|
"""PyTorch GEB model.""" |
|
|
|
import math |
|
import copy |
|
import os |
|
import warnings |
|
from dataclasses import dataclass |
|
from typing import Optional, Tuple, Dict, Any, List |
|
import importlib.util |
|
from torch.nn.utils import skip_init |
|
import torch.nn.functional as F |
|
import torch |
|
import torch.utils.checkpoint |
|
from torch import einsum, nn |
|
from torch.cuda.amp import autocast |
|
from torch.nn import BCEWithLogitsLoss, LayerNorm, CrossEntropyLoss, MSELoss |
|
from copy import deepcopy |
|
from deepspeed.accelerator import get_accelerator |
|
try: |
|
from einops import rearrange |
|
except ImportError: |
|
rearrange = None |
|
from transformers.modeling_outputs import ( |
|
BaseModelOutputWithPast, |
|
CausalLMOutputWithPast, |
|
QuestionAnsweringModelOutput, |
|
SequenceClassifierOutputWithPast, |
|
TokenClassifierOutput, |
|
) |
|
from transformers.modeling_utils import PreTrainedModel |
|
from transformers.utils import ( |
|
ModelOutput, |
|
add_code_sample_docstrings, |
|
add_start_docstrings, |
|
add_start_docstrings_to_model_forward, |
|
logging, |
|
replace_return_docstrings, |
|
) |
|
from transformers.generation.logits_process import LogitsProcessor |
|
from transformers.generation.utils import LogitsProcessorList, StoppingCriteriaList, GenerationConfig, ModelOutput |
|
from transformers.utils.model_parallel_utils import assert_device_map, get_device_map |
|
from .configuration_geblm import GEBConfig |
|
try: |
|
|
|
from flash_attn.flash_attn_interface import flash_attn_varlen_func |
|
except ImportError: |
|
flash_attn_varlen_func = None |
|
FlashAttentionBuilder = get_accelerator().get_op_builder("FlashAttentionBuilder") |
|
flash_attn_builder = None |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
_CHECKPOINT_FOR_DOC = "geb" |
|
_CONFIG_FOR_DOC = "GEBConfig" |
|
|
|
def _config_to_kwargs(args): |
|
common_kwargs = { |
|
"dtype": args.torch_dtype, |
|
} |
|
return common_kwargs |
|
|
|
def default_init(cls, *args, **kwargs): |
|
return cls(*args, **kwargs) |
|
|
|
class InvalidScoreLogitsProcessor(LogitsProcessor): |
|
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor: |
|
if torch.isnan(scores).any() or torch.isinf(scores).any(): |
|
scores.zero_() |
|
scores[..., 5] = 5e4 |
|
return scores |
|
|
|
def split_tensor_along_last_dim( |
|
tensor: torch.Tensor, |
|
num_partitions: int, |
|
contiguous_split_chunks: bool = False, |
|
) -> List[torch.Tensor]: |
|
""" Split a tensor along its last dimension. |
|
|
|
Arguments: |
|
tensor: input tensor. |
|
num_partitions: number of partitions to split the tensor |
|
contiguous_split_chunks: If True, make each chunk contiguous |
|
in memory. |
|
|
|
Returns: |
|
A list of Tensors |
|
""" |
|
|
|
last_dim = tensor.dim() - 1 |
|
last_dim_size = tensor.size()[last_dim] // num_partitions |
|
|
|
tensor_list = torch.split(tensor, last_dim_size, dim=last_dim) |
|
|
|
if contiguous_split_chunks: |
|
return tuple(chunk.contiguous() for chunk in tensor_list) |
|
|
|
return tensor_list |
|
|
|
class PrefixEncoder(torch.nn.Module): |
|
""" |
|
The torch.nn model to encode the prefix |
|
Input shape: (batch-size, prefix-length) |
|
Output shape: (batch-size, prefix-length, 2*layers*hidden) |
|
""" |
|
|
|
def __init__(self, config: GEBConfig): |
|
super().__init__() |
|
self.prefix_projection = config.prefix_projection |
|
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads |
|
if self.prefix_projection: |
|
|
|
kv_size = config.num_layers * config.kv_channels * self.num_key_value_groups * 2 |
|
self.embedding = torch.nn.Embedding(config.pre_seq_len, kv_size) |
|
self.trans = torch.nn.Sequential( |
|
torch.nn.Linear(kv_size, config.hidden_size), |
|
torch.nn.Tanh(), |
|
torch.nn.Linear(config.hidden_size, kv_size) |
|
) |
|
else: |
|
self.embedding = torch.nn.Embedding(config.pre_seq_len, |
|
config.num_layers * config.kv_channels * self.num_key_value_groups * 2) |
|
|
|
def forward(self, prefix: torch.Tensor): |
|
if self.prefix_projection: |
|
prefix_tokens = self.embedding(prefix) |
|
past_key_values = self.trans(prefix_tokens) |
|
else: |
|
past_key_values = self.embedding(prefix) |
|
return past_key_values |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class RotaryEmbedding(nn.Module): |
|
def __init__(self, dim): |
|
super().__init__() |
|
inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2).float() / dim)) |
