File size: 9,543 Bytes
91d33e5
 
b73777f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91d33e5
 
b73777f
 
b8ea4b8
665c4e8
b8ea4b8
 
91d33e5
 
 
cac17c1
91d33e5
b73777f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
---
license: apache-2.0
base_model: Qwen/Qwen2-7B-Instruct
pipeline_tag: text-generation
inference: false
model_creator: Qwen
model_name: Qwen2-7B-Instruct
model_type: qwen2
language:
  - en
  - zh
library_name: transformers
quantized_by: ThiloteE
tags:
  - text-generation-inference
  - transformers
  - GGUF
  - GPT4All-community
  - GPT4All
  - chat
  - aligned
  - instruct


---



> [!NOTE]
> This is a model that is assumed to perform well, but may require more testing and user feedback. Be aware, only models featured within the GUI of GPT4All, are curated and officially supported by Nomic. Use at your own risk.

# About


- Static quants of https://huggingface.co/Qwen/Qwen2-7B-Instruct at commit [41c66b0](https://huggingface.co/Qwen/Qwen2-7B-Instruct/commit/41c66b0be1c3081f13defc6bdf946c2ef240d6a6)
- Quantized by [ThiloteE](https://huggingface.co/ThiloteE) with llama.cpp commit [84eb2f4](https://github.com/ggerganov/llama.cpp/commit/84eb2f4fad28ceadd415a4e775320c983f4d9a7d)

These quants were created with a customized configuration that have been proven to be compatible with [GPT4All](https://www.nomic.ai/gpt4all) and that fixes issues with bos and eos after [feedback](https://huggingface.co/Qwen/Qwen2-7B-Instruct/discussions/15) by Qwen developers.



# Prompt Template (for GPT4All)

Example System Prompt:
```
<|im_start|>system
You are a helpful assistant.<|im_end|>
```

Chat Template:
```
<|im_start|>User
%1<|im_end|>
<|im_start|>assistant
%2<|im_end|>
```


# Context Length

`32768`

Use a lower value during inference, if you do not have enough RAM or VRAM.

# Provided Quants


| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/GPT4All-Community/Qwen2-7B-Instruct-GGUF/resolve/main/Qwen2-7B-Instruct-Q4_0.gguf?download=true) | Q4_0 | 4.43 | fast, recommended |




# About GGUF

If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/DiscoLM_German_7b_v1-GGUF) for
more details, including on how to concatenate multi-part files.

Here is a handy graph by ikawrakow comparing some quant types (lower is better):

![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9

# Thanks

I thank Mradermacher and TheBloke for Inspiration to this model card and their contributions to open source. Also 3Simplex for lots of help along the way.
Shoutout to the GPT4All and llama.cpp communities :-)




