File size: 1,386 Bytes
4ca879f
 
 
 
 
 
 
 
 
 
 
eb858ed
 
 
 
 
 
 
4ca879f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f47aad2
4ca879f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
---
license: mit
language:
- en
base_model:
- Efficient-Large-Model/VILA1.5-13b
pipeline_tag: video-text-to-text
---

# LiFT: Leveraging Human Feedback for Text-to-Video Model Alignment


## Summary
This is the model checkpoint proposed in our paper "LiFT: Leveraging Human Feedback for Text-to-Video Model Alignment". LiFT-Critic is a novel Video-Text-to-Text Reward Model for synthesized video evaluation.

Project: https://codegoat24.github.io/LiFT/

Code: https://github.com/CodeGoat24/LiFT

## ๐Ÿ”ง Installation

1. Clone the github repository and navigate to LiFT folder
```bash
git clone https://github.com/CodeGoat24/LiFT.git
cd LiFT
```
2. Install packages
```
bash ./environment_setup.sh lift
```

## ๐Ÿš€ Inference

### Run
Please download this public [LiFT-Critic-13b-lora-v1.5](https://huggingface.co/Fudan-FUXI/LiFT-Critic-13b-lora-v1.5) checkpoints. 

We provide some synthesized videos for quick inference in `./demo` directory.

```bash
python LiFT-Critic/test/run_critic_13b.py --model-path ./LiFT-Critic-13b-lora-v1.5
```

# ๐Ÿ–Š๏ธ Citation

If you find our work helpful, please cite our paper.
```bibtex
@article{LiFT,
  title={LiFT: Leveraging Human Feedback for Text-to-Video Model Alignment.},
  author={Wang, Yibin and Tan, Zhiyu, and Wang, Junyan and Yang, Xiaomeng and Jin, Cheng and Li, Hao},
  journal={arXiv preprint arXiv:2412.04814},
  year={2024}
}
```