|
self.register_buffer('inv_freq', inv_freq) |
|
if importlib.util.find_spec('einops') is None: |
|
raise RuntimeError("einops is required for Rotary Embedding") |
|
|
|
def forward(self, max_seq_len, offset=0): |
|
seq = torch.arange(max_seq_len, device=self.inv_freq.device) + offset |
|
|
|
freqs = einsum('i , j -> i j', seq.type_as(self.inv_freq), self.inv_freq) |
|
|
|
|
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
|
|
from einops import rearrange |
|
|
|
return rearrange(emb, 'n d -> n 1 1 d') |
|
|
|
|
|
def _rotate_half(x): |
|
""" |
|
change sign so the last dimension becomes [-odd, +even] |
|
""" |
|
from einops import rearrange |
|
x = rearrange(x, '... (j d) -> ... j d', j=2) |
|
x1, x2 = x.unbind(dim=-2) |
|
return torch.cat((-x2, x1), dim=-1) |
|
|
|
|
|
def apply_rotary_pos_emb(t, freqs): |
|
""" |
|
input tensor t is of shape [seq_length, ..., dim] |
|
rotary positional embeding tensor freqs is of shape [seq_length, ..., dim] |
|
check https://kexue.fm/archives/8265 for detailed formulas |
|
""" |
|
|
|
|
|
rot_dim = freqs.shape[-1] |
|
|
|
|
|
t, t_pass = t[..., :rot_dim], t[..., rot_dim:] |
|
|
|
|
|
|
|
|
|
t = (t * freqs.cos().to(t.dtype)) + (_rotate_half(t) * freqs.sin().to(t.dtype)) |
|
|
|
return torch.cat((t, t_pass), dim=-1) |
|
|
|
|
|
class RMSNorm(torch.nn.Module): |
|
def __init__(self, normalized_shape, eps=1e-5, device=None, dtype=None, **kwargs): |
|
super().__init__() |
|
self.weight = torch.nn.Parameter(torch.empty(normalized_shape, device=device, dtype=dtype)) |
|
self.eps = eps |
|
|
|
def forward(self, hidden_states: torch.Tensor): |
|
input_dtype = hidden_states.dtype |
|
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True) |
|
hidden_states = hidden_states * torch.rsqrt(variance + self.eps) |
|
|
|
return (self.weight * hidden_states).to(input_dtype) |
|
|
|
|
|
class MLP(torch.nn.Module): |
|
"""MLP. |
|
|
|
MLP will take the input with h hidden state, project it to 4*h |
|
hidden dimension, perform nonlinear transformation, and project the |
|
state back into h hidden dimension. |
|
""" |
|
|
|
def __init__(self, config: GEBConfig, device=None): |
|
super(MLP, self).__init__() |
|
|
|
self.add_bias = config.add_bias_linear |
|
|
|
|
|
self.dense_h_to_4h = nn.Linear( |
|
config.hidden_size, |
|
config.ffn_hidden_size * 2, |
|
bias=self.add_bias, |
|
device=device, |
|
**_config_to_kwargs(config) |
|
) |
|
|
|
def swiglu(x): |
|
x = torch.chunk(x, 2, dim=-1) |
|
return F.silu(x[0]) * x[1] |
|
|
|
self.activation_func = swiglu |
|
|
|
|
|
self.dense_4h_to_h = nn.Linear( |
|
config.ffn_hidden_size, |
|
config.hidden_size, |
|
bias=self.add_bias, |
|
device=device, |
|
**_config_to_kwargs(config) |
|
) |
|
|
|
def forward(self, hidden_states): |
|
|
|
intermediate_parallel = self.dense_h_to_4h(hidden_states) |
|
intermediate_parallel = self.activation_func(intermediate_parallel) |
|
|
|
output = self.dense_4h_to_h(intermediate_parallel) |
|
return output |
|
|
|
|
|
class CoreAttention(torch.nn.Module): |
|
|
|
def __init__(self, config: GEBConfig, layer_number): |
|
super(CoreAttention, self).__init__() |
|
|
|
|
|
|
|
self.apply_query_key_layer_scaling = config.apply_query_key_layer_scaling |
|
self.attention_softmax_in_fp32 = config.attention_softmax_in_fp32 |
|
if self.apply_query_key_layer_scaling: |
|
self.attention_softmax_in_fp32 = True |
|
self.layer_number = max(1, layer_number) |
|
self.num_layers = config.num_layers |
|
|
|
projection_size = config.kv_channels * config.num_attention_heads |
|
|
|
|
|
self.hidden_size_per_partition = projection_size |
|
self.hidden_size_per_attention_head = projection_size // config.num_attention_heads |
|
self.num_attention_heads_per_partition = config.num_attention_heads |
|
|
|
coeff = None |
|
self.norm_factor = math.sqrt(self.hidden_size_per_attention_head) |
|
if self.apply_query_key_layer_scaling: |
|
coeff = self.layer_number |
|
self.norm_factor *= coeff |
|
self.coeff = coeff |
|
|
|
|
|
|
|
self.attention_dropout = torch.nn.Dropout(config.attention_dropout) |
|
|
|
def forward(self, query_layer, key_layer, |
|
value_layer, attention_mask): |
|
|
|
|
|
|
|
|
|
|
|
|
|
output_size = (query_layer.size(1), |
|
query_layer.size(2), |
|
query_layer.size(0), |
|
key_layer.size(0)) |
|
|
|
|
|
query_layer = query_layer.view(output_size[2], |
|
output_size[0] * output_size[1], -1) |
|
|
|
key_layer = key_layer.view(output_size[3], |
|
output_size[0] * output_size[1], -1) |
|
|
|
|
|
matmul_input_buffer = torch.empty( |
|
output_size[0] * output_size[1], output_size[2], output_size[3], dtype=query_layer.dtype, |
|
device=query_layer.device |
|
) |
|
|
|
|
|
matmul_result = torch.baddbmm( |
|
matmul_input_buffer, |
|
query_layer.transpose(0, 1), |
|
key_layer.transpose(0, 1).transpose(1, 2), |
|
beta=0.0, alpha=(1.0/self.norm_factor)) |
|
|
|
|
|
attention_scores = matmul_result.view(*output_size) |
|
|
|
|
|
|
|
|
|
|
|
|
|
if self.attention_softmax_in_fp32: |
|
attention_scores = attention_scores.float() |
|
if self.coeff is not None: |
|
attention_scores = attention_scores * self.coeff |
|
if attention_mask is None and attention_scores.shape[2] == attention_scores.shape[3]: |
|
attention_mask = torch.ones(output_size[0], 1, output_size[2], output_size[3], |
|
device=attention_scores.device, dtype=torch.bool) |
|
attention_mask.tril_() |
|
attention_mask = ~attention_mask |
|
if attention_mask is not None: |
|
attention_scores = attention_scores.masked_fill(attention_mask, float("-inf")) |
|
attention_probs = F.softmax(attention_scores, dim=-1) |
|
attention_probs = attention_probs.type_as(value_layer) |
|
|
|
|
|
|
|
attention_probs = self.attention_dropout(attention_probs) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
output_size = (value_layer.size(1), |
|
value_layer.size(2), |
|
query_layer.size(0), |
|
value_layer.size(3)) |
|
|
|
|
|
value_layer = value_layer.contiguous().view(value_layer.size(0), |
|
output_size[0] * output_size[1], -1) |
|
|
|
|
|
attention_probs = attention_probs.view(output_size[0] * output_size[1], |
|
output_size[2], -1) |
|
|
|
|
|
context_layer = torch.bmm(attention_probs, value_layer.transpose(0, 1)) |
|
|
|
|
|
context_layer = context_layer.view(*output_size) |
|
|
|
|
|
context_layer = context_layer.permute(2, 0, 1, 3).contiguous() |
|
|
|
|
|
new_context_layer_shape = context_layer.size()[:-2] + \ |
|
(self.hidden_size_per_partition,) |
|
context_layer = context_layer.view(*new_context_layer_shape) |
|
|
|
return context_layer |
|
|
|
class FlashSelfAttention(torch.nn.Module): |
|
"""Implement the scaled dot product attention with softmax. |
|
Arguments |
|
--------- |
|
softmax_scale: The temperature to use for the softmax attention. |
|
(default: 1/sqrt(d_keys) where d_keys is computed at |
|
runtime) |
|
attention_dropout: The dropout rate to apply to the attention |
|
(default: 0.0) |
|
""" |
|
def __init__(self, config: GEBConfig, causal=False, softmax_scale=None, attention_dropout=0.0, |
|
device=None, dtype=None): |
|
super().__init__() |
|
assert flash_attn_varlen_func is not None or flash_attn_builder is not None, \ |
|
('Please install FlashAttention first, e.g., with pip install flash-attn or implement your own flash attention') |
|
assert rearrange is not None, 'Please install einops first, e.g., with pip install einops' |
|
self.config = config |
|
self.causal = causal |
|
self.softmax_scale = softmax_scale |
|
self.dropout_p = attention_dropout |
|
|
|
|
|
self.flash_attn_func = flash_attn_varlen_func if config.use_flash_attn else print('false to Use FlashAttention-2') |
|
|
|
def forward(self, q, k, v): |
|
"""Implements the multihead softmax attention. |
|
Arguments |
|
--------- |
|
q, k, v: The tensor containing the query, key, and value. (B, S, H, D) |
|
""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
batch_size, seqlen_q = q.shape[0], q.shape[1] |
|
seqlen_k = k.shape[1] |
|
|
|
if get_accelerator().device_name() == 'cuda': |
|
|
|
q, k, v = [rearrange(x, 'b s ... -> (b s) ...') for x in [q, k, v]] |
|
cu_seqlens_q = torch.arange(0, (batch_size + 1) * seqlen_q, step=seqlen_q, dtype=torch.int32, |
|
device=q.device) |
|
else: |
|
|
|
q, k, v = [rearrange(x, 'b s h d -> b h s d').contiguous() for x in [q, k, v]] |
|
|
|
if self.training: |
|
|
|
assert seqlen_k == seqlen_q |
|
|
|
is_causal = self.causal |
|
cu_seqlens_k = cu_seqlens_q if get_accelerator().device_name() == 'cuda' else None |
|
dropout_p = self.dropout_p |
|
else: |
|
|
|
|
|
is_causal = seqlen_q == seqlen_k |
|
cu_seqlens_k = torch.arange(0, (batch_size + 1) * seqlen_k, step=seqlen_k, dtype=torch.int32, |
|
device=q.device) if get_accelerator().device_name() == 'cuda' else None |
|
dropout_p = 0 |
|
|
|
output = self.flash_attn_func( |
|
