|
from torch.nn.parallel import DistributedDataParallel as DDP |
|
import importlib |
|
import argparse |
|
import gc |
|
import math |
|
import os |
|
import random |
|
import time |
|
import json |
|
|
|
from tqdm import tqdm |
|
import torch |
|
from accelerate.utils import set_seed |
|
from diffusers import DDPMScheduler |
|
|
|
import library.train_util as train_util |
|
from library.train_util import ( |
|
DreamBoothDataset, |
|
) |
|
import library.config_util as config_util |
|
from library.config_util import ( |
|
ConfigSanitizer, |
|
BlueprintGenerator, |
|
) |
|
|
|
|
|
def collate_fn(examples): |
|
return examples[0] |
|
|
|
|
|
|
|
def generate_step_logs(args: argparse.Namespace, current_loss, avr_loss, lr_scheduler): |
|
logs = {"loss/current": current_loss, "loss/average": avr_loss} |
|
|
|
if args.network_train_unet_only: |
|
logs["lr/unet"] = float(lr_scheduler.get_last_lr()[0]) |
|
elif args.network_train_text_encoder_only: |
|
logs["lr/textencoder"] = float(lr_scheduler.get_last_lr()[0]) |
|
else: |
|
logs["lr/textencoder"] = float(lr_scheduler.get_last_lr()[0]) |
|
logs["lr/unet"] = float(lr_scheduler.get_last_lr()[-1]) |
|
|
|
if args.optimizer_type.lower() == "DAdaptation".lower(): |
|
logs["lr/d*lr"] = lr_scheduler.optimizers[-1].param_groups[0]['d']*lr_scheduler.optimizers[-1].param_groups[0]['lr'] |
|
|
|
return logs |
|
|
|
|
|
def train(args): |
|
session_id = random.randint(0, 2**32) |
|
training_started_at = time.time() |
|
train_util.verify_training_args(args) |
|
train_util.prepare_dataset_args(args, True) |
|
|
|
cache_latents = args.cache_latents |
|
use_dreambooth_method = args.in_json is None |
|
use_user_config = args.dataset_config is not None |
|
|
|
if args.seed is not None: |
|
set_seed(args.seed) |
|
|
|
tokenizer = train_util.load_tokenizer(args) |
|
|
|
|
|
blueprint_generator = BlueprintGenerator(ConfigSanitizer(True, True, True)) |
|
if use_user_config: |
|
print(f"Load dataset config from {args.dataset_config}") |
|
user_config = config_util.load_user_config(args.dataset_config) |
|
ignored = ["train_data_dir", "reg_data_dir", "in_json"] |
|
if any(getattr(args, attr) is not None for attr in ignored): |
|
print( |
|
"ignore following options because config file is found: {0} / 設定ファイルが利用されるため以下のオプションは無視されます: {0}".format(', '.join(ignored))) |
|
else: |
|
if use_dreambooth_method: |
|
print("Use DreamBooth method.") |
|
user_config = { |
|
"datasets": [{ |
|
"subsets": config_util.generate_dreambooth_subsets_config_by_subdirs(args.train_data_dir, args.reg_data_dir) |
|
}] |
|
} |
|
else: |
|
print("Train with captions.") |
|
user_config = { |
|
"datasets": [{ |
|
"subsets": [{ |
|
"image_dir": args.train_data_dir, |
|
"metadata_file": args.in_json, |
|
}] |
|
}] |
|
} |
|
|
|
blueprint = blueprint_generator.generate(user_config, args, tokenizer=tokenizer) |
|
train_dataset_group = config_util.generate_dataset_group_by_blueprint(blueprint.dataset_group) |
|
|
|
if args.debug_dataset: |
|
train_util.debug_dataset(train_dataset_group) |
|
return |
|
if len(train_dataset_group) == 0: |
|
print("No data found. Please verify arguments (train_data_dir must be the parent of folders with images) / 画像がありません。引数指定を確認してください(train_data_dirには画像があるフォルダではなく、画像があるフォルダの親フォルダを指定する必要があります)") |
|
return |
|
|
|
if cache_latents: |
|
assert train_dataset_group.is_latent_cacheable( |
|
), "when caching latents, either color_aug or random_crop cannot be used / latentをキャッシュするときはcolor_augとrandom_cropは使えません" |
