{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x786df7d05750>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x786df7d057e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x786df7d05870>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x786df7d05900>", "_build": "<function ActorCriticPolicy._build at 0x786df7d05990>", "forward": "<function ActorCriticPolicy.forward at 0x786df7d05a20>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x786df7d05ab0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x786df7d05b40>", "_predict": "<function ActorCriticPolicy._predict at 0x786df7d05bd0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x786df7d05c60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x786df7d05cf0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x786df7d05d80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x786df7ca6f40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1723587750710605585, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE170L16GBg/+kG+PZqokr7CIze8e7+2OwAAAAAAAAAAACJ7PXyWbz3+J0g9QXEbvvfZKb100g+8AAAAAAAAAACAZ289jDauPy+Pwj4x042+U7yuPTrWjD4AAAAAAAAAAM0KVbz25GC6Fm4xMwBagysVXgY6K7PJswAAgD8AAIA/QJ6JPT+ywT9DQLg+ncVfPQubmz1qj1k+AAAAAAAAAABm3Ds+R/Y7PxK5sL31PrO+pmazPeJvzb0AAAAAAAAAAABeUL2OsZ49TX1bPpM5dL7Wl5i7/MNKvQAAAAAAAAAAAGStvAQn9D2CaVw97DtYvn+Tk7w6WRE+AAAAAAAAAACaYIQ9RIDgPgLFmLr7552+//I/uwfOmD0AAAAAAAAAAAAze7322EK6gWI2O/Wi9zYLyCg7Em1TugAAAAAAAIA/gBtbvVqIxj79Wf093eBVvtghET2TS+A9AAAAAAAAAABNAAw+aEilPqhOSb7NyqK+n+ORvcgleb0AAAAAAAAAAA26FL7lgDY+gMKZPtbIO76jYLI8DmmBvQAAAAAAAAAAwzlevmQajj/o3Vu+Y9QAv9/gLr4G9Mq7AAAAAAAAAAB2b16+t3uRP4Bc477MXwS/4Jwivv0SbDwAAAAAAAAAAC0kPj4GYIw/gBpKPm0jsb7HHnE+3tqjvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHMawlruYyCMAWyUTTgBjAF0lEdAkTFUnb7CSHV9lChoBkdAbRIF5fMOgGgHTQ4BaAhHQJEx4tcv/R51fZQoaAZHQHINxFmWdEtoB00uAWgIR0CRMuTkyULVdX2UKGgGR0BwiV1Tzd1uaAdN1wFoCEdAkTT17pmmL3V9lChoBkdAbzYxsVLzw2gHTVUBaAhHQJE1se3hGYt1fZQoaAZHQGvuw+UyHmBoB01uAWgIR0CRNnCkoF3ZdX2UKGgGR0BvnlETg2qDaAdNRQFoCEdAkTemGVRk3HV9lChoBkdAcDQgkTpPh2gHTQoBaAhHQJE3x2TxG2F1fZQoaAZHQHC5r+tKZlZoB00KAWgIR0CROarJr+HadX2UKGgGR0ByS0BdUsFuaAdL+WgIR0CROjqXWvr4dX2UKGgGR0By1gcrAgxKaAdNHwFoCEdAkTtQYxcmjXV9lChoBkdAcWNX0XgtOGgHTWABaAhHQJE7S0CzTnd1fZQoaAZHQG7PnyNGViZoB003AWgIR0CRPEK+zt1IdX2UKGgGR0Bx0/WnTAnEaAdNRwFoCEdAkTx1XRw6yXV9lChoBkdAcCJOz6ab4WgHTTgBaAhHQJE8dfnfVI91fZQoaAZHQHGiWMju8btoB00NAWgIR0CRPHXBguyvdX2UKGgGR0BQXD3qRlpXaAdL82gIR0CRPMixmkFfdX2UKGgGR0ByZPhMrVe8aAdNTQFoCEdAkT3eLaVUuXV9lChoBkdAcDm0G/vfCWgHTRkBaAhHQJFBID3dsSF1fZQoaAZHQHDNqzu4PPNoB00WAWgIR0CRQZJ9iMHbdX2UKGgGR0BsYpKxs2vTaAdNUgFoCEdAkUJz0163RXV9lChoBkdAbiMQwsXizmgHTSEBaAhHQJFC4nfEXLx1fZQoaAZHQHBchA4XGfhoB003AWgIR0CRQ3RMvh60dX2UKGgGR0BvsWQnx8UmaAdNFgFoCEdAkURp8KG+K3V9lChoBkdAcKh73fyf+WgHTSsBaAhHQJFEsMc6vJR1fZQoaAZHQHCF9GAkLQZoB0v6aAhHQJFFGhSLqD91fZQoaAZHQHL0MKXv6TJoB00TAWgIR0CRRd1qFh5PdX2UKGgGR0Bjx4Y+B6KMaAdN6ANoCEdAkUXaTjebeHV9lChoBkdAcQvSVGCqZWgHTRsBaAhHQJFGGzlcQiB1fZQoaAZHQHGIIDHOryVoB007AWgIR0CRRkM6BAfMdX2UKGgGR0Bvtrhisny/aAdNLgFoCEdAkUZ+H31zyXV9lChoBkdAcFVNg0CRwWgHTVEBaAhHQJFG2QiiZfF1fZQoaAZHQG76qFAVwgloB00xAWgIR0CRRvCfpUxVdX2UKGgGR0Bw5Z9Vmz0IaAdNOQFoCEdAkUfqkl/pdXV9lChoBkdAb4+DK5kK/mgHTQ8BaAhHQJFJX6YVqN91fZQoaAZHQEDrFF2FFlVoB0vXaAhHQJFJd5B1Lap1fZQoaAZHQHDDAdsBQvZoB00fAWgIR0CRSqAdn004dX2UKGgGR0Bw6BJ5E+gUaAdNHwFoCEdAkUsOlj3Eh3V9lChoBkdAbvHSJCSid2gHTWQBaAhHQJFLglE7W/d1fZQoaAZHQG5TVxCIDYBoB00jAWgIR0CRTJ7aZhKEdX2UKGgGR0ByEuI2wV0taAdNDwFoCEdAkU204FRpDnV9lChoBkdAcHobSqlxfmgHTRwBaAhHQJFN4c94eLh1fZQoaAZHQHEaL5IpYtBoB003AWgIR0CRTfISDh99dX2UKGgGR0ByALH4oJAuaAdNFwFoCEdAkV9vG2kSEnV9lChoBkdAb1FqRlpXZGgHTSMBaAhHQJFgCX1J17p1fZQoaAZHQHBSoHoouwpoB00cAWgIR0CRYD5e7cwhdX2UKGgGR0BzIqb1AZ88aAdNXgFoCEdAkWEY8lolEHV9lChoBkdAbXIMERrad2gHTRcBaAhHQJFhb3/Pw/h1fZQoaAZHQG+MQ79ycTdoB01SAWgIR0CRYellsguAdX2UKGgGR0BwGOfbsWweaAdNzAFoCEdAkWMcs189fXV9lChoBkdAb9YSr5qM32gHTS4BaAhHQJFjm/BWPtF1fZQoaAZHQHCYIe1a4c5oB00tAWgIR0CRY63XI2fkdX2UKGgGR0Bu2lFYuCf6aAdNGQFoCEdAkWUkt29tdnV9lChoBkdAcCLOJtSAH2gHTS4BaAhHQJFlV04iosJ1fZQoaAZHQHA0E2kzoEBoB00vAWgIR0CRZwfRu0kXdX2UKGgGR0BvPKP+4smOaAdNGQFoCEdAkWehZpztC3V9lChoBkdAcYI88cMmW2gHS/5oCEdAkWe0nw5NoXV9lChoBkdAbWCHmig00mgHTR4BaAhHQJFoDWhAWzp1fZQoaAZHQHGEsHSnccloB00IAWgIR0CRaD0OEug6dX2UKGgGR0BshRR64UeuaAdNMQFoCEdAkWhsXvYvnXV9lChoBkdAch5mDlHSW2gHTTkBaAhHQJFocE7nxKB1fZQoaAZHQHIX611GLDRoB02gAWgIR0CRaIrSE12rdX2UKGgGR0Bwx1DArQPaaAdNAgFoCEdAkWke0G/vfHV9lChoBkdAcWHNLUTcqWgHTUQBaAhHQJFrLtVrAQB1fZQoaAZHQHCvrq2SdOJoB00qAWgIR0CRa0bPhQ3xdX2UKGgGR0Byjc7vG6wuaAdNBAFoCEdAkWt1fVqesnV9lChoBkdAcDqHWSU1RGgHTQ4BaAhHQJFsbX9R77d1fZQoaAZHQHCSunqFAVxoB00oAWgIR0CRbT9AX2ugdX2UKGgGR0Bx5sjhUBGQaAdNCAFoCEdAkW3jSkTHsHV9lChoBkdAbXiCcPOIImgHTQgBaAhHQJFuGCJ40Mx1fZQoaAZHQHCZtvS+g15oB00hAWgIR0CRcU9rGipOdX2UKGgGR0BumuBxxT86aAdNIgFoCEdAkXI3yZrpJXV9lChoBkdAci/V5a/yoWgHTQ0BaAhHQJFyfeVLSNR1fZQoaAZHQGxq2lVLi/BoB00VAWgIR0CRcxg0j1PFdX2UKGgGR0BzAudUbT+eaAdNMwFoCEdAkXMmVZ9uxnV9lChoBkdAcFrP420iQmgHTQQBaAhHQJFzV8/lhgF1fZQoaAZHQGy8/9YOlO5oB00pAWgIR0CRc7Iv8IiUdX2UKGgGR0BxlxkK/mDEaAdNQwFoCEdAkXQrvw3HaXV9lChoBkdAb71m1YyO72gHTQMBaAhHQJF05Gy5Zr51fZQoaAZHQHIGE3Ov+wVoB00QAWgIR0CRdWErXlKcdX2UKGgGR0Bx/XYI0IkaaAdNKQFoCEdAkXXePzWf9XV9lChoBkdAcTz73PAwf2gHTRIBaAhHQJF2Pyd4FA51fZQoaAZHQHEi44yXUpdoB02uAWgIR0CRduFV1fVqdX2UKGgGR0BwlR2Rq46PaAdNEwFoCEdAkXbpB9kSVXV9lChoBkdAcTIzKs+3Y2gHTRUBaAhHQJF3cUAT7EZ1fZQoaAZHQG5EmipNsWRoB00RAWgIR0CRd35j6N2ldX2UKGgGR0Bx0oN9YwIuaAdNEgFoCEdAkXmVC1JDmnV9lChoBkdAcFFnzQNTcmgHTQoBaAhHQJF6F9AooeB1fZQoaAZHQG9MiGetjkNoB0v9aAhHQJF6IH2RJVd1fZQoaAZHQHI+MVLzwttoB00FAWgIR0CResSf16E8dX2UKGgGR0Bv5VMAWBSUaAdNLwFoCEdAkXudph4MW3V9lChoBkdAcOmRmK64D2gHTSsBaAhHQJF7rlZHNHJ1fZQoaAZHQGs03HR1HONoB01NAWgIR0CRe/obn5i3dX2UKGgGR0By8YlNUOuraAdNPAFoCEdAkXz8ju8brHV9lChoBkdAcwU/yGzrvGgHTSABaAhHQJF8/SCvovB1fZQoaAZHQHJg9OmBOHpoB00qAWgIR0CRfdRZ2ZAqdX2UKGgGR0BxNKxUvPC3aAdNJQFoCEdAkX4rPUrkKnV9lChoBkdAcFvLEUCaJGgHTQUBaAhHQJF+XWwu/UR1fZQoaAZHQG/+NWuHN5doB00jAWgIR0CRfzGwRoRJdX2UKGgGR0BvjiprDZUUaAdNEAFoCEdAkX9HAM2FWXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |