|
|
|
|
|
|
|
import gc |
|
import time |
|
import argparse |
|
import itertools |
|
import math |
|
import os |
|
|
|
from tqdm import tqdm |
|
import torch |
|
from accelerate.utils import set_seed |
|
import diffusers |
|
from diffusers import DDPMScheduler |
|
|
|
import library.train_util as train_util |
|
import library.config_util as config_util |
|
from library.config_util import ( |
|
ConfigSanitizer, |
|
BlueprintGenerator, |
|
) |
|
|
|
|
|
def collate_fn(examples): |
|
return examples[0] |
|
|
|
|
|
def train(args): |
|
train_util.verify_training_args(args) |
|
train_util.prepare_dataset_args(args, False) |
|
|
|
cache_latents = args.cache_latents |
|
|
|
if args.seed is not None: |
|
set_seed(args.seed) |
|
|
|
tokenizer = train_util.load_tokenizer(args) |
|
|
|
blueprint_generator = BlueprintGenerator(ConfigSanitizer(True, False, True)) |
|
if args.dataset_config is not None: |
|
print(f"Load dataset config from {args.dataset_config}") |
|
user_config = config_util.load_user_config(args.dataset_config) |
|
ignored = ["train_data_dir", "reg_data_dir"] |
|
if any(getattr(args, attr) is not None for attr in ignored): |
|
print("ignore following options because config file is found: {0} / 設定ファイルが利用されるため以下のオプションは無視されます: {0}".format(', '.join(ignored))) |
|
else: |
|
user_config = { |
|
"datasets": [{ |
|
"subsets": config_util.generate_dreambooth_subsets_config_by_subdirs(args.train_data_dir, args.reg_data_dir) |
|
}] |
|
} |
|
|
|
blueprint = blueprint_generator.generate(user_config, args, tokenizer=tokenizer) |
|
train_dataset_group = config_util.generate_dataset_group_by_blueprint(blueprint.dataset_group) |
|
|
|
if args.no_token_padding: |
|
train_dataset_group.disable_token_padding() |
|
|
|
if args.debug_dataset: |
|
train_util.debug_dataset(train_dataset_group) |
|
return |
|
|
|
if cache_latents: |
|
assert train_dataset_group.is_latent_cacheable(), "when caching latents, either color_aug or random_crop cannot be used / latentをキャッシュするときはcolor_augとrandom_cropは使えません" |
|
|
|
|
|
print("prepare accelerator") |
|
|
|
if args.gradient_accumulation_steps > 1: |
|
print(f"gradient_accumulation_steps is {args.gradient_accumulation_steps}. accelerate does not support gradient_accumulation_steps when training multiple models (U-Net and Text Encoder), so something might be wrong") |
|
print( |
|
f"gradient_accumulation_stepsが{args.gradient_accumulation_steps}に設定されています。accelerateは複数モデル(U-NetおよびText Encoder)の学習時にgradient_accumulation_stepsをサポートしていないため結果は未知数です") |
|
|
|
accelerator, unwrap_model = train_util.prepare_accelerator(args) |
|
|
|
|
|
weight_dtype, save_dtype = train_util.prepare_dtype(args) |
|
|
|
|
|
text_encoder, vae, unet, load_stable_diffusion_format = train_util.load_target_model(args, weight_dtype) |
|
|
|
|
|
if load_stable_diffusion_format: |
|
src_stable_diffusion_ckpt = args.pretrained_model_name_or_path |
|
src_diffusers_model_path = None |
|
else: |
|
src_stable_diffusion_ckpt = None |
|
src_diffusers_model_path = args.pretrained_model_name_or_path |
|
|
|
if args.save_model_as is None: |
|
save_stable_diffusion_format = load_stable_diffusion_format |
|
use_safetensors = args.use_safetensors |
|
else: |
|
save_stable_diffusion_format = args.save_model_as.lower() == 'ckpt' or args.save_model_as.lower() == 'safetensors' |
|