|
|
|
|
|
print("prepare accelerator") |
|
accelerator, unwrap_model = train_util.prepare_accelerator(args) |
|
is_main_process = accelerator.is_main_process |
|
|
|
|
|
weight_dtype, save_dtype = train_util.prepare_dtype(args) |
|
|
|
|
|
text_encoder, vae, unet, _ = train_util.load_target_model(args, weight_dtype) |
|
|
|
|
|
if args.lowram: |
|
text_encoder.to("cuda") |
|
unet.to("cuda") |
|
|
|
|
|
train_util.replace_unet_modules(unet, args.mem_eff_attn, args.xformers) |
|
|
|
|
|
if cache_latents: |
|
vae.to(accelerator.device, dtype=weight_dtype) |
|
vae.requires_grad_(False) |
|
vae.eval() |
|
with torch.no_grad(): |
|
train_dataset_group.cache_latents(vae) |
|
vae.to("cpu") |
|
if torch.cuda.is_available(): |
|
torch.cuda.empty_cache() |
|
gc.collect() |
|
|
|
|
|
import sys |
|
sys.path.append(os.path.dirname(__file__)) |
|
print("import network module:", args.network_module) |
|
network_module = importlib.import_module(args.network_module) |
|
|
|
net_kwargs = {} |
|
if args.network_args is not None: |
|
for net_arg in args.network_args: |
|
key, value = net_arg.split('=') |
|
net_kwargs[key] = value |
|
|
|
|
|
network = network_module.create_network(1.0, args.network_dim, args.network_alpha, vae, text_encoder, unet, **net_kwargs) |
|
if network is None: |
|
return |
|
|
|
if args.network_weights is not None: |
|
print("load network weights from:", args.network_weights) |
|
network.load_weights(args.network_weights) |
|
|
|
train_unet = not args.network_train_text_encoder_only |
|
train_text_encoder = not args.network_train_unet_only |
|
network.apply_to(text_encoder, unet, train_text_encoder, train_unet) |
|
|
|
if args.gradient_checkpointing: |
|
unet.enable_gradient_checkpointing() |
|
text_encoder.gradient_checkpointing_enable() |
|
network.enable_gradient_checkpointing() |
|
|
|
|
|
print("prepare optimizer, data loader etc.") |
|
|
|
trainable_params = network.prepare_optimizer_params(args.text_encoder_lr, args.unet_lr) |
|
optimizer_name, optimizer_args, optimizer = train_util.get_optimizer(args, trainable_params) |
|
|
|
|
|
|
|
n_workers = min(args.max_data_loader_n_workers, os.cpu_count() - 1) |
|
train_dataloader = torch.utils.data.DataLoader( |
|
train_dataset_group, batch_size=1, shuffle=True, collate_fn=collate_fn, num_workers=n_workers, persistent_workers=args.persistent_data_loader_workers) |
|
|
|
|
|
if args.max_train_epochs is not None: |
|
args.max_train_steps = args.max_train_epochs * math.ceil(len(train_dataloader) / accelerator.num_processes) |
|
if is_main_process: |
|
print(f"override steps. steps for {args.max_train_epochs} epochs is / 指定エポックまでのステップ数: {args.max_train_steps}") |
|
|
|
|
|
lr_scheduler = train_util.get_scheduler_fix(args.lr_scheduler, optimizer, num_warmup_steps=args.lr_warmup_steps, |
|
num_training_steps=args.max_train_steps * accelerator.num_processes * args.gradient_accumulation_steps, |
|
num_cycles=args.lr_scheduler_num_cycles, power=args.lr_scheduler_power) |
|
|
|
|
|
if args.full_fp16: |
|
assert args.mixed_precision == "fp16", "full_fp16 requires mixed precision='fp16' / full_fp16を使う場合はmixed_precision='fp16'を指定してください。" |
|
print("enable full fp16 training.") |
|
network.to(weight_dtype) |
|
|
|
|
|
if train_unet and train_text_encoder: |
|
unet, text_encoder, network, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( |
|
unet, text_encoder, network, optimizer, train_dataloader, lr_scheduler) |
|
elif train_unet: |
|