q, k, v, cu_seqlens_q, cu_seqlens_k, seqlen_q, seqlen_k, |
|
dropout_p, |
|
softmax_scale=self.softmax_scale, causal=is_causal |
|
) if get_accelerator().device_name() == 'cuda' else flash_attn_builder.flash_attn_func( |
|
q, k, v, self.dropout_p, self.softmax_scale, is_causal |
|
) |
|
|
|
output = rearrange(output, '(b s) ... -> b s ...', b=batch_size) if get_accelerator().device_name() == 'cuda' else rearrange( |
|
output, 'b h s d -> b s h d').contiguous() |
|
return output |
|
|
|
class GEBAttention(nn.Module): |
|
"""Parallel self-attention layer abstract class. |
|
Self-attention layer takes input with size [s, b, h] |
|
and returns output of the same size. |
|
""" |
|
def __init__(self, config: GEBConfig, layer_number, device=None): |
|
super().__init__() |
|
self.config = config |
|
self.layer_number = max(1, layer_number) |
|
self.projection_size = config.kv_channels * config.num_attention_heads |
|
self.use_flash_attn = config.use_flash_attn |
|
|
|
self.hidden_size_per_partition = self.projection_size |
|
self.hidden_size_per_attention_head = self.projection_size // config.num_attention_heads |
|
self.num_attention_heads_per_partition = config.num_attention_heads |
|
self.num_key_value_heads_per_partition = config.num_key_value_heads |
|
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads |
|
self.kv_projection_size = config.kv_channels * config.num_key_value_heads |
|
assert self.hidden_size_per_attention_head == self.kv_projection_size // config.num_key_value_heads |
|
|
|
if self.use_flash_attn: |
|
global flash_attn_builder |
|
try: |
|
flash_attn_builder = FlashAttentionBuilder().load() |
|
except TypeError: |
|
flash_attn_builder = None |
|
assert flash_attn_varlen_func != None, "Cannot import FlashAttention v2 " |
|
if rearrange is None: |
|
raise ImportError('einops is not installed, please install with pip install einops') |
|
|
|
self.query = nn.Linear(config.hidden_size, self.projection_size, |
|
bias=config.add_bias_linear, |
|
device=device, **_config_to_kwargs(config) |
|
) |
|
|
|
self.key_value = nn.Linear(config.hidden_size, 2 * self.kv_projection_size, |
|
bias=config.add_bias_linear, |
|
device=device, **_config_to_kwargs(config) |
|
) |
|
|
|
if config.use_flash_attn: |
|
self.core_attention_flash = FlashSelfAttention(config, causal=True, attention_dropout=config.attention_dropout) |
|
else: |
|
self.core_attention = CoreAttention(config, self.layer_number) |
|
|
|
self.dense = nn.Linear(self.projection_size, config.hidden_size, bias=config.add_bias_linear, |
|
device=device, **_config_to_kwargs(config) |
|
) |
|
|
|
def _allocate_memory(self, inference_max_sequence_len, batch_size, device=None, dtype=None): |
|
return torch.empty( |
|
inference_max_sequence_len, |
|
batch_size, |
|
self.num_key_value_groups, |
|
self.hidden_size_per_attention_head, |
|
dtype=dtype, |
|
device=device) |
|
|
|
def repeat_kv(self, hidden_states, n_rep): |
|
slen, batch, num_key_value_heads_per_partition, head_dim = hidden_states.shape |
|
if n_rep == 1: |
|
return hidden_states |
|
hidden_states = hidden_states[:, :, :, None, :].expand( |
|
slen, batch, num_key_value_heads_per_partition, n_rep, head_dim) |
|
return hidden_states.reshape(slen, batch, |
|
num_key_value_heads_per_partition * n_rep, |
|
head_dim) |
|
|
|
def forward(self, hidden_states, attention_mask, |
|
rotary_pos_emb=None, kv_cache=None, use_cache=True): |
|
|
|
query_layer = self.query(hidden_states) |
|
|
|
new_tensor_shape = query_layer.size()[:-1] + \ |
|
(self.num_attention_heads_per_partition, |
|
self.hidden_size_per_attention_head) |
|
query_layer = query_layer.view(*new_tensor_shape) |
|
|
|
|
|
mixed_kv_layer = self.key_value(hidden_states) |
|
|
|
new_tensor_shape = mixed_kv_layer.size()[:-1] + \ |
|
(self.num_key_value_heads_per_partition, |
|
2 * self.hidden_size_per_attention_head) |
|
mixed_kv_layer = mixed_kv_layer.view(*new_tensor_shape) |
|
|
|
(key_layer, |
|
value_layer) = split_tensor_along_last_dim( |
|
mixed_kv_layer, 2) |
|
|
|
|
|
|
|
|
|
key_layer = self.repeat_kv(key_layer, self.num_key_value_groups) |
|
value_layer = self.repeat_kv(value_layer, |
|
self.num_key_value_groups) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if rotary_pos_emb is not None: |
|
if isinstance(rotary_pos_emb, tuple): |
|
rotary_pos_emb = rotary_pos_emb |
|
else: |
|
rotary_pos_emb = ((rotary_pos_emb,) * 2) |
|
q_pos_emb, k_pos_emb = rotary_pos_emb |
