File size: 2,120 Bytes
08c0f59 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
---
base_model: google/gemma-2-2b-it
library_name: peft
license: gemma
tags:
- trl
- sft
- generated_from_trainer
model-index:
- name: Gemma-2-2B_task-1_120-samples_config-1_full
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Gemma-2-2B_task-1_120-samples_config-1_full
This model is a fine-tuned version of [google/gemma-2-2b-it](https://huggingface.co/google/gemma-2-2b-it) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.9537
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 8
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.4912 | 1.0 | 11 | 2.4122 |
| 1.8242 | 2.0 | 22 | 1.8003 |
| 1.3712 | 3.0 | 33 | 1.2810 |
| 1.0733 | 4.0 | 44 | 1.1023 |
| 0.9287 | 5.0 | 55 | 1.0314 |
| 0.8686 | 6.0 | 66 | 1.0136 |
| 0.6842 | 7.0 | 77 | 1.0365 |
| 0.5911 | 8.0 | 88 | 1.0808 |
| 0.4827 | 9.0 | 99 | 1.2147 |
| 0.3254 | 10.0 | 110 | 1.4074 |
| 0.2263 | 11.0 | 121 | 1.6078 |
| 0.1939 | 12.0 | 132 | 1.8584 |
| 0.1191 | 13.0 | 143 | 1.9537 |
### Framework versions
- PEFT 0.12.0
- Transformers 4.44.0
- Pytorch 2.1.2+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1 |