unet, network, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( |
|
unet, network, optimizer, train_dataloader, lr_scheduler) |
|
elif train_text_encoder: |
|
text_encoder, network, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( |
|
text_encoder, network, optimizer, train_dataloader, lr_scheduler) |
|
else: |
|
network, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( |
|
network, optimizer, train_dataloader, lr_scheduler) |
|
|
|
unet.requires_grad_(False) |
|
unet.to(accelerator.device, dtype=weight_dtype) |
|
text_encoder.requires_grad_(False) |
|
text_encoder.to(accelerator.device) |
|
if args.gradient_checkpointing: |
|
unet.train() |
|
text_encoder.train() |
|
|
|
|
|
if type(text_encoder) == DDP: |
|
text_encoder.module.text_model.embeddings.requires_grad_(True) |
|
else: |
|
text_encoder.text_model.embeddings.requires_grad_(True) |
|
else: |
|
unet.eval() |
|
text_encoder.eval() |
|
|
|
|
|
if type(text_encoder) == DDP: |
|
text_encoder = text_encoder.module |
|
unet = unet.module |
|
network = network.module |
|
|
|
network.prepare_grad_etc(text_encoder, unet) |
|
|
|
if not cache_latents: |
|
vae.requires_grad_(False) |
|
vae.eval() |
|
vae.to(accelerator.device, dtype=weight_dtype) |
|
|
|
|
|
if args.full_fp16: |
|
train_util.patch_accelerator_for_fp16_training(accelerator) |
|
|
|
|
|
if args.resume is not None: |
|
print(f"resume training from state: {args.resume}") |
|
accelerator.load_state(args.resume) |
|
|
|
|
|
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) |
|
num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) |
|
if (args.save_n_epoch_ratio is not None) and (args.save_n_epoch_ratio > 0): |
|
args.save_every_n_epochs = math.floor(num_train_epochs / args.save_n_epoch_ratio) or 1 |
|
|
|
|
|
|
|
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps |
|
|
|
if is_main_process: |
|
print("running training / 学習開始") |
|
print(f" num train images * repeats / 学習画像の数×繰り返し回数: {train_dataset_group.num_train_images}") |
|
print(f" num reg images / 正則化画像の数: {train_dataset_group.num_reg_images}") |
|
print(f" num batches per epoch / 1epochのバッチ数: {len(train_dataloader)}") |
|
print(f" num epochs / epoch数: {num_train_epochs}") |
|
print(f" batch size per device / バッチサイズ: {', '.join([str(d.batch_size) for d in train_dataset_group.datasets])}") |
|
|
|
print(f" gradient accumulation steps / 勾配を合計するステップ数 = {args.gradient_accumulation_steps}") |
|
print(f" total optimization steps / 学習ステップ数: {args.max_train_steps}") |
|
|
|
|
|
metadata = { |
|
"ss_session_id": session_id, |
|
"ss_training_started_at": training_started_at, |
|
"ss_output_name": args.output_name, |
|
"ss_learning_rate": args.learning_rate, |
|
"ss_text_encoder_lr": args.text_encoder_lr, |
|
"ss_unet_lr": args.unet_lr, |
|
"ss_num_train_images": train_dataset_group.num_train_images, |
|
"ss_num_reg_images": train_dataset_group.num_reg_images, |
|
"ss_num_batches_per_epoch": len(train_dataloader), |
|
"ss_num_epochs": num_train_epochs, |
|
"ss_gradient_checkpointing": args.gradient_checkpointing, |
|
"ss_gradient_accumulation_steps": args.gradient_accumulation_steps, |
|
"ss_max_train_steps": args.max_train_steps, |
|
"ss_lr_warmup_steps": args.lr_warmup_steps, |
|
"ss_lr_scheduler": args.lr_scheduler, |
|
"ss_network_module": args.network_module, |
|
"ss_network_dim": args.network_dim, |
|
"ss_network_alpha": args.network_alpha, |
|
"ss_mixed_precision": args.mixed_precision, |
|
"ss_full_fp16": bool(args.full_fp16), |
|