|
query_layer = apply_rotary_pos_emb(query_layer, q_pos_emb) |
|
key_layer = apply_rotary_pos_emb(key_layer, k_pos_emb) |
|
|
|
|
|
|
|
if kv_cache is not None: |
|
cache_k, cache_v = kv_cache |
|
key_layer = torch.cat((cache_k, key_layer), dim=0) |
|
value_layer = torch.cat((cache_v, value_layer), dim=0) |
|
if use_cache: |
|
kv_cache = (key_layer, value_layer) |
|
else: |
|
kv_cache = None |
|
|
|
|
|
if self.use_flash_attn: |
|
query_layer, key_layer, value_layer = [rearrange(x, 's b ... -> b s ...').contiguous() |
|
for x in (query_layer, key_layer, value_layer)] |
|
context_layer = self.core_attention_flash(query_layer, key_layer, value_layer) |
|
context_layer = rearrange(context_layer, 'b s h d -> s b (h d)').contiguous() |
|
else: |
|
context_layer = self.core_attention( |
|
query_layer, key_layer, value_layer, attention_mask) |
|
|
|
output= self.dense(context_layer) |
|
|
|
return output, kv_cache |
|
|
|
class GEBBlock(torch.nn.Module): |
|
"""A single transformer layer. |
|
|
|
Transformer layer takes input with size [s, b, h] and returns an |
|
output of the same size. |
|
""" |
|
def __init__(self, config: GEBConfig, layer_number, device=None): |
|
super(GEBBlock, self).__init__() |
|
self.layer_number = layer_number |
|
self.apply_residual_connection_post_layernorm \ |
|
= config.apply_residual_connection_post_layernorm |
|
|
|
|
|
self.fp32_residual_connection = config.fp32_residual_connection |
|
self.input_layernorm = RMSNorm(config.hidden_size, eps=config.layernorm_epsilon, device=device, |
|
dtype=config.torch_dtype) |
|
self.self_attention = GEBAttention(config, layer_number, device=device) |
|
self.hidden_dropout = config.hidden_dropout |
|
self.post_attention_layernorm = RMSNorm(config.hidden_size, eps=config.layernorm_epsilon, device=device, |
|
dtype=config.torch_dtype) |
|
self.mlp = MLP(config, device=device) |
|
|
|
def forward(self, hidden_states, attention_mask=None, |
|
rotary_pos_emb=None, |
|
kv_cache=None, |
|
use_cache=True): |
|
|
|
|
|
layernorm_output = self.input_layernorm(hidden_states) |
|
|
|
attention_output, kv_cache = \ |
|
self.self_attention( |
|
layernorm_output, |
|
attention_mask, |
|
rotary_pos_emb=rotary_pos_emb, |
|
kv_cache=kv_cache, |
|
use_cache=use_cache) |
|
|
|
|
|
if self.apply_residual_connection_post_layernorm: |
|
residual = layernorm_output |
|
else: |
|
residual = hidden_states |
|
|
|
layernorm_input = torch.nn.functional.dropout(attention_output, |
|
p=0.0, |
|
training=self.training) |
|
layernorm_input = residual + layernorm_input |
|
|
|
layernorm_output = self.post_attention_layernorm(layernorm_input) |
|
|
|
mlp_output = self.mlp(layernorm_output) |
|
|
|
if self.apply_residual_connection_post_layernorm: |
|
residual = layernorm_output |
|
else: |
|
residual = layernorm_input |
|
out = torch.nn.functional.dropout(mlp_output, |
|
p=0.0, |
|
training=self.training) |
|
output = residual + out |
|
return output, kv_cache |
|
|
|
class GEBTransformer(torch.nn.Module): |
|
"""Transformer class.""" |
|
|
|
def __init__(self, config: GEBConfig, device=None): |
|
super(GEBTransformer, self).__init__() |
|
|
|
self.fp32_residual_connection = config.fp32_residual_connection |
|
self.post_layer_norm = config.post_layer_norm |
|
self.num_layers = config.num_layers |
|
def build_layer(layer_number): |
|
return GEBBlock( |
|
config, |
|
layer_number, |
|
device=device) |
|
|
|
self.layers = [] |
|
for i in range(self.num_layers): |
|
layer_num = i + 1 |
|
self.layers.append(build_layer(layer_num)) |
|
self.layers = torch.nn.ModuleList(self.layers) |
|
if self.post_layer_norm: |
|
self.final_layernorm = RMSNorm(config.hidden_size, eps=config.layernorm_epsilon, device=device, |
|
dtype=config.torch_dtype) |
|
self.gradient_checkpointing = False |
|
|
|
def _get_layer(self, layer_number): |
|
return self.layers[layer_number] |
|
|
|
def forward( |
|
self, hidden_states, attention_mask, rotary_pos_emb, kv_caches=None, |
|
use_cache: Optional[bool] = True, |
|
output_hidden_states: Optional[bool] = False, |
|
): |
|
if not kv_caches: |
|
kv_caches = [None for _ in range(self.num_layers)] |
|
presents = () if use_cache else None |
|
if self.gradient_checkpointing and self.training: |
|
if use_cache: |
|
logger.warning_once( |
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." |
|
) |
|
use_cache = False |
|
|
|
all_self_attentions = None |
|
