File size: 6,048 Bytes
ac2ea1d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import math
import random

from collections import OrderedDict, abc as container_abcs

import torch
import torch.nn as nn
import torch.nn.functional as F


class DyLoraModule(nn.Module):
    """
    Hadamard product Implementaion for Dynamic Low Rank adaptation
    """

    def __init__(
        self, 
        lora_name, 
        org_module: nn.Module, 
        multiplier=1.0, 
        lora_dim=4, alpha=1, 
        dropout=0.,
        use_cp=False, 
        block_size=1,
        **kwargs,
    ):
        """ if alpha == 0 or None, alpha is rank (no scaling). """
        super().__init__()
        self.lora_name = lora_name
        self.lora_dim = lora_dim
        assert lora_dim % block_size == 0, 'lora_dim must be a multiple of block_size'
        self.block_count = lora_dim//block_size
        self.block_size = block_size
        
        self.shape = org_module.weight.shape
        if org_module.__class__.__name__ == 'Conv2d':
            in_dim = org_module.in_channels
            k_size = org_module.kernel_size
            out_dim = org_module.out_channels
            shape = (out_dim, in_dim*k_size[0]*k_size[1])
            self.op = F.conv2d
            self.extra_args = {
                "stride": org_module.stride,
                "padding": org_module.padding,
                "dilation": org_module.dilation,
                "groups": org_module.groups
            }
        else:
            in_dim = org_module.in_features
            out_dim = org_module.out_features
            shape = (out_dim, in_dim)
            self.op = F.linear
            self.extra_args = {}
        
        self.lora_dim = lora_dim
        self.up_list = nn.ParameterList([
            torch.empty(shape[0], 1)
            for i in range(lora_dim)
        ])
        self.up_list.requires_grad_(False)
        self.up_update = [
            torch.zeros_like(self.up_list[i])
            for i in range(lora_dim)
        ]
        
        self.down_list = nn.ParameterList([
            torch.empty(1, shape[1])
            for i in range(lora_dim)
        ])
        self.down_list.requires_grad_(False)
        self.down_update = [
            torch.zeros_like(self.down_list[i])
            for i in range(lora_dim)
        ]
        
        self.index = 0
        
        if type(alpha) == torch.Tensor:
            alpha = alpha.detach().float().numpy()  # without casting, bf16 causes error
        alpha = lora_dim if alpha is None or alpha == 0 else alpha
        self.scale = alpha / self.lora_dim
        self.register_buffer('alpha', torch.tensor(alpha)) # 定数として扱える

        # Need more experiences on init method
        
        for v in self.down_list:
            torch.nn.init.kaiming_uniform_(v, a=math.sqrt(5))
        for v in self.up_list:
            torch.nn.init.zeros_(v)
        for i, v in enumerate(self.up_update):
            v.copy_(self.up_list[i])
        for i, v in enumerate(self.down_update):
            v.copy_(self.down_list[i])

        self.multiplier = multiplier
        self.org_module = [org_module] # remove in applying
        self.grad_ckpt = False
        
        self.apply_train(0)
    
    def state_dict(self, *args, destination=None, prefix='', keep_vars=False):
        # TODO: Remove `args` and the parsing logic when BC allows.
        if len(args) > 0:
            if destination is None:
                destination = args[0]
            if len(args) > 1 and prefix == '':
                prefix = args[1]
            if len(args) > 2 and keep_vars is False:
                keep_vars = args[2]
            # DeprecationWarning is ignored by default

        if destination is None:
            destination = OrderedDict()
            destination._metadata = OrderedDict()

        local_metadata = dict(version=self._version)
        if hasattr(destination, "_metadata"):
            destination._metadata[prefix[:-1]] = local_metadata

        destination[f'{prefix}alpha'] = self.alpha
        destination[f'{prefix}lora_up.weight'] = nn.Parameter(
            torch.concat(self.up_update, dim=1)
        )
        destination[f'{prefix}lora_down.weight'] = nn.Parameter(
            torch.concat(self.down_update)
        )
        return destination

    def apply_to(self):
        self.org_module[0].forward = self.forward
    
    def apply_train(self, b:int):
        self.up_list.requires_grad_(False)
        self.down_list.requires_grad_(False)
            
        for i in range(self.index*self.block_size, (self.index+1)*self.block_size):
            self.up_update[i].copy_(self.up_list[i])
            self.down_update[i].copy_(self.down_list[i])
        
        for i in range(b*self.block_size, (b+1)*self.block_size):
            self.up_list[i].copy_(self.up_update[i])
            self.down_list[i].copy_(self.down_update[i])
        
        self.up_list.requires_grad_(True)
        self.down_list.requires_grad_(True)
        self.index = b

    @torch.enable_grad()
    def forward(self, x):
        b = random.randint(0, self.block_count-1)
        if self.up_update[b].device != self.up_list[b].device:
            device = self.up_list[b].device
            for i in range(self.lora_dim):
                self.up_update[i] = self.up_update[i].to(device)
                self.down_update[i] = self.down_update[i].to(device)
        
        if self.training:
            self.apply_train(b)
        down = torch.concat(
            list(self.down_update[:b*self.block_size]) 
            + list(self.down_list[b*self.block_size:(b+1)*self.block_size])
        )
        up = torch.concat(
            list(self.up_update[:b*self.block_size]) 
            + list(self.up_list[b*self.block_size:(b+1)*self.block_size]),
            dim=1
        )
        
        bias = None if self.org_module[0].bias is None else self.org_module[0].bias.data
        return self.op(
            x, 
            self.org_module[0].weight + (up@down).view(self.shape) * self.alpha/(b+1),
            bias,
            **self.extra_args
        )