"ss_v2": bool(args.v2), |
|
"ss_clip_skip": args.clip_skip, |
|
"ss_max_token_length": args.max_token_length, |
|
"ss_cache_latents": bool(args.cache_latents), |
|
"ss_seed": args.seed, |
|
"ss_lowram": args.lowram, |
|
"ss_noise_offset": args.noise_offset, |
|
"ss_training_comment": args.training_comment, |
|
"ss_sd_scripts_commit_hash": train_util.get_git_revision_hash(), |
|
"ss_optimizer": optimizer_name + (f"({optimizer_args})" if len(optimizer_args) > 0 else ""), |
|
"ss_max_grad_norm": args.max_grad_norm, |
|
"ss_caption_dropout_rate": args.caption_dropout_rate, |
|
"ss_caption_dropout_every_n_epochs": args.caption_dropout_every_n_epochs, |
|
"ss_caption_tag_dropout_rate": args.caption_tag_dropout_rate, |
|
"ss_face_crop_aug_range": args.face_crop_aug_range, |
|
"ss_prior_loss_weight": args.prior_loss_weight, |
|
} |
|
|
|
if use_user_config: |
|
|
|
|
|
|
|
datasets_metadata = [] |
|
tag_frequency = {} |
|
dataset_dirs_info = {} |
|
|
|
for dataset in train_dataset_group.datasets: |
|
is_dreambooth_dataset = isinstance(dataset, DreamBoothDataset) |
|
dataset_metadata = { |
|
"is_dreambooth": is_dreambooth_dataset, |
|
"batch_size_per_device": dataset.batch_size, |
|
"num_train_images": dataset.num_train_images, |
|
"num_reg_images": dataset.num_reg_images, |
|
"resolution": (dataset.width, dataset.height), |
|
"enable_bucket": bool(dataset.enable_bucket), |
|
"min_bucket_reso": dataset.min_bucket_reso, |
|
"max_bucket_reso": dataset.max_bucket_reso, |
|
"tag_frequency": dataset.tag_frequency, |
|
"bucket_info": dataset.bucket_info, |
|
} |
|
|
|
subsets_metadata = [] |
|
for subset in dataset.subsets: |
|
subset_metadata = { |
|
"img_count": subset.img_count, |
|
"num_repeats": subset.num_repeats, |
|
"color_aug": bool(subset.color_aug), |
|
"flip_aug": bool(subset.flip_aug), |
|
"random_crop": bool(subset.random_crop), |
|
"shuffle_caption": bool(subset.shuffle_caption), |
|
"keep_tokens": subset.keep_tokens, |
|
} |
|
|
|
image_dir_or_metadata_file = None |
|
if subset.image_dir: |
|
image_dir = os.path.basename(subset.image_dir) |
|
subset_metadata["image_dir"] = image_dir |
|
image_dir_or_metadata_file = image_dir |
|
|
|
if is_dreambooth_dataset: |
|
subset_metadata["class_tokens"] = subset.class_tokens |
|
subset_metadata["is_reg"] = subset.is_reg |
|
if subset.is_reg: |
|
image_dir_or_metadata_file = None |
|
else: |
|
metadata_file = os.path.basename(subset.metadata_file) |
|
subset_metadata["metadata_file"] = metadata_file |
|
image_dir_or_metadata_file = metadata_file |
|
|
|
subsets_metadata.append(subset_metadata) |
|
|
|
|
|
|
|
if image_dir_or_metadata_file is not None: |
|
|
|
v = image_dir_or_metadata_file |
|
i = 2 |
|
while v in dataset_dirs_info: |
|
v = image_dir_or_metadata_file + f" ({i})" |
|
i += 1 |
|
image_dir_or_metadata_file = v |
|
|
|
dataset_dirs_info[image_dir_or_metadata_file] = { |
|
"n_repeats": subset.num_repeats, |
|
"img_count": subset.img_count |
|
} |
|
|
|
dataset_metadata["subsets"] = subsets_metadata |
|
datasets_metadata.append(dataset_metadata) |
|
|
|
|
|
for ds_dir_name, ds_freq_for_dir in dataset.tag_frequency.items(): |
|
|
|
|
|
|
|
if ds_dir_name in tag_frequency: |
|
continue |
|
tag_frequency[ds_dir_name] = ds_freq_for_dir |
|
|
|
metadata["ss_datasets"] = json.dumps(datasets_metadata) |
|
metadata["ss_tag_frequency"] = json.dumps(tag_frequency) |
|
metadata["ss_dataset_dirs"] = json.dumps(dataset_dirs_info) |
|
else: |
|
|
|
assert len( |
|
