File size: 1,386 Bytes
4ca879f eb858ed 4ca879f f47aad2 4ca879f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 |
---
license: mit
language:
- en
base_model:
- Efficient-Large-Model/VILA1.5-13b
pipeline_tag: video-text-to-text
---
# LiFT: Leveraging Human Feedback for Text-to-Video Model Alignment
## Summary
This is the model checkpoint proposed in our paper "LiFT: Leveraging Human Feedback for Text-to-Video Model Alignment". LiFT-Critic is a novel Video-Text-to-Text Reward Model for synthesized video evaluation.
Project: https://codegoat24.github.io/LiFT/
Code: https://github.com/CodeGoat24/LiFT
## ๐ง Installation
1. Clone the github repository and navigate to LiFT folder
```bash
git clone https://github.com/CodeGoat24/LiFT.git
cd LiFT
```
2. Install packages
```
bash ./environment_setup.sh lift
```
## ๐ Inference
### Run
Please download this public [LiFT-Critic-13b-lora-v1.5](https://huggingface.co/Fudan-FUXI/LiFT-Critic-13b-lora-v1.5) checkpoints.
We provide some synthesized videos for quick inference in `./demo` directory.
```bash
python LiFT-Critic/test/run_critic_13b.py --model-path ./LiFT-Critic-13b-lora-v1.5
```
# ๐๏ธ Citation
If you find our work helpful, please cite our paper.
```bibtex
@article{LiFT,
title={LiFT: Leveraging Human Feedback for Text-to-Video Model Alignment.},
author={Wang, Yibin and Tan, Zhiyu, and Wang, Junyan and Yang, Xiaomeng and Jin, Cheng and Li, Hao},
journal={arXiv preprint arXiv:2412.04814},
year={2024}
}
```
|