modelsent_test
This model is a fine-tuned version of albert/albert-base-v2 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.2379
- Accuracy: 0.9261
- F1: 0.9261
- Precision: 0.9261
- Recall: 0.9261
- Accuracy Label Negative: 0.9242
- Accuracy Label Positive: 0.9278
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Accuracy Label Negative | Accuracy Label Positive |
---|---|---|---|---|---|---|---|---|---|
0.5403 | 0.2442 | 100 | 0.5274 | 0.7611 | 0.7596 | 0.7728 | 0.7611 | 0.8535 | 0.6746 |
0.2673 | 0.4884 | 200 | 0.2806 | 0.8980 | 0.8980 | 0.8994 | 0.8980 | 0.9230 | 0.8746 |
0.247 | 0.7326 | 300 | 0.2610 | 0.9029 | 0.9024 | 0.9074 | 0.9029 | 0.8434 | 0.9586 |
0.2357 | 0.9768 | 400 | 0.2560 | 0.9084 | 0.9084 | 0.9096 | 0.9084 | 0.9318 | 0.8864 |
0.2094 | 1.2198 | 500 | 0.3127 | 0.9090 | 0.9089 | 0.9123 | 0.9090 | 0.9508 | 0.8698 |
0.1695 | 1.4640 | 600 | 0.2298 | 0.9188 | 0.9187 | 0.9189 | 0.9188 | 0.9053 | 0.9314 |
0.2024 | 1.7082 | 700 | 0.2218 | 0.9206 | 0.9206 | 0.9214 | 0.9206 | 0.9394 | 0.9030 |
0.1155 | 1.9524 | 800 | 0.2061 | 0.9236 | 0.9236 | 0.9236 | 0.9236 | 0.9192 | 0.9278 |
0.1361 | 2.1954 | 900 | 0.2299 | 0.9218 | 0.9218 | 0.9226 | 0.9218 | 0.9407 | 0.9041 |
0.1235 | 2.4396 | 1000 | 0.2668 | 0.9212 | 0.9212 | 0.9246 | 0.9212 | 0.9634 | 0.8817 |
0.084 | 2.6838 | 1100 | 0.2733 | 0.9218 | 0.9218 | 0.9240 | 0.9218 | 0.9545 | 0.8911 |
0.1326 | 2.9280 | 1200 | 0.2395 | 0.9249 | 0.9249 | 0.9249 | 0.9249 | 0.9192 | 0.9302 |
Framework versions
- Transformers 4.49.0
- Pytorch 2.5.1+cu124
- Datasets 3.3.2
- Tokenizers 0.21.0
- Downloads last month
- 41
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for Frenz/modelsent_test
Base model
albert/albert-base-v2