train_dataset_group.datasets) == 1, f"There should be a single dataset but {len(train_dataset_group.datasets)} found. This seems to be a bug. / データセットは1個だけ存在するはずですが、実際には{len(train_dataset_group.datasets)}個でした。プログラムのバグかもしれません。" |
|
|
|
dataset = train_dataset_group.datasets[0] |
|
|
|
dataset_dirs_info = {} |
|
reg_dataset_dirs_info = {} |
|
if use_dreambooth_method: |
|
for subset in dataset.subsets: |
|
info = reg_dataset_dirs_info if subset.is_reg else dataset_dirs_info |
|
info[os.path.basename(subset.image_dir)] = { |
|
"n_repeats": subset.num_repeats, |
|
"img_count": subset.img_count |
|
} |
|
else: |
|
for subset in dataset.subsets: |
|
dataset_dirs_info[os.path.basename(subset.metadata_file)] = { |
|
"n_repeats": subset.num_repeats, |
|
"img_count": subset.img_count |
|
} |
|
|
|
metadata.update({ |
|
"ss_batch_size_per_device": args.train_batch_size, |
|
"ss_total_batch_size": total_batch_size, |
|
"ss_resolution": args.resolution, |
|
"ss_color_aug": bool(args.color_aug), |
|
"ss_flip_aug": bool(args.flip_aug), |
|
"ss_random_crop": bool(args.random_crop), |
|
"ss_shuffle_caption": bool(args.shuffle_caption), |
|
"ss_enable_bucket": bool(dataset.enable_bucket), |
|
"ss_bucket_no_upscale": bool(dataset.bucket_no_upscale), |
|
"ss_min_bucket_reso": dataset.min_bucket_reso, |
|
"ss_max_bucket_reso": dataset.max_bucket_reso, |
|
"ss_keep_tokens": args.keep_tokens, |
|
"ss_dataset_dirs": json.dumps(dataset_dirs_info), |
|
"ss_reg_dataset_dirs": json.dumps(reg_dataset_dirs_info), |
|
"ss_tag_frequency": json.dumps(dataset.tag_frequency), |
|
"ss_bucket_info": json.dumps(dataset.bucket_info), |
|
}) |
|
|
|
|
|
if args.network_args: |
|
metadata["ss_network_args"] = json.dumps(net_kwargs) |
|
|
|
|
|
|
|
|
|
if args.pretrained_model_name_or_path is not None: |
|
sd_model_name = args.pretrained_model_name_or_path |
|
if os.path.exists(sd_model_name): |
|
metadata["ss_sd_model_hash"] = train_util.model_hash(sd_model_name) |
|
metadata["ss_new_sd_model_hash"] = train_util.calculate_sha256(sd_model_name) |
|
sd_model_name = os.path.basename(sd_model_name) |
|
metadata["ss_sd_model_name"] = sd_model_name |
|
|
|
if args.vae is not None: |
|
vae_name = args.vae |
|
if os.path.exists(vae_name): |
|
metadata["ss_vae_hash"] = train_util.model_hash(vae_name) |
|
metadata["ss_new_vae_hash"] = train_util.calculate_sha256(vae_name) |
|
vae_name = os.path.basename(vae_name) |
|
metadata["ss_vae_name"] = vae_name |
|
|
|
metadata = {k: str(v) for k, v in metadata.items()} |
|
|
|
|
|
minimum_keys = ["ss_network_module", "ss_network_dim", "ss_network_alpha", "ss_network_args"] |
|
minimum_metadata = {} |
|
for key in minimum_keys: |
|
if key in metadata: |
|
minimum_metadata[key] = metadata[key] |
|
|
|
progress_bar = tqdm(range(args.max_train_steps), smoothing=0, disable=not accelerator.is_local_main_process, desc="steps") |
|
global_step = 0 |
|
|
|
noise_scheduler = DDPMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", |
|
num_train_timesteps=1000, clip_sample=False) |
|
|
|
if accelerator.is_main_process: |
|
accelerator.init_trackers("network_train") |
|
|
|
loss_list = [] |
|
loss_total = 0.0 |
|
for epoch in range(num_train_epochs): |
|
if is_main_process: |
|
print(f"epoch {epoch+1}/{num_train_epochs}") |
|
train_dataset_group.set_current_epoch(epoch + 1) |
|
|
|
metadata["ss_epoch"] = str(epoch+1) |
|
|
|
network.on_epoch_start(text_encoder, unet) |
|
|
|
for step, batch in enumerate(train_dataloader): |
|
