File size: 4,693 Bytes
b62bc5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
---
license: llama2
library_name: peft
tags:
- generated_from_trainer
base_model: codellama/CodeLlama-13b-Instruct-hf
model-index:
- name: stg-cli13b-t7-cdp-ca.dt.hlms.cln.inter-b4s1e1-20240102-0727
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# stg-cli13b-t7-cdp-ca.dt.hlms.cln.inter-b4s1e1-20240102-0727

This model is a fine-tuned version of [codellama/CodeLlama-13b-Instruct-hf](https://huggingface.co/codellama/CodeLlama-13b-Instruct-hf) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0656

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 1
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.4007        | 0.02  | 100  | 0.0985          |
| 0.0888        | 0.04  | 200  | 0.0823          |
| 0.0834        | 0.05  | 300  | 0.0800          |
| 0.0783        | 0.07  | 400  | 0.0799          |
| 0.0782        | 0.09  | 500  | 0.0755          |
| 0.0798        | 0.11  | 600  | 0.0771          |
| 0.077         | 0.13  | 700  | 0.0734          |
| 0.0747        | 0.14  | 800  | 0.0745          |
| 0.076         | 0.16  | 900  | 0.0727          |
| 0.0791        | 0.18  | 1000 | 0.0775          |
| 0.0752        | 0.2   | 1100 | 0.0717          |
| 0.0721        | 0.22  | 1200 | 0.0729          |
| 0.0731        | 0.23  | 1300 | 0.0710          |
| 0.0832        | 0.25  | 1400 | 0.0727          |
| 0.0722        | 0.27  | 1500 | 0.0715          |
| 0.0738        | 0.29  | 1600 | 0.0715          |
| 0.071         | 0.31  | 1700 | 0.0705          |
| 0.0738        | 0.32  | 1800 | 0.0713          |
| 0.075         | 0.34  | 1900 | 0.0710          |
| 0.0732        | 0.36  | 2000 | 0.0703          |
| 0.0712        | 0.38  | 2100 | 0.0701          |
| 0.0702        | 0.4   | 2200 | 0.0699          |
| 0.0733        | 0.41  | 2300 | 0.0697          |
| 0.0739        | 0.43  | 2400 | 0.0691          |
| 0.0688        | 0.45  | 2500 | 0.0684          |
| 0.0692        | 0.47  | 2600 | 0.0689          |
| 0.0727        | 0.49  | 2700 | 0.0690          |
| 0.073         | 0.5   | 2800 | 0.0685          |
| 0.0752        | 0.52  | 2900 | 0.0691          |
| 0.0696        | 0.54  | 3000 | 0.0681          |
| 0.0708        | 0.56  | 3100 | 0.0684          |
| 0.072         | 0.58  | 3200 | 0.0681          |
| 0.0716        | 0.59  | 3300 | 0.0689          |
| 0.0723        | 0.61  | 3400 | 0.0678          |
| 0.0678        | 0.63  | 3500 | 0.0676          |
| 0.0695        | 0.65  | 3600 | 0.0672          |
| 0.0689        | 0.67  | 3700 | 0.0676          |
| 0.0716        | 0.68  | 3800 | 0.0671          |
| 0.07          | 0.7   | 3900 | 0.0667          |
| 0.0683        | 0.72  | 4000 | 0.0665          |
| 0.0704        | 0.74  | 4100 | 0.0664          |
| 0.0702        | 0.76  | 4200 | 0.0665          |
| 0.0678        | 0.77  | 4300 | 0.0662          |
| 0.0679        | 0.79  | 4400 | 0.0661          |
| 0.069         | 0.81  | 4500 | 0.0660          |
| 0.0675        | 0.83  | 4600 | 0.0661          |
| 0.0682        | 0.85  | 4700 | 0.0660          |
| 0.0697        | 0.86  | 4800 | 0.0659          |
| 0.0689        | 0.88  | 4900 | 0.0658          |
| 0.0665        | 0.9   | 5000 | 0.0658          |
| 0.067         | 0.92  | 5100 | 0.0657          |
| 0.0666        | 0.94  | 5200 | 0.0657          |
| 0.0704        | 0.95  | 5300 | 0.0656          |
| 0.0682        | 0.97  | 5400 | 0.0656          |
| 0.0663        | 0.99  | 5500 | 0.0656          |


### Framework versions

- Transformers 4.37.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0
## Training procedure


The following `bitsandbytes` quantization config was used during training:
- quant_method: QuantizationMethod.BITS_AND_BYTES
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16

### Framework versions


- PEFT 0.6.2