File size: 8,566 Bytes
8099ce6 317fa93 8099ce6 c9ec199 a63e781 8099ce6 f31f178 8099ce6 b3e348a 394fabc 8099ce6 be0bee6 b3e348a be0bee6 8099ce6 b4c87b1 8099ce6 a89d5b6 8099ce6 b4c87b1 8099ce6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 |
---
base_model: Replete-AI/Replete-LLM-Qwen2-7b
pipeline_tag: text-generation
inference: false
model_creator: Replete-AI
model_name: Replete-LLM-Qwen2-7b
model_type: qwen2
language:
- en
datasets:
- Replete-AI/Everything_Instruct_8k_context_filtered
library_name: transformers
license: apache-2.0
quantized_by: ThiloteE
tags:
- text-generation-inference
- transformers
- unsloth
- GGUF
- GPT4All-community
- GPT4All
- conversational
- coding
- merge
---
> [!NOTE]
> This is a model that is assumed to perform well, but may require more testing and user feedback. Be aware, only models featured within the GUI of GPT4All, are curated and officially supported by Nomic. Use at your own risk.
<!-- ### quantize_version: 3 -->
<!-- ### convert_type: hf -->
# About
- Static quants of https://huggingface.co/Replete-AI/Replete-LLM-Qwen2-7b at commit [e356943](https://huggingface.co/Replete-AI/Replete-LLM-Qwen2-7b/commit/e3569433b23fde853683ad61f342d2c1bd01d60a)
- Quantized by [ThiloteE](https://huggingface.co/ThiloteE) with llama.cpp commit [e09a800](https://github.com/ggerganov/llama.cpp/commit/e09a800f9a9b19c73aa78e03b4c4be8ed988f3e6)
These quants were created with a customized configuration that have been proven to not cause visible end of string (eos) tokens during inference with [GPT4All](https://www.nomic.ai/gpt4all).
The config.json, generation_config.json and tokenizer_config.json differ from the original configuration as can be found in the original model's repository at the time of creation of these quants.
# Prompt Template (for GPT4All)
Example System Prompt:
```
<|im_start|>system
Below is an instruction that describes a task. Write a response that appropriately completes the request.<|im_end|>
```
Chat Template:
```
<|im_start|>user
%1<|im_end|>
<|im_start|>assistant
%2<|im_end|>
```
# Context Length
`32768`
Use a lower value during inference, if you do not have enough RAM or VRAM.
# Provided Quants
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/GPT4All-Community/Replete-LLM-Qwen2-7b-GGUF/resolve/main/Replete-LLM-Qwen2-7b-Q4_0.gguf) | Q4_0 | 5.44 | fast, recommended |
# About GGUF
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/DiscoLM_German_7b_v1-GGUF) for
more details, including on how to concatenate multi-part files.
Here is a handy graph by ikawrakow comparing some quant types (lower is better):
![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)
And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
# Thanks
I thank Mradermacher and TheBloke for Inspiration to this model card and their contributions to open source. Also 3Simplex for lots of help along the way.
Shoutout to the GPT4All and llama.cpp communities :-)
------
<!-- footer end -->
<!-- original-model-card start -->
------
------
# Original Model card:
---
license: apache-2.0
base_model:
- Qwen/Qwen2-7B
datasets:
- Replete-AI/Everything_Instruct_8k_context_filtered
tags:
- unsloth
language:
- en
---
Replete-LLM-Qwen2-7b
![image/png](https://cdn-uploads.huggingface.co/production/uploads/642cc1c253e76b4c2286c58e/q9gC-_O4huL2pK4nY-Y2x.png)
Thank you to TensorDock for sponsoring **Replete-LLM**
you can check out their website for cloud compute rental below.