with accelerator.accumulate(network): |
|
with torch.no_grad(): |
|
if "latents" in batch and batch["latents"] is not None: |
|
latents = batch["latents"].to(accelerator.device) |
|
else: |
|
|
|
latents = vae.encode(batch["images"].to(dtype=weight_dtype)).latent_dist.sample() |
|
latents = latents * 0.18215 |
|
b_size = latents.shape[0] |
|
|
|
with torch.set_grad_enabled(train_text_encoder): |
|
|
|
input_ids = batch["input_ids"].to(accelerator.device) |
|
encoder_hidden_states = train_util.get_hidden_states(args, input_ids, tokenizer, text_encoder, weight_dtype) |
|
|
|
|
|
noise = torch.randn_like(latents, device=latents.device) |
|
if args.noise_offset: |
|
|
|
noise += args.noise_offset * torch.randn((latents.shape[0], latents.shape[1], 1, 1), device=latents.device) |
|
|
|
|
|
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (b_size,), device=latents.device) |
|
timesteps = timesteps.long() |
|
|
|
|
|
|
|
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) |
|
|
|
|
|
with accelerator.autocast(): |
|
noise_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample |
|
|
|
if args.v_parameterization: |
|
|
|
target = noise_scheduler.get_velocity(latents, noise, timesteps) |
|
else: |
|
target = noise |
|
|
|
loss = torch.nn.functional.mse_loss(noise_pred.float(), target.float(), reduction="none") |
|
loss = loss.mean([1, 2, 3]) |
|
|
|
loss_weights = batch["loss_weights"] |
|
loss = loss * loss_weights |
|
|
|
loss = loss.mean() |
|
|
|
accelerator.backward(loss) |
|
if accelerator.sync_gradients and args.max_grad_norm != 0.0: |
|
params_to_clip = network.get_trainable_params() |
|
accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm) |
|
|
|
optimizer.step() |
|
lr_scheduler.step() |
|
optimizer.zero_grad(set_to_none=True) |
|
|
|
|
|
if accelerator.sync_gradients: |
|
progress_bar.update(1) |
|
global_step += 1 |
|
|
|
train_util.sample_images(accelerator, args, None, global_step, accelerator.device, vae, tokenizer, text_encoder, unet) |
|
|
|
current_loss = loss.detach().item() |
|
if epoch == 0: |
|
loss_list.append(current_loss) |
|
else: |
|
loss_total -= loss_list[step] |
|
loss_list[step] = current_loss |
|
loss_total += current_loss |
|
avr_loss = loss_total / len(loss_list) |
|
logs = {"loss": avr_loss} |
|
progress_bar.set_postfix(**logs) |
|
|
|
if args.logging_dir is not None: |
|
logs = generate_step_logs(args, current_loss, avr_loss, lr_scheduler) |
|
accelerator.log(logs, step=global_step) |
|
|
|
if global_step >= args.max_train_steps: |
|
break |
|
|
|
if args.logging_dir is not None: |
|
logs = {"loss/epoch": loss_total / len(loss_list)} |
|
accelerator.log(logs, step=epoch+1) |
|
|
|
accelerator.wait_for_everyone() |
|
|
|
if args.save_every_n_epochs is not None: |
|
model_name = train_util.DEFAULT_EPOCH_NAME if args.output_name is None else args.output_name |
|
|
|
def save_func(): |
|
ckpt_name = train_util.EPOCH_FILE_NAME.format(model_name, epoch + 1) + '.' + args.save_model_as |
|
ckpt_file = os.path.join(args.output_dir, ckpt_name) |
|
metadata["ss_training_finished_at"] = str(time.time()) |
|
print(f"saving checkpoint: {ckpt_file}") |
|
unwrap_model(network).save_weights(ckpt_file, save_dtype, minimum_metadata if args.no_metadata else metadata) |
|
|
|
def remove_old_func(old_epoch_no): |
|
old_ckpt_name = train_util.EPOCH_FILE_NAME.format(model_name, old_epoch_no) + '.' + args.save_model_as |
|
old_ckpt_file = os.path.join(args.output_dir, old_ckpt_name) |
|
if os.path.exists(old_ckpt_file): |
|
print(f"removing old checkpoint: {old_ckpt_file}") |
|
os.remove(old_ckpt_file) |
|
|
|
if is_main_process: |
|
saving = train_util.save_on_epoch_end(args, save_func, remove_old_func, epoch + 1, num_train_epochs) |
|
if saving and args.save_state: |
|
train_util.save_state_on_epoch_end(args, accelerator, model_name, epoch + 1) |
|
|
|
train_util.sample_images(accelerator, args, epoch + 1, global_step, accelerator.device, vae, tokenizer, text_encoder, unet) |
|
|
|
|
|
|
|
metadata["ss_epoch"] = str(num_train_epochs) |
|
metadata["ss_training_finished_at"] = str(time.time()) |
|
|
|
if is_main_process: |
|
network = unwrap_model(network) |
|
|
|
accelerator.end_training() |
|
|
|
if args.save_state: |
|
train_util.save_state_on_train_end(args, accelerator) |
|
|
|
del accelerator |
|
|
|
if is_main_process: |
|
os.makedirs(args.output_dir, exist_ok=True) |
|
|
|
model_name = train_util.DEFAULT_LAST_OUTPUT_NAME if args.output_name is None else args.output_name |
|
ckpt_name = model_name + '.' + args.save_model_as |
|
ckpt_file = os.path.join(args.output_dir, ckpt_name) |
|
|
|
print(f"save trained model to {ckpt_file}") |
|
network.save_weights(ckpt_file, save_dtype, minimum_metadata if args.no_metadata else metadata) |
|
print("model saved.") |
|
|
|
|
|
if __name__ == '__main__': |
|
parser = argparse.ArgumentParser() |
|
|
|
train_util.add_sd_models_arguments(parser) |
|
train_util.add_dataset_arguments(parser, True, True, True) |
|
train_util.add_training_arguments(parser, True) |
|
train_util.add_optimizer_arguments(parser) |
|
config_util.add_config_arguments(parser) |
|
|
|
parser.add_argument("--no_metadata", action='store_true', help="do not save metadata in output model / メタデータを出力先モデルに保存しない") |
|
parser.add_argument("--save_model_as", type=str, default="safetensors", choices=[None, "ckpt", "pt", "safetensors"], |
|
help="format to save the model (default is .safetensors) / モデル保存時の形式(デフォルトはsafetensors)") |
|
|
|
parser.add_argument("--unet_lr", type=float, default=None, help="learning rate for U-Net / U-Netの学習率") |
|
parser.add_argument("--text_encoder_lr", type=float, default=None, help="learning rate for Text Encoder / Text Encoderの学習率") |
|
|
|
parser.add_argument("--network_weights", type=str, default=None, |
|
help="pretrained weights for network / 学習するネットワークの初期重み") |
|
parser.add_argument("--network_module", type=str, default=None, help='network module to train / 学習対象のネットワークのモジュール') |
|
parser.add_argument("--network_dim", type=int, default=None, |
|
help='network dimensions (depends on each network) / モジュールの次元数(ネットワークにより定義は異なります)') |
|
parser.add_argument("--network_alpha", type=float, default=1, |
|
help='alpha for LoRA weight scaling, default 1 (same as network_dim for same behavior as old version) / LoRaの重み調整のalpha値、デフォルト1(旧バージョンと同じ動作をするにはnetwork_dimと同じ値を指定)') |
|
parser.add_argument("--network_args", type=str, default=None, nargs='*', |
|
help='additional argmuments for network (key=value) / ネットワークへの追加の引数') |
|
parser.add_argument("--network_train_unet_only", action="store_true", help="only training U-Net part / U-Net関連部分のみ学習する") |
|
parser.add_argument("--network_train_text_encoder_only", action="store_true", |
|
help="only training Text Encoder part / Text Encoder関連部分のみ学習する") |
|
parser.add_argument("--training_comment", type=str, default=None, |
|
help="arbitrary comment string stored in metadata / メタデータに記録する任意のコメント文字列") |
|
|
|
args = parser.parse_args() |
|
train(args) |
|
|