File size: 6,211 Bytes
b1c6cc2 6880d91 b1c6cc2 0f700a8 f856d73 7e293be b1c6cc2 0f700a8 2554031 b1c6cc2 d1128de 77f3785 d1128de b1c6cc2 5c3c179 0e480a7 923d96c 7e293be b1c6cc2 0f700a8 b1c6cc2 f8886c5 b1c6cc2 0f700a8 b1c6cc2 337fe3d c423023 337fe3d b1c6cc2 f8886c5 337fe3d f8886c5 337fe3d b1c6cc2 7e293be b1c6cc2 0f700a8 b1c6cc2 c6ca8d2 7e293be b1c6cc2 6880d91 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
---
license: llama2
tags:
- facebook
- meta
- pytorch
- llama
- llama-2
- Storywriter
model_type: llama
model-index:
- name: GOAT-70B-Storytelling
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 68.77
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=GOAT-AI/GOAT-70B-Storytelling
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 87.74
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=GOAT-AI/GOAT-70B-Storytelling
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 69.92
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=GOAT-AI/GOAT-70B-Storytelling
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 53.53
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=GOAT-AI/GOAT-70B-Storytelling
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 83.5
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=GOAT-AI/GOAT-70B-Storytelling
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 40.79
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=GOAT-AI/GOAT-70B-Storytelling
name: Open LLM Leaderboard
---
![GOAT-70B-Storytelling](https://assets.adapt.ws/files/20231117_ehznrqludevtapck.png)
# GOAT-70B-Storytelling model
GOAT-70B-Storytelling model trained by GOAT.AI lab as a core model for an autonomous story-writing agent.
# GOAT-Storytelling-Agent
This agent facilitates the generation of high-quality, cohesive, and captivating narratives, including stories and books. It achieves this by utilizing inputs such as plot outlines, character profiles, their interrelationships, and other relevant details. Examples are provided below.
# Model description
- **Base Architecture:** LLaMA 2 70B
- **License:** llama2
- **Context window length:** 4096 tokens
### Training details
Training was performed on a GPU cluster of 64xH100s. FSDP ZeRO-3 sharding is employed for efficient training. We instruction finetune on a dataset of 18K examples for one epoch with batch size of 336, AdamW optimizer with learning rate 1e-5.
### Learn more
- **Blogpost:** [GOAT-Storytelling: Arbitrarily Long Story Writing Agent](https://www.blog.goat.ai/goat-st/)
- **GitHub:** [here](https://github.com/GOAT-AI-lab/GOAT-Storytelling-Agent)
- **Generated examples:** [here](https://huggingface.co/datasets/GOAT-AI/generated-novels/tree/main/generated-books)
## Uses
The main purpose of GOAT-70B-Storytelling is to generate books, novels, movie scripts and etc. as an agent in coping with our GOAT-Storytelling-Agent. It is specifically designed for storywriters.
## Usage
Usage can be either self-hosted via `transformers` or used with Spaces
```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
model_name = "GOAT-AI/GOAT-70B-Storytelling"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.bfloat16
)
```
Currently, we support LLM endpoint generation, where you need to send a post request to the generation endpoint (we recommend using Text Generation Inference by HuggingFace).
Here is how you can utilize the model via GOAT-Storytelling-Agent:
```python
from goat_storytelling_agent.storytelling_agent import StoryAgent
backend_uri = # Text generation endpoint
writer = StoryAgent(backend_uri, form='novel')
novel_scenes = writer.generate_story('treasure hunt in a jungle')
```
## License
GOAT-70B-Storytelling model is based on [Meta's LLaMA-2-70b-hf](https://huggingface.co/meta-llama/Llama-2-70b-hf), and using own datasets.
GOAT-70B-Storytelling model weights are available under LLAMA-2 license.
### Risks and Biases
GOAT-70B-Storytelling model can produce factually incorrect output and should not be relied on to deliver factually accurate information. Therefore, the GOAT-70B-Storytelling model could possibly generate wrong, biased, or otherwise offensive outputs.
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_GOAT-AI__GOAT-70B-Storytelling)
| Metric |Value|
|---------------------------------|----:|
|Avg. |67.38|
|AI2 Reasoning Challenge (25-Shot)|68.77|
|HellaSwag (10-Shot) |87.74|
|MMLU (5-Shot) |69.92|
|TruthfulQA (0-shot) |53.53|
|Winogrande (5-shot) |83.50|
|GSM8k (5-shot) |40.79|
|