all_hidden_states = () if output_hidden_states else None |
|
for index in range(self.num_layers): |
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
layer = self._get_layer(index) |
|
if self.gradient_checkpointing and self.training: |
|
layer_hidden = torch.utils.checkpoint.checkpoint( |
|
layer, |
|
hidden_states, |
|
attention_mask, |
|
rotary_pos_emb, |
|
kv_caches[index], |
|
use_cache |
|
) |
|
else: |
|
layer_hidden = layer( |
|
hidden_states, |
|
attention_mask, |
|
rotary_pos_emb, |
|
kv_cache=kv_caches[index], |
|
use_cache=use_cache |
|
) |
|
hidden_states, kv_cache = layer_hidden |
|
if use_cache: |
|
presents = presents + (kv_cache,) |
|
|
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
if self.post_layer_norm: |
|
hidden_states = self.final_layernorm(hidden_states) |
|
return hidden_states, presents, all_hidden_states, all_self_attentions |
|
|
|
|
|
class GEBPreTrainedModel(PreTrainedModel): |
|
""" |
|
An abstract class to handle weights initialization and |
|
a simple interface for downloading and loading pretrained models. |
|
""" |
|
|
|
is_parallelizable = False |
|
supports_gradient_checkpointing = True |
|
config_class = GEBConfig |
|
base_model_prefix = "transformer" |
|
_no_split_modules = ["GEBBlock"] |
|
|
|
def _init_weights(self, module: nn.Module): |
|
"""Initialize the weights.""" |
|
return |
|
|
|
def get_masks(self, input_ids, past_key_values, padding_mask=None): |
|
batch_size, seq_length = input_ids.shape |
|
full_attention_mask = torch.ones(batch_size, seq_length, seq_length, device=input_ids.device) |
|
full_attention_mask.tril_() |
|
past_length = 0 |
|
if past_key_values: |
|
past_length = past_key_values[0][0].shape[0] |
|
if past_length: |
|
full_attention_mask = torch.cat((torch.ones(batch_size, seq_length, past_length, |
|
device=input_ids.device), full_attention_mask), dim=-1) |
|
if padding_mask is not None: |
|
full_attention_mask = full_attention_mask * padding_mask.unsqueeze(1) |
|
if not past_length and padding_mask is not None: |
|
full_attention_mask -= padding_mask.unsqueeze(-1) - 1 |
|
full_attention_mask = (full_attention_mask < 0.5).bool() |
|
full_attention_mask.unsqueeze_(1) |
|
return full_attention_mask |
|
|
|
def get_position_ids(self, input_ids, device): |
|
batch_size, seq_length = input_ids.shape |
|
position_ids = torch.arange(seq_length, dtype=torch.long, device=device).unsqueeze(0).repeat(batch_size, 1) |
|
return position_ids |
|
|
|
def _set_gradient_checkpointing(self, module, value=False): |
|
if isinstance(module, GEBTransformer): |
|
module.gradient_checkpointing = value |
|
|
|
class Embedding(torch.nn.Module): |
|
"""Language model embeddings.""" |
|
|
|
def __init__(self, config: GEBConfig, device=None): |
|
super(Embedding, self).__init__() |
|
|
|
self.hidden_size = config.hidden_size |
|
|
|
self.word_embeddings = nn.Embedding( |
|
config.padded_vocab_size, |
|
self.hidden_size, |
|
dtype=config.torch_dtype, |
|
device=device |
|
) |
|
self.fp32_residual_connection = config.fp32_residual_connection |
|
|
|
def forward(self, input_ids): |
|
|
|
words_embeddings = self.word_embeddings(input_ids) |
|
embeddings = words_embeddings |
|
|
|
embeddings = embeddings.transpose(0, 1).contiguous() |
|
|
|
if self.fp32_residual_connection: |
|
embeddings = embeddings.float() |
|
return embeddings |
|
|
|
class GEBModel(GEBPreTrainedModel): |
|
def __init__(self, config: GEBConfig, device=None, empty_init=True): |
|
super().__init__(config) |
|
if empty_init: |
|
init_method = skip_init |
|
else: |
|
init_method = default_init |
|
init_kwargs = {} |
|
if device is not None: |
|
init_kwargs["device"] = device |
|
self.embedding = init_method(Embedding, config, **init_kwargs) |
|
self.num_layers = config.num_layers |
|
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads |
|
self.kv_channels = config.kv_channels |
|
|
|
|
|
self.seq_length = config.seq_length |
|
rotary_dim = ( |
|
config.hidden_size // config.num_attention_heads if config.kv_channels is None else config.kv_channels |
|
) |
|
|
|
|
|
|
|
|
|
self.rotary_pos_emb = RotaryEmbedding(rotary_dim) |
|
|
|
|
|
self.encoder = init_method(GEBTransformer, config, **init_kwargs) |
|
self.output_layer = init_method(nn.Linear, config.hidden_size, config.padded_vocab_size, bias=False, |
|
dtype=config.torch_dtype, **init_kwargs) |
|
self.pre_seq_len = config.pre_seq_len |
|
