File size: 1,736 Bytes
3c6af8a 1bea949 6c21295 c287791 3c6af8a c287791 f8e01ee 3c6af8a c287791 ce25583 c287791 efbe2aa c287791 3c6af8a c287791 3c6af8a c287791 3c6af8a c287791 3c6af8a c287791 3c6af8a c287791 3c6af8a c287791 3c6af8a c287791 3c6af8a c287791 3c6af8a c287791 3c6af8a c287791 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
---
license: mit
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: bart-base-cnn-swe
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bart-base-cnn-swe
This model is a fine-tuned version of [Gabriel/bart-base-cnn-swe](https://huggingface.co/Gabriel/bart-base-cnn-swe) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.0253
- Rouge1: 22.0568
- Rouge2: 10.3302
- Rougel: 18.0648
- Rougelsum: 20.7482
- Gen Len: 19.9996
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| 2.2349 | 1.0 | 17944 | 2.0643 | 21.9564 | 10.2133 | 17.9958 | 20.6502 | 19.9992 |
| 2.0726 | 2.0 | 35888 | 2.0253 | 22.0568 | 10.3302 | 18.0648 | 20.7482 | 19.9996 |
### Framework versions
- Transformers 4.22.0
- Pytorch 1.12.1+cu113
- Datasets 2.4.0
- Tokenizers 0.12.1
|