File size: 8,566 Bytes
8099ce6
317fa93
8099ce6
 
c9ec199
a63e781
8099ce6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f31f178
8099ce6
 
 
 
b3e348a
 
 
394fabc
8099ce6
 
 
be0bee6
b3e348a
 
be0bee6
8099ce6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4c87b1
8099ce6
 
 
a89d5b6
 
8099ce6
 
 
 
 
 
 
 
 
 
 
b4c87b1
8099ce6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
---
base_model: Replete-AI/Replete-LLM-Qwen2-7b
pipeline_tag: text-generation
inference: false
model_creator: Replete-AI
model_name: Replete-LLM-Qwen2-7b
model_type: qwen2
language:
  - en
datasets:
- Replete-AI/Everything_Instruct_8k_context_filtered
library_name: transformers
license: apache-2.0
quantized_by: ThiloteE
tags:
  - text-generation-inference
  - transformers
  - unsloth
  - GGUF
  - GPT4All-community
  - GPT4All
  - conversational
  - coding
  - merge

  

---


> [!NOTE]
> This is a model that is assumed to perform well, but may require more testing and user feedback. Be aware, only models featured within the GUI of GPT4All, are curated and officially supported by Nomic. Use at your own risk.

<!-- ### quantize_version: 3 -->
<!-- ### convert_type: hf -->


# About


- Static quants of https://huggingface.co/Replete-AI/Replete-LLM-Qwen2-7b at commit [e356943](https://huggingface.co/Replete-AI/Replete-LLM-Qwen2-7b/commit/e3569433b23fde853683ad61f342d2c1bd01d60a)
- Quantized by [ThiloteE](https://huggingface.co/ThiloteE) with llama.cpp commit [e09a800](https://github.com/ggerganov/llama.cpp/commit/e09a800f9a9b19c73aa78e03b4c4be8ed988f3e6)


These quants were created with a customized configuration that have been proven to not cause visible end of string (eos) tokens during inference with [GPT4All](https://www.nomic.ai/gpt4all).
The config.json, generation_config.json and  tokenizer_config.json differ from the original configuration as can be found in the original model's repository at the time of creation of these quants.

# Prompt Template (for GPT4All)

Example System Prompt:
```
<|im_start|>system
Below is an instruction that describes a task. Write a response that appropriately completes the request.<|im_end|>
```

Chat Template:
```
<|im_start|>user
%1<|im_end|>
<|im_start|>assistant
%2<|im_end|>
```

# Context Length

`32768`

Use a lower value during inference, if you do not have enough RAM or VRAM.

# Provided Quants


| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/GPT4All-Community/Replete-LLM-Qwen2-7b-GGUF/resolve/main/Replete-LLM-Qwen2-7b-Q4_0.gguf) | Q4_0 | 5.44 | fast, recommended |




# About GGUF

If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/DiscoLM_German_7b_v1-GGUF) for
more details, including on how to concatenate multi-part files.

Here is a handy graph by ikawrakow comparing some quant types (lower is better):

![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9

# Thanks

I thank Mradermacher and TheBloke for Inspiration to this model card and their contributions to open source. Also 3Simplex for lots of help along the way.
Shoutout to the GPT4All and llama.cpp communities :-)


------

<!-- footer end -->
<!-- original-model-card start -->


------
------

# Original Model card:

---
license: apache-2.0
base_model:
- Qwen/Qwen2-7B
datasets:
- Replete-AI/Everything_Instruct_8k_context_filtered
tags:
- unsloth
language:
- en
---

Replete-LLM-Qwen2-7b

![image/png](https://cdn-uploads.huggingface.co/production/uploads/642cc1c253e76b4c2286c58e/q9gC-_O4huL2pK4nY-Y2x.png)

Thank you to TensorDock for sponsoring **Replete-LLM**
you can check out their website for cloud compute rental below. 
- https://tensordock.com
_____________________________________________________________
**Replete-LLM** is **Replete-AI**'s flagship model. We take pride in releasing a fully open-source, low parameter, and competitive AI model that not only surpasses its predecessor **Qwen2-7B-Instruct** in performance, but also competes with (if not surpasses) other flagship models from closed source like **gpt-3.5-turbo**, but also open source models such as **gemma-2-9b-it**
 and **Meta-Llama-3.1-8B-Instruct** in terms of overall performance across all fields and categories. You can find the dataset that this model was trained on linked bellow:

- https://huggingface.co/datasets/Replete-AI/Everything_Instruct_8k_context_filtered

Try bartowski's quantizations:

- https://huggingface.co/bartowski/Replete-LLM-Qwen2-7b-exl2

- https://huggingface.co/bartowski/Replete-LLM-Qwen2-7b-GGUF

Cant run the model locally? Well then use the huggingface space instead:

- https://huggingface.co/spaces/rombodawg/Replete-LLM-Qwen2-7b

Some statistics about the data the model was trained on can be found in the image and details bellow, while a more comprehensive look can be found in the model card for the dataset. (linked above):

![image/png](https://cdn-uploads.huggingface.co/production/uploads/642cc1c253e76b4c2286c58e/75SR21J3-zbTGKYbeoBzX.png)

**Replete-LLM-Qwen2-7b** is a versatile model fine-tuned to excel on any imaginable task. The following types of generations were included in the fine-tuning process:

- **Science**: (General, Physical Reasoning)
- **Social Media**: (Reddit, Twitter)
- **General Knowledge**: (Character-Codex), (Famous Quotes), (Steam Video Games), (How-To? Explanations)
- **Cooking**: (Cooking Preferences, Recipes)
- **Writing**: (Poetry, Essays, General Writing)
- **Medicine**: (General Medical Data)
- **History**: (General Historical Data)
- **Law**: (Legal Q&A)
- **Role-Play**: (Couple-RP, Roleplay Conversations)
- **News**: (News Generation)
- **Coding**: (3 million rows of coding data in over 100 coding languages)
- **Math**: (Math data from TIGER-Lab/MathInstruct)
- **Function Calling**: (Function calling data from "glaiveai/glaive-function-calling-v2")
- **General Instruction**: (All of teknium/OpenHermes-2.5 fully filtered and uncensored)
______________________________________________________________________________________________
## Prompt Template: ChatML
```
<|im_start|>system
{}<|im_end|>
<|im_start|>user
{}<|im_end|>
<|im_start|>assistant
{}
```

## End token (eot_token)
```
<|endoftext|>
```
______________________________________________________________________________________________
Want to know the secret sause of how this model was made? Find the write up bellow

**Continuous Fine-tuning Without Loss Using Lora and Mergekit**

https://docs.google.com/document/d/1OjbjU5AOz4Ftn9xHQrX3oFQGhQ6RDUuXQipnQ9gn6tU/edit?usp=sharing
______________________________________________________________________________________________

The code to finetune this AI model can be found bellow

- https://colab.research.google.com/drive/1vIrqH5uYDQwsJ4-OO3DErvuv4pBgVwk4?usp=sharing

- Note this model in particular was finetuned using an h100 using Tensordock.com using the Pytorch OS. In order to use Unsloth code with TensorDock you need to run the following code (Bellow) to reinstall drivers on TensorDock before unsloth works. After running the code bellow, your Virtual Machine will reset, and you will have to SSH back into it. And then you can run the normal unsloth code in order.

```python
# Check Current Size
!df -h /dev/shm

# Increase Size Temporarily
!sudo mount -o remount,size=16G /dev/shm

# Increase Size Permanently
!echo "tmpfs /dev/shm tmpfs defaults,size=16G 0 0" | sudo tee -a /etc/fstab

# Remount /dev/shm
!sudo mount -o remount /dev/shm


# Verify the Changes
!df -h /dev/shm

!nvcc --version

!export TORCH_DISTRIBUTED_DEBUG=DETAIL
!export NCCL_DEBUG=INFO
!python -c "import torch; print(torch.version.cuda)"
!export PATH=/usr/local/cuda/bin:$PATH
!export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH
!export NCCL_P2P_LEVEL=NVL
!export NCCL_DEBUG=INFO
!export NCCL_DEBUG_SUBSYS=ALL
!export TORCH_DISTRIBUTED_DEBUG=INFO
!export TORCHELASTIC_ERROR_FILE=/PATH/TO/torcherror.log
!sudo apt-get remove --purge -y '^nvidia-.*'
!sudo apt-get remove --purge -y '^cuda-.*'
!sudo apt-get autoremove -y
!sudo apt-get autoclean -y
!sudo apt-get update -y
!sudo apt-get install -y nvidia-driver-535 cuda-12-1
!sudo add-apt-repository ppa:graphics-drivers/ppa -y
!sudo apt-get update -y
!sudo apt-get update -y
!sudo apt-get install -y software-properties-common
!sudo add-apt-repository ppa:graphics-drivers/ppa -y
!sudo apt-get update -y
!latest_driver=$(apt-cache search '^nvidia-driver-[0-9]' | grep -oP 'nvidia-driver-\K[0-9]+' | sort -n | tail -1) && sudo apt-get install -y nvidia-driver-$latest_driver
!sudo reboot
```
_______________________________________________________________________________

## Join the Replete-Ai discord! We are a great and Loving community!

- https://discord.gg/ZZbnsmVnjD
  


<!-- original-model-card end -->
<!-- end -->