self.prefix_projection = config.prefix_projection |
|
if self.pre_seq_len is not None: |
|
for param in self.parameters(): |
|
param.requires_grad = False |
|
self.prefix_tokens = torch.arange(self.pre_seq_len).long() |
|
self.prefix_encoder = PrefixEncoder(config) |
|
self.dropout = torch.nn.Dropout(0.1) |
|
|
|
def get_input_embeddings(self): |
|
return self.embedding.word_embeddings |
|
|
|
def get_prompt(self, batch_size, device, dtype=torch.half): |
|
prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(device) |
|
past_key_values = self.prefix_encoder(prefix_tokens).type(dtype) |
|
past_key_values = past_key_values.view( |
|
batch_size, |
|
self.pre_seq_len, |
|
self.num_layers * 2, |
|
self.num_key_value_groups, |
|
self.kv_channels |
|
) |
|
|
|
past_key_values = self.dropout(past_key_values) |
|
past_key_values = past_key_values.permute([2, 1, 0, 3, 4]).split(2) |
|
return past_key_values |
|
|
|
def forward( |
|
self, |
|
input_ids, |
|
position_ids: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.BoolTensor] = None, |
|
full_attention_mask: Optional[torch.BoolTensor] = None, |
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
): |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
batch_size, seq_length = input_ids.shape |
|
if inputs_embeds is None: |
|
inputs_embeds = self.embedding(input_ids) |
|
|
|
if self.pre_seq_len is not None: |
|
if past_key_values is None: |
|
past_key_values = self.get_prompt(batch_size=batch_size, device=input_ids.device, |
|
dtype=inputs_embeds.dtype) |
|
if attention_mask is not None: |
|
attention_mask = torch.cat([attention_mask.new_ones((batch_size, self.pre_seq_len)), |
|
attention_mask], dim=-1) |
|
|
|
if full_attention_mask is None: |
|
if (attention_mask is not None and not attention_mask.all()) or (past_key_values and seq_length != 1): |
|
full_attention_mask = self.get_masks(input_ids, past_key_values, padding_mask=attention_mask) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
rotary_pos_emb = self.rotary_pos_emb(self.seq_length) |
|
rotary_pos_emb = rotary_pos_emb[position_ids[0].tolist()] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
hidden_states, presents, all_hidden_states, all_self_attentions = self.encoder( |
|
inputs_embeds, full_attention_mask, rotary_pos_emb=rotary_pos_emb, |
|
kv_caches=past_key_values, use_cache=use_cache, output_hidden_states=output_hidden_states |
|
) |
|
|
|
if not return_dict: |
|
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None) |
|
|
|
return BaseModelOutputWithPast( |
|
last_hidden_state=hidden_states, |
|
past_key_values=presents, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attentions, |
|
) |
|
|
|
class GEBForCausalLM(GEBPreTrainedModel): |
|
def __init__(self, config: GEBConfig, empty_init=True, device=None): |
|
super().__init__(config) |
|
|
|
self.max_sequence_length = config.max_length |
|
self.transformer = GEBModel(config, empty_init=empty_init, device=device) |
|
self.config = config |
|
self.quantized = False |
|
|
|
|
|
|
|
|
|
def _update_model_kwargs_for_generation( |
|
self, |
|
outputs: ModelOutput, |
|
model_kwargs: Dict[str, Any], |
|
is_encoder_decoder: bool = False, |
|
standardize_cache_format: bool = False, |
|
) -> Dict[str, Any]: |
|
|
|
model_kwargs["past_key_values"] = self._extract_past_from_model_output( |
|
outputs, standardize_cache_format=standardize_cache_format |
|
) |
|
|
|
|
|
if "attention_mask" in model_kwargs: |
|
attention_mask = model_kwargs["attention_mask"] |
|
model_kwargs["attention_mask"] = torch.cat( |
|
[attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))], dim=-1 |
|
) |
|
|
|
|
|
if "position_ids" in model_kwargs: |
|
position_ids = model_kwargs["position_ids"] |
|
new_position_id = position_ids[..., -1:].clone() |
|
new_position_id += 1 |
|
model_kwargs["position_ids"] = torch.cat( |
|
[position_ids, new_position_id], dim=-1 |
|
) |
|
|
|
model_kwargs["is_first_forward"] = False |
|
return model_kwargs |
|
|
|
def prepare_inputs_for_generation( |
|
self, |
|
input_ids: torch.LongTensor, |
|
past_key_values: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
use_cache: Optional[bool] = None, |
|
is_first_forward: bool = True, |
|
**kwargs |
|
) -> dict: |
|
|
|
if position_ids is None: |
|
position_ids = self.get_position_ids(input_ids, device=input_ids.device) |
|
if not is_first_forward: |
|
if past_key_values is not None: |