use_safetensors = args.use_safetensors or ("safetensors" in args.save_model_as.lower()) |
|
|
|
|
|
train_util.replace_unet_modules(unet, args.mem_eff_attn, args.xformers) |
|
|
|
|
|
if cache_latents: |
|
vae.to(accelerator.device, dtype=weight_dtype) |
|
vae.requires_grad_(False) |
|
vae.eval() |
|
with torch.no_grad(): |
|
train_dataset_group.cache_latents(vae) |
|
vae.to("cpu") |
|
if torch.cuda.is_available(): |
|
torch.cuda.empty_cache() |
|
gc.collect() |
|
|
|
|
|
train_text_encoder = args.stop_text_encoder_training is None or args.stop_text_encoder_training >= 0 |
|
unet.requires_grad_(True) |
|
text_encoder.requires_grad_(train_text_encoder) |
|
if not train_text_encoder: |
|
print("Text Encoder is not trained.") |
|
|
|
if args.gradient_checkpointing: |
|
unet.enable_gradient_checkpointing() |
|
text_encoder.gradient_checkpointing_enable() |
|
|
|
if not cache_latents: |
|
vae.requires_grad_(False) |
|
vae.eval() |
|
vae.to(accelerator.device, dtype=weight_dtype) |
|
|
|
|
|
print("prepare optimizer, data loader etc.") |
|
if train_text_encoder: |
|
trainable_params = (itertools.chain(unet.parameters(), text_encoder.parameters())) |
|
else: |
|
trainable_params = unet.parameters() |
|
|
|
_, _, optimizer = train_util.get_optimizer(args, trainable_params) |
|
|
|
|
|
|
|
n_workers = min(args.max_data_loader_n_workers, os.cpu_count() - 1) |
|
train_dataloader = torch.utils.data.DataLoader( |
|
train_dataset_group, batch_size=1, shuffle=True, collate_fn=collate_fn, num_workers=n_workers, persistent_workers=args.persistent_data_loader_workers) |
|
|
|
|
|
if args.max_train_epochs is not None: |
|
args.max_train_steps = args.max_train_epochs * len(train_dataloader) |
|
print(f"override steps. steps for {args.max_train_epochs} epochs is / 指定エポックまでのステップ数: {args.max_train_steps}") |
|
|
|
if args.stop_text_encoder_training is None: |
|
args.stop_text_encoder_training = args.max_train_steps + 1 |
|
|
|
|
|
lr_scheduler = train_util.get_scheduler_fix(args.lr_scheduler, optimizer, num_warmup_steps=args.lr_warmup_steps, |
|
num_training_steps=args.max_train_steps, |
|
num_cycles=args.lr_scheduler_num_cycles, power=args.lr_scheduler_power) |
|
|
|
|
|
if args.full_fp16: |
|
assert args.mixed_precision == "fp16", "full_fp16 requires mixed precision='fp16' / full_fp16を使う場合はmixed_precision='fp16'を指定してください。" |
|
print("enable full fp16 training.") |
|
unet.to(weight_dtype) |
|
text_encoder.to(weight_dtype) |
|
|
|
|
|
if train_text_encoder: |
|
unet, text_encoder, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( |
|
unet, text_encoder, optimizer, train_dataloader, lr_scheduler) |
|
else: |
|
unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(unet, optimizer, train_dataloader, lr_scheduler) |
|
|
|
if not train_text_encoder: |
|
text_encoder.to(accelerator.device, dtype=weight_dtype) |
|
|
|
|
|
if args.full_fp16: |
|
train_util.patch_accelerator_for_fp16_training(accelerator) |
|
|
|
|
|
if args.resume is not None: |
|
print(f"resume training from state: {args.resume}") |
|
accelerator.load_state(args.resume) |
|
|
|
|
|
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) |
|
num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) |
|
if (args.save_n_epoch_ratio is not None) and (args.save_n_epoch_ratio > 0): |
|
args.save_every_n_epochs = math.floor(num_train_epochs / args.save_n_epoch_ratio) or 1 |
|
|
|
|
