FreelancerFel
commited on
Commit
·
8d0ec85
1
Parent(s):
cc1dbda
PPO Lunar Agent Test
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-LunarLander-v2-test.zip +3 -0
- ppo-LunarLander-v2-test/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2-test/data +94 -0
- ppo-LunarLander-v2-test/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2-test/policy.pth +3 -0
- ppo-LunarLander-v2-test/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2-test/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 267.99 +/- 15.88
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f5d14348c20>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5d14348cb0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5d14348d40>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5d14348dd0>", "_build": "<function ActorCriticPolicy._build at 0x7f5d14348e60>", "forward": "<function ActorCriticPolicy.forward at 0x7f5d14348ef0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5d14348f80>", "_predict": "<function ActorCriticPolicy._predict at 0x7f5d14351050>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5d143510e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5d14351170>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5d14351200>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f5d14325180>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651788180.4019284, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAPO6hD05YsA+tQVZPj3j576kP4A+M2u/vQAAAAAAAAAAgDEqvshvrj+UhQi/wXugviartr6NBua+AAAAAAAAAAAzj+k8Dzr1PgLTAT7f4dK+M339PaOLJj0AAAAAAAAAAM0sDrzcDjW8lr5LvkFjHj2o67g9+iP9vQAAgD8AAIA/s8kNPaTooz8OLVQ+8oTsvhSs8DzHc0A9AAAAAAAAAACAv3W9XI98uspoSTqmGk62CFR9u30+arkAAAAAAAAAACYPmT0A4IA/u+xUPbMN3r7ViI887A0qvAAAAAAAAAAADWy/vbh2irkAMLc7VidfOOGuRLtx2Yy4AAAAAAAAgD8mGv49GGy4PQAM3b1xbZ6+o+S8PU3UVT0AAAAAAAAAAOan1z1vBgc+cDl1viL4eL4p8wi9/87CPAAAAAAAAAAAWnHlPWSHdz7qeJ2+YSyWvplSXb16wsi9AAAAAAAAAACGgnM+P959P3q23T77CiC/y/TYPk02uj0AAAAAAAAAAJqWCD1xTme7MrafvL4kgjyPxaa8KrhgPQAAgD8AAIA/jXWHPu+AWz+f2wG97yrpvilaNz5O0Bi+AAAAAAAAAADmfKS9oUiYP4aBKL666+G+E6isvv1cVb4AAAAAAAAAAJqJmzpQzrI/ptOrPLcyL778uYm7JiEHvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVNhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBHKJIw/qcUCUhpRSlIwBbJRNAAGMAXSUR0CqKJfZM+NcdX2UKGgGaAloD0MIJEil2BGxcUCUhpRSlGgVS/FoFkdAqiis0k4WDnV9lChoBmgJaA9DCE57Ss5JLXFAlIaUUpRoFUvxaBZHQKoouKWszVN1fZQoaAZoCWgPQwhKtU/H4xFwQJSGlFKUaBVL+GgWR0CqKLx9gF5fdX2UKGgGaAloD0MIPwJ/+Lktc0CUhpRSlGgVS+5oFkdAqij3xSYPXnV9lChoBmgJaA9DCNECtK3miXFAlIaUUpRoFUvgaBZHQKopUAPNFBp1fZQoaAZoCWgPQwhq+YGrfAFyQJSGlFKUaBVL+GgWR0CqKftGd7OWdX2UKGgGaAloD0MIPE7RkdxNc0CUhpRSlGgVTUsBaBZHQKoqH8zAN5N1fZQoaAZoCWgPQwi+FYkJqu1yQJSGlFKUaBVL72gWR0CqKl/+KjzqdX2UKGgGaAloD0MIMgVrnA1HcECUhpRSlGgVS9loFkdAqiqQHHFPznV9lChoBmgJaA9DCH/2I0Xk8nFAlIaUUpRoFUvraBZHQKoq22Ifr8l1fZQoaAZoCWgPQwgbn8n++a1xQJSGlFKUaBVL72gWR0CqK0sPSUkfdX2UKGgGaAloD0MIknTN5FsRckCUhpRSlGgVTRABaBZHQKorzq33HrB1fZQoaAZoCWgPQwi+bDttzX1wQJSGlFKUaBVL+GgWR0CqLDGViWmhdX2UKGgGaAloD0MIp+Zyg2F1cECUhpRSlGgVS+BoFkdAqix3LidauHV9lChoBmgJaA9DCKMh41HqCXJAlIaUUpRoFUvnaBZHQKoso4TbnHN1fZQoaAZoCWgPQwjrdCDraaByQJSGlFKUaBVL+mgWR0CqLOGCqZMMdX2UKGgGaAloD0MIk3Ahj+BCb0CUhpRSlGgVTRgBaBZHQKos++5e7cx1fZQoaAZoCWgPQwgpCB7fHoZzQJSGlFKUaBVL12gWR0CqLROTaCcxdX2UKGgGaAloD0MI3KD2W7s1cECUhpRSlGgVTSMBaBZHQKotwVSGahJ1fZQoaAZoCWgPQwidf7vsl1NyQJSGlFKUaBVL1mgWR0CqLdI7eVLSdX2UKGgGaAloD0MIylTBqORJcUCUhpRSlGgVS91oFkdAqi5rlFMIvHV9lChoBmgJaA9DCKddTDMdPnBAlIaUUpRoFU1RAWgWR0CqLugymALBdX2UKGgGaAloD0MIKcx7nOmTb0CUhpRSlGgVTQgBaBZHQKou7qNZNfx1fZQoaAZoCWgPQwi28pL/ya5vQJSGlFKUaBVL4mgWR0CqLwjWkJrtdX2UKGgGaAloD0MI1xNdF36Vc0CUhpRSlGgVS9NoFkdAqi82vhZQpHV9lChoBmgJaA9DCB6KAn2iNnFAlIaUUpRoFU0aAWgWR0CqL7Q0fozOdX2UKGgGaAloD0MIOdBDbRvqcUCUhpRSlGgVS+FoFkdAqjCPxQSBb3V9lChoBmgJaA9DCKThlLn5p3FAlIaUUpRoFU0GAWgWR0CqMJuO801qdX2UKGgGaAloD0MIePATBxDccECUhpRSlGgVS/JoFkdAqjCgToMa0nV9lChoBmgJaA9DCIxqEVGMxHJAlIaUUpRoFUvgaBZHQKow8hmoR7J1fZQoaAZoCWgPQwgTZARU+CBwQJSGlFKUaBVL8WgWR0CqMQZyuIRAdX2UKGgGaAloD0MI1ouhnCiycECUhpRSlGgVS/NoFkdAqjFyvV3EAHV9lChoBmgJaA9DCJ63sdlRUnNAlIaUUpRoFUv6aBZHQKoxfBHkLhJ1fZQoaAZoCWgPQwg8M8FwrqZVQJSGlFKUaBVN6ANoFkdAqj8k7U5MlHV9lChoBmgJaA9DCNDx0eKMiXFAlIaUUpRoFUv6aBZHQKo/S4Ajps51fZQoaAZoCWgPQwggnE8d619wQJSGlFKUaBVL/WgWR0CqP0ttIkJKdX2UKGgGaAloD0MIhetRuB4EcECUhpRSlGgVS9loFkdAqj+x+QU5/HV9lChoBmgJaA9DCEwao3VUf3FAlIaUUpRoFUvkaBZHQKo/2be/Ho51fZQoaAZoCWgPQwhr1hnfVxxyQJSGlFKUaBVL8GgWR0CqQCQhfShKdX2UKGgGaAloD0MInbgcr4C1cECUhpRSlGgVTQoBaBZHQKpAw5z5oGp1fZQoaAZoCWgPQwjO3a6XJj1yQJSGlFKUaBVL82gWR0CqQNqO1fE5dX2UKGgGaAloD0MIfT1fs1y2cUCUhpRSlGgVS9NoFkdAqkEsO/cnE3V9lChoBmgJaA9DCDvfT43XY3FAlIaUUpRoFUvlaBZHQKpBfA2ycCp1fZQoaAZoCWgPQwjVlc/y/PxwQJSGlFKUaBVL8GgWR0CqQZ70e2d/dX2UKGgGaAloD0MIHjLlQ1CsckCUhpRSlGgVTWsBaBZHQKpBrBNVR1p1fZQoaAZoCWgPQwiZ1qaxvZxxQJSGlFKUaBVL42gWR0CqQc5tm+TNdX2UKGgGaAloD0MI7Uj1nV8uc0CUhpRSlGgVS/ZoFkdAqkIFitq59XV9lChoBmgJaA9DCMjPRq4b2m1AlIaUUpRoFUvoaBZHQKpCRdoFmnR1fZQoaAZoCWgPQwjT+fAsgT1zQJSGlFKUaBVL52gWR0CqQkp4rz5HdX2UKGgGaAloD0MIdqVlpF4ncECUhpRSlGgVS+1oFkdAqkLtTtLL6nV9lChoBmgJaA9DCP7tsl/3wW1AlIaUUpRoFUvvaBZHQKpDF/pdKNB1fZQoaAZoCWgPQwgqyM9GrhhyQJSGlFKUaBVL1mgWR0CqQ0EuHvc8dX2UKGgGaAloD0MIIO9VK5OkcECUhpRSlGgVS/RoFkdAqkOPoicG1XV9lChoBmgJaA9DCM40YftJhnBAlIaUUpRoFU0OAWgWR0CqQ49i2DxtdX2UKGgGaAloD0MIh9uhYXGGckCUhpRSlGgVS9xoFkdAqkQwqLCN0nV9lChoBmgJaA9DCNrnMcqzSm5AlIaUUpRoFU0hAWgWR0CqRMByCFsYdX2UKGgGaAloD0MIXfxtTxARcUCUhpRSlGgVS/9oFkdAqkU7L0SRKnV9lChoBmgJaA9DCNB7YwgAu25AlIaUUpRoFUvhaBZHQKpFYSVW0Z51fZQoaAZoCWgPQwi0y7c+7PxwQJSGlFKUaBVNIQFoFkdAqkWCLMs6JnV9lChoBmgJaA9DCCh9IeS8QHFAlIaUUpRoFU0CAWgWR0CqRZekpI+XdX2UKGgGaAloD0MIHQHcLB4Mc0CUhpRSlGgVS/loFkdAqkWjImw7knV9lChoBmgJaA9DCJPlJJQ+LHBAlIaUUpRoFUv9aBZHQKpGFPszEaV1fZQoaAZoCWgPQwh/FkuRfLdtQJSGlFKUaBVL7mgWR0CqRhVRLsa9dX2UKGgGaAloD0MICmr4