|
position_ids = position_ids[..., -1:] |
|
input_ids = input_ids[:, -1:] |
|
return { |
|
"input_ids": input_ids, |
|
"past_key_values": past_key_values, |
|
"position_ids": position_ids, |
|
"attention_mask": attention_mask, |
|
"return_last_logit": True, |
|
"use_cache": use_cache |
|
} |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
past_key_values: Optional[Tuple[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
labels: Optional[torch.Tensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
return_last_logit: Optional[bool] = False, |
|
): |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
transformer_outputs = self.transformer( |
|
input_ids=input_ids, |
|
position_ids=position_ids, |
|
attention_mask=attention_mask, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
hidden_states = transformer_outputs[0] |
|
if return_last_logit: |
|
hidden_states = hidden_states[-1:] |
|
lm_logits = self.transformer.output_layer(hidden_states) |
|
lm_logits = lm_logits.transpose(0, 1).contiguous() |
|
|
|
loss = None |
|
if labels is not None: |
|
lm_logits = lm_logits.to(torch.float32) |
|
|
|
|
|
shift_logits = lm_logits[..., :-1, :].contiguous() |
|
shift_labels = labels[..., 1:].contiguous() |
|
|
|
loss_fct = CrossEntropyLoss(ignore_index=-100) |
|
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)) |
|
|
|
lm_logits = lm_logits.to(hidden_states.dtype) |
|
loss = loss.to(hidden_states.dtype) |
|
|
|
if not return_dict: |
|
output = (lm_logits,) + transformer_outputs[1:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return CausalLMOutputWithPast( |
|
loss=loss, |
|
logits=lm_logits, |
|
past_key_values=transformer_outputs.past_key_values, |
|
hidden_states=transformer_outputs.hidden_states, |
|
attentions=transformer_outputs.attentions, |
|
) |
|
|
|
@staticmethod |
|
def _reorder_cache( |
|
past: Tuple[Tuple[torch.Tensor, torch.Tensor], ...], beam_idx: torch.LongTensor |
|
) -> Tuple[Tuple[torch.Tensor, torch.Tensor], ...]: |
|
""" |
|
This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or |
|
[`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct |
|
beam_idx at every generation step. |
|
|
|
Output shares the same memory storage as `past`. |
|
""" |
|
return tuple( |
|
( |
|
layer_past[0].index_select(1, beam_idx.to(layer_past[0].device)), |
|
layer_past[1].index_select(1, beam_idx.to(layer_past[1].device)), |
|
) |
|
for layer_past in past |
|
) |
|
|
|
def build_inputs(self, tokenizer, query: str, history: List[Tuple[str, str]] = None): |
|
prompt = tokenizer.build_prompt(query, history=history) |
|
tokens = [tokenizer.get_command("<bos>")] + tokenizer.encode(prompt) |
|
inputs = tokenizer.batch_encode_plus([tokens], return_tensors="pt", is_split_into_words=True) |
|
inputs = inputs.to(self.device) |
|
return inputs |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@torch.inference_mode() |
|
def chat(self, tokenizer, query: str, history: List[Tuple[str, str]] = None, max_length: int = 512, num_beams=1, |
|
do_sample=True, top_p=0.5, temperature=0.3, logits_processor=None, repetition_penalty = 1.15, **kwargs): |
|
if history is None: |
|
history = [] |
|
if logits_processor is None: |
|
logits_processor = LogitsProcessorList() |
|
logits_processor.append(InvalidScoreLogitsProcessor()) |
|
gen_kwargs = {"max_length": max_length, "num_beams": num_beams, "do_sample": do_sample, "top_p": top_p, |
|
"temperature": temperature, "logits_processor": logits_processor, "repetition_penalty":repetition_penalty, **kwargs} |
|
prompt = tokenizer.build_prompt(query, history=[]) |
|
system = "You are a helpful assistant.\n" |
|
system_ids = [ |
|
tokenizer.get_command("<bos>") |
|
] + tokenizer.encode(text=system) + [ |
|
tokenizer.get_command("<eos>")] |
|
|
|
prompt_ids = [ |
|
tokenizer.get_command("<bos>") |
|
] + tokenizer.encode( |
|
text=prompt, |
|
add_special_tokens=False |
|
) + [ |
|
tokenizer.get_command("<eos>")] + [ |
|
tokenizer.get_command("<bos>")] |
|
tokens = system_ids + prompt_ids |
|
inputs = tokenizer.batch_encode_plus([tokens], return_tensors="pt", is_split_into_words=True) |
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
inputs = inputs.to(device) |
|
outputs = self.generate(**inputs, **gen_kwargs) |
|
outputs = outputs.tolist()[0][len(inputs["input_ids"][0]):] |
|
response = tokenizer.decode(outputs) |
|
return response, history |
|
|
|
|
|
|
|
|