|
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps |
|
print("running training / 学習開始") |
|
print(f" num train images * repeats / 学習画像の数×繰り返し回数: {train_dataset_group.num_train_images}") |
|
print(f" num reg images / 正則化画像の数: {train_dataset_group.num_reg_images}") |
|
print(f" num batches per epoch / 1epochのバッチ数: {len(train_dataloader)}") |
|
print(f" num epochs / epoch数: {num_train_epochs}") |
|
print(f" batch size per device / バッチサイズ: {args.train_batch_size}") |
|
print(f" total train batch size (with parallel & distributed & accumulation) / 総バッチサイズ(並列学習、勾配合計含む): {total_batch_size}") |
|
print(f" gradient ccumulation steps / 勾配を合計するステップ数 = {args.gradient_accumulation_steps}") |
|
print(f" total optimization steps / 学習ステップ数: {args.max_train_steps}") |
|
|
|
progress_bar = tqdm(range(args.max_train_steps), smoothing=0, disable=not accelerator.is_local_main_process, desc="steps") |
|
global_step = 0 |
|
|
|
noise_scheduler = DDPMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", |
|
num_train_timesteps=1000, clip_sample=False) |
|
|
|
if accelerator.is_main_process: |
|
accelerator.init_trackers("dreambooth") |
|
|
|
loss_list = [] |
|
loss_total = 0.0 |
|
for epoch in range(num_train_epochs): |
|
print(f"epoch {epoch+1}/{num_train_epochs}") |
|
train_dataset_group.set_current_epoch(epoch + 1) |
|
|
|
|
|
unet.train() |
|
|
|
if args.gradient_checkpointing or global_step < args.stop_text_encoder_training: |
|
text_encoder.train() |
|
|
|
for step, batch in enumerate(train_dataloader): |
|
|
|
if global_step == args.stop_text_encoder_training: |
|
print(f"stop text encoder training at step {global_step}") |
|
if not args.gradient_checkpointing: |
|
text_encoder.train(False) |
|
text_encoder.requires_grad_(False) |
|
|
|
with accelerator.accumulate(unet): |
|
with torch.no_grad(): |
|
|
|
if cache_latents: |
|
latents = batch["latents"].to(accelerator.device) |
|
else: |
|
latents = vae.encode(batch["images"].to(dtype=weight_dtype)).latent_dist.sample() |
|
latents = latents * 0.18215 |
|
b_size = latents.shape[0] |
|
|
|
|
|
noise = torch.randn_like(latents, device=latents.device) |
|
if args.noise_offset: |
|
|
|
noise += args.noise_offset * torch.randn((latents.shape[0], latents.shape[1], 1, 1), device=latents.device) |
|
|
|
|
|
with torch.set_grad_enabled(global_step < args.stop_text_encoder_training): |
|
input_ids = batch["input_ids"].to(accelerator.device) |
|
encoder_hidden_states = train_util.get_hidden_states( |
|
args, input_ids, tokenizer, text_encoder, None if not args.full_fp16 else weight_dtype) |
|
|
|
|
|
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (b_size,), device=latents.device) |
|
timesteps = timesteps.long() |
|
|
|
|
|
|
|
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) |
|
|
|
|
|
noise_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample |
|
|
|
if args.v_parameterization: |
|
|
|
target = noise_scheduler.get_velocity(latents, noise, timesteps) |
|
else: |
|
target = noise |
|
|
|
loss = torch.nn.functional.mse_loss(noise_pred.float(), target.float(), reduction="none") |
|
loss = loss.mean([1, 2, 3]) |
|
|
|
loss_weights = batch["loss_weights"] |
|
loss = loss * loss_weights |
|
|
|
loss = loss.mean() |
|
|
|
accelerator.backward(loss) |
|
if accelerator.sync_gradients and args.max_grad_norm != 0.0: |
|
if train_text_encoder: |
