": "float32",
|
25 |
+
"transformers_version": "4.40.1",
|
26 |
+
"type_vocab_size": 1,
|
27 |
+
"use_cache": true,
|
28 |
+
"vocab_size": 250002
|
29 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "2.0.0",
|
4 |
+
"transformers": "4.7.0",
|
5 |
+
"pytorch": "1.9.0+cu102"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": null
|
10 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:366773467a69089fa27001df7a16ff5a033e9063e78826f03c77cd102fa162ce
|
3 |
+
size 1112197096
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 128,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
sentencepiece.bpe.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
|
3 |
+
size 5069051
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "<s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "</s>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "<mask>",
|
25 |
+
"lstrip": true,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "<pad>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "</s>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "<unk>",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cad551d5600a84242d0973327029452a1e3672ba6313c2a3c3d69c4310e12719
|
3 |
+
size 17082987
|
tokenizer_config.json
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<s>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<pad>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "<unk>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"250001": {
|
36 |
+
"content": "<mask>",
|
37 |
+
"lstrip": true,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"bos_token": "<s>",
|
45 |
+
"clean_up_tokenization_spaces": true,
|
46 |
+
"cls_token": "<s>",
|
47 |
+
"eos_token": "</s>",
|
48 |
+
"mask_token": "<mask>",
|
49 |
+
"max_length": 128,
|
50 |
+
"model_max_length": 128,
|
51 |
+
"pad_to_multiple_of": null,
|
52 |
+
"pad_token": "<pad>",
|
53 |
+
"pad_token_type_id": 0,
|
54 |
+
"padding_side": "right",
|
55 |
+
"sep_token": "</s>",
|
56 |
+
"stride": 0,
|
57 |
+
"tokenizer_class": "XLMRobertaTokenizer",
|
58 |
+
"truncation_side": "right",
|
59 |
+
"truncation_strategy": "longest_first",
|
60 |
+
"unk_token": "<unk>"
|
61 |
+
}
|