<br>
<br>
<br>
<br>

------

<!-- footer end -->
<!-- original-model-card start -->

# Original Model card:










 > 
 > ---
 > license: apache-2.0
 > language:
 > - en
 > pipeline_tag: text-generation
 > tags:
 > - chat
 > ---
 > 
 > # Qwen2-7B-Instruct
 > 
 > ## Introduction
 > 
 > Qwen2 is the new series of Qwen large language models. For Qwen2, we release a number of base language models and instruction-tuned language models ranging from 0.5 to 72 billion parameters, including a Mixture-of-Experts model. This repo contains the instruction-tuned 7B Qwen2 model.
 > 
 > Compared with the state-of-the-art opensource language models, including the previous released Qwen1.5, Qwen2 has generally surpassed most opensource models and demonstrated competitiveness against proprietary models across a series of benchmarks targeting for language understanding, language generation, multilingual capability, coding, mathematics, reasoning, etc.
 > 
 > Qwen2-7B-Instruct supports a context length of up to 131,072 tokens, enabling the processing of extensive inputs. Please refer to [this section](#processing-long-texts) for detailed instructions on how to deploy Qwen2 for handling long texts.
 > 
 > For more details, please refer to our [blog](https://qwenlm.github.io/blog/qwen2/), [GitHub](https://github.com/QwenLM/Qwen2), and [Documentation](https://qwen.readthedocs.io/en/latest/).
 > <br>
 > 
 > ## Model Details
 > Qwen2 is a language model series including decoder language models of different model sizes. For each size, we release the base language model and the aligned chat model. It is based on the Transformer architecture with SwiGLU activation, attention QKV bias, group query attention, etc. Additionally, we have an improved tokenizer adaptive to multiple natural languages and codes.
 > 
 > ## Training details
 > We pretrained the models with a large amount of data, and we post-trained the models with both supervised finetuning and direct preference optimization.
 > 
 > 
 > ## Requirements
 > The code of Qwen2 has been in the latest Hugging face transformers and we advise you to install `transformers>=4.37.0`, or you might encounter the following error:
 > ```
 > KeyError: 'qwen2'
 > ```
 > 
 > ## Quickstart
 > 
 > Here provides a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and how to generate contents.
 > 
 > ```python
 > from transformers import AutoModelForCausalLM, AutoTokenizer
 > device = "cuda" # the device to load the model onto
 > 
 > model = AutoModelForCausalLM.from_pretrained(
 > 	"Qwen/Qwen2-7B-Instruct",
 > 	torch_dtype="auto",
 > 	device_map="auto"
 > )
 > tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-7B-Instruct")
 > 
 > prompt = "Give me a short introduction to large language model."
 > messages = [
 > 	{"role": "system", "content": "You are a helpful assistant."},
 > 	{"role": "user", "content": prompt}
 > ]
 > text = tokenizer.apply_chat_template(
 > 	messages,
 > 	tokenize=False,
 > 	add_generation_prompt=True
 > )
 > model_inputs = tokenizer([text], return_tensors="pt").to(device)
 > 
 > generated_ids = model.generate(
 > 	model_inputs.input_ids,
 > 	max_new_tokens=512
 > )
 > generated_ids = [
 > 	output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
 > ]
 > 
 > response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
 > ```
 > 
 > ### Processing Long Texts
 > 
 > To handle extensive inputs exceeding 32,768 tokens, we utilize [YARN](https://arxiv.org/abs/2309.00071), a technique for enhancing model length extrapolation, ensuring optimal performance on lengthy texts.
 > 
 > For deployment, we recommend using vLLM. You can enable the long-context capabilities by following these steps:
 > 
 > 1. **Install vLLM**: You can install vLLM by running the following command.
 > 
 > ```bash
 > pip install "vllm>=0.4.3"
 > ```
 > 
 > Or you can install vLLM from [source](https://github.com/vllm-project/vllm/).
 > 
 > 2. **Configure Model Settings**: After downloading the model weights, modify the `config.json` file by including the below snippet:
 > 	```json
 > 		{
 > 			"architectures": [
 > 				"Qwen2ForCausalLM"
 > 			],
 > 			// ...
 > 			"vocab_size": 152064,
 > 
 > 			// adding the following snippets
 > 			"rope_scaling": {
 > 				"factor": 4.0,
 > 				"original_max_position_embeddings": 32768,
 > 				"type": "yarn"
 > 			}
 > 		}
 > 	```
 > 	This snippet enable YARN to support longer contexts.
 > 
 > 3. **Model Deployment**: Utilize vLLM to deploy your model. For instance, you can set up an openAI-like server using the command:
 > 
 > 	```bash
 > 	python -m vllm.entrypoints.openai.api_server --served-model-name Qwen2-7B-Instruct --model path/to/weights
 > 	```
 > 
 > 	Then you can access the Chat API by:
 > 
 > 	```bash
 > 	curl http://localhost:8000/v1/chat/completions \
 > 		-H "Content-Type: application/json" \
 > 		-d '{
 > 		"model": "Qwen2-7B-Instruct",
 > 		"messages": [
 > 			{"role": "system", "content": "You are a helpful assistant."},
 > 			{"role": "user", "content": "Your Long Input Here."}
 > 		]
 > 		}'
 > 	```
 > 
 > 	For further usage instructions of vLLM, please refer to our [Github](https://github.com/QwenLM/Qwen2).
 > 
 > **Note**: Presently, vLLM only supports static YARN, which means the scaling factor remains constant regardless of input length, **potentially impacting performance on shorter texts**. We advise adding the `rope_scaling` configuration only when processing long contexts is required.
 > 
 > ## Evaluation
 > 
 > We briefly compare Qwen2-7B-Instruct with similar-sized instruction-tuned LLMs, including Qwen1.5-7B-Chat. The results are shown below:
 > 
 > | Datasets | Llama-3-8B-Instruct | Yi-1.5-9B-Chat | GLM-4-9B-Chat | Qwen1.5-7B-Chat | Qwen2-7B-Instruct |
 > | :--- | :---: | :---: | :---: | :---: | :---: |
 > | _**English**_ |  |  |  |  |  |
 > | MMLU | 68.4 | 69.5 | **72.4** | 59.5 | 70.5 |
 > | MMLU-Pro | 41.0 | - | - | 29.1 | **44.1** |
 > | GPQA | **34.2** | - | **-** | 27.8 | 25.3 |
 > | TheroemQA | 23.0 | - | - | 14.1 | **25.3** |
 > | MT-Bench | 8.05 | 8.20 | 8.35 | 7.60 | **8.41** |
 > | _**Coding**_ |  |  |  |  |  |
 > | Humaneval | 62.2 | 66.5 | 71.8 | 46.3 | **79.9** |
 > | MBPP | **67.9** | - | - | 48.9 | 67.2 |
 > | MultiPL-E | 48.5 | - | - | 27.2 | **59.1** |
 > | Evalplus | 60.9 | - | - | 44.8 | **70.3** |
 > | LiveCodeBench | 17.3 | - | - | 6.0 | **26.6** |
 > | _**Mathematics**_ |  |  |  |  |  |
 > | GSM8K | 79.6 | **84.8** | 79.6 | 60.3 | 82.3 |
 > | MATH | 30.0 | 47.7 | **50.6** | 23.2 | 49.6 |
 > | _**Chinese**_ |  |  |  |  |  |
 > | C-Eval | 45.9 | - | 75.6 | 67.3 | **77.2** |
 > | AlignBench | 6.20 | 6.90 | 7.01 | 6.20 | **7.21** |
 > 
 > ## Citation
 > 
 > If you find our work helpful, feel free to give us a cite.
 > 
 > ```
 > @article{qwen2,
 >   title={Qwen2 Technical Report},
 >   year={2024}
 > }
 > ```
 > 

<!-- original-model-card end -->
<!-- end -->