|
params_to_clip = (itertools.chain(unet.parameters(), text_encoder.parameters())) |
|
else: |
|
params_to_clip = unet.parameters() |
|
accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm) |
|
|
|
optimizer.step() |
|
lr_scheduler.step() |
|
optimizer.zero_grad(set_to_none=True) |
|
|
|
|
|
if accelerator.sync_gradients: |
|
progress_bar.update(1) |
|
global_step += 1 |
|
|
|
train_util.sample_images(accelerator, args, None, global_step, accelerator.device, vae, tokenizer, text_encoder, unet) |
|
|
|
current_loss = loss.detach().item() |
|
if args.logging_dir is not None: |
|
logs = {"loss": current_loss, "lr": float(lr_scheduler.get_last_lr()[0])} |
|
if args.optimizer_type.lower() == "DAdaptation".lower(): |
|
logs["lr/d*lr"] = lr_scheduler.optimizers[0].param_groups[0]['d']*lr_scheduler.optimizers[0].param_groups[0]['lr'] |
|
accelerator.log(logs, step=global_step) |
|
|
|
if epoch == 0: |
|
loss_list.append(current_loss) |
|
else: |
|
loss_total -= loss_list[step] |
|
loss_list[step] = current_loss |
|
loss_total += current_loss |
|
avr_loss = loss_total / len(loss_list) |
|
logs = {"loss": avr_loss} |
|
progress_bar.set_postfix(**logs) |
|
|
|
if global_step >= args.max_train_steps: |
|
break |
|
|
|
if args.logging_dir is not None: |
|
logs = {"loss/epoch": loss_total / len(loss_list)} |
|
accelerator.log(logs, step=epoch+1) |
|
|
|
accelerator.wait_for_everyone() |
|
|
|
if args.save_every_n_epochs is not None: |
|
src_path = src_stable_diffusion_ckpt if save_stable_diffusion_format else src_diffusers_model_path |
|
train_util.save_sd_model_on_epoch_end(args, accelerator, src_path, save_stable_diffusion_format, use_safetensors, |
|
save_dtype, epoch, num_train_epochs, global_step, unwrap_model(text_encoder), unwrap_model(unet), vae) |
|
|
|
train_util.sample_images(accelerator, args, epoch + 1, global_step, accelerator.device, vae, tokenizer, text_encoder, unet) |
|
|
|
is_main_process = accelerator.is_main_process |
|
if is_main_process: |
|
unet = unwrap_model(unet) |
|
text_encoder = unwrap_model(text_encoder) |
|
|
|
accelerator.end_training() |
|
|
|
if args.save_state: |
|
train_util.save_state_on_train_end(args, accelerator) |
|
|
|
del accelerator |
|
|
|
if is_main_process: |
|
src_path = src_stable_diffusion_ckpt if save_stable_diffusion_format else src_diffusers_model_path |
|
train_util.save_sd_model_on_train_end(args, src_path, save_stable_diffusion_format, use_safetensors, |
|
save_dtype, epoch, global_step, text_encoder, unet, vae) |
|
print("model saved.") |
|
|
|
|
|
if __name__ == '__main__': |
|
parser = argparse.ArgumentParser() |
|
|
|
train_util.add_sd_models_arguments(parser) |
|
train_util.add_dataset_arguments(parser, True, False, True) |
|
train_util.add_training_arguments(parser, True) |
|
train_util.add_sd_saving_arguments(parser) |
|
train_util.add_optimizer_arguments(parser) |
|
config_util.add_config_arguments(parser) |
|
|
|
parser.add_argument("--no_token_padding", action="store_true", |
|
help="disable token padding (same as Diffuser's DreamBooth) / トークンのpaddingを無効にする(Diffusers版DreamBoothと同じ動作)") |
|
parser.add_argument("--stop_text_encoder_training", type=int, default=None, |
|
help="steps to stop text encoder training, -1 for no training / Text Encoderの学習を止めるステップ数、-1で最初から学習しない") |
|
|
|
args = parser.parse_args() |
|
train(args) |
|
|