- https://tensordock.com
_____________________________________________________________
**Replete-LLM** is **Replete-AI**'s flagship model. We take pride in releasing a fully open-source, low parameter, and competitive AI model that not only surpasses its predecessor **Qwen2-7B-Instruct** in performance, but also competes with (if not surpasses) other flagship models from closed source like **gpt-3.5-turbo**, but also open source models such as **gemma-2-9b-it**
and **Meta-Llama-3.1-8B-Instruct** in terms of overall performance across all fields and categories. You can find the dataset that this model was trained on linked bellow:
- https://huggingface.co/datasets/Replete-AI/Everything_Instruct_8k_context_filtered
Try bartowski's quantizations:
- https://huggingface.co/bartowski/Replete-LLM-Qwen2-7b-exl2
- https://huggingface.co/bartowski/Replete-LLM-Qwen2-7b-GGUF
Cant run the model locally? Well then use the huggingface space instead:
- https://huggingface.co/spaces/rombodawg/Replete-LLM-Qwen2-7b
Some statistics about the data the model was trained on can be found in the image and details bellow, while a more comprehensive look can be found in the model card for the dataset. (linked above):
![image/png](https://cdn-uploads.huggingface.co/production/uploads/642cc1c253e76b4c2286c58e/75SR21J3-zbTGKYbeoBzX.png)
**Replete-LLM-Qwen2-7b** is a versatile model fine-tuned to excel on any imaginable task. The following types of generations were included in the fine-tuning process:
- **Science**: (General, Physical Reasoning)
- **Social Media**: (Reddit, Twitter)
- **General Knowledge**: (Character-Codex), (Famous Quotes), (Steam Video Games), (How-To? Explanations)
- **Cooking**: (Cooking Preferences, Recipes)
- **Writing**: (Poetry, Essays, General Writing)
- **Medicine**: (General Medical Data)
- **History**: (General Historical Data)
- **Law**: (Legal Q&A)
- **Role-Play**: (Couple-RP, Roleplay Conversations)
- **News**: (News Generation)
- **Coding**: (3 million rows of coding data in over 100 coding languages)
- **Math**: (Math data from TIGER-Lab/MathInstruct)
- **Function Calling**: (Function calling data from "glaiveai/glaive-function-calling-v2")
- **General Instruction**: (All of teknium/OpenHermes-2.5 fully filtered and uncensored)
______________________________________________________________________________________________
## Prompt Template: ChatML
```
<|im_start|>system
{}<|im_end|>
<|im_start|>user
{}<|im_end|>
<|im_start|>assistant
{}
```
## End token (eot_token)
```
<|endoftext|>
```
______________________________________________________________________________________________
Want to know the secret sause of how this model was made? Find the write up bellow
**Continuous Fine-tuning Without Loss Using Lora and Mergekit**
https://docs.google.com/document/d/1OjbjU5AOz4Ftn9xHQrX3oFQGhQ6RDUuXQipnQ9gn6tU/edit?usp=sharing
______________________________________________________________________________________________
The code to finetune this AI model can be found bellow
- https://colab.research.google.com/drive/1vIrqH5uYDQwsJ4-OO3DErvuv4pBgVwk4?usp=sharing
- Note this model in particular was finetuned using an h100 using Tensordock.com using the Pytorch OS. In order to use Unsloth code with TensorDock you need to run the following code (Bellow) to reinstall drivers on TensorDock before unsloth works. After running the code bellow, your Virtual Machine will reset, and you will have to SSH back into it. And then you can run the normal unsloth code in order.
```python
# Check Current Size
!df -h /dev/shm
# Increase Size Temporarily
!sudo mount -o remount,size=16G /dev/shm
# Increase Size Permanently
!echo "tmpfs /dev/shm tmpfs defaults,size=16G 0 0" | sudo tee -a /etc/fstab
# Remount /dev/shm
!sudo mount -o remount /dev/shm
# Verify the Changes
!df -h /dev/shm
!nvcc --version
!export TORCH_DISTRIBUTED_DEBUG=DETAIL
!export NCCL_DEBUG=INFO
!python -c "import torch; print(torch.version.cuda)"
!export PATH=/usr/local/cuda/bin:$PATH
!export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH
!export NCCL_P2P_LEVEL=NVL
!export NCCL_DEBUG=INFO
!export NCCL_DEBUG_SUBSYS=ALL
!export TORCH_DISTRIBUTED_DEBUG=INFO
!export TORCHELASTIC_ERROR_FILE=/PATH/TO/torcherror.log
!sudo apt-get remove --purge -y '^nvidia-.*'
!sudo apt-get remove --purge -y '^cuda-.*'
!sudo apt-get autoremove -y
!sudo apt-get autoclean -y
!sudo apt-get update -y
!sudo apt-get install -y nvidia-driver-535 cuda-12-1
!sudo add-apt-repository ppa:graphics-drivers/ppa -y
!sudo apt-get update -y
!sudo apt-get update -y
!sudo apt-get install -y software-properties-common
!sudo add-apt-repository ppa:graphics-drivers/ppa -y
!sudo apt-get update -y
!latest_driver=$(apt-cache search '^nvidia-driver-[0-9]' | grep -oP 'nvidia-driver-\K[0-9]+' | sort -n | tail -1) && sudo apt-get install -y nvidia-driver-$latest_driver
!sudo reboot
```
_______________________________________________________________________________
## Join the Replete-Ai discord! We are a great and Loving community!
- https://discord.gg/ZZbnsmVnjD
<!-- original-model-card end -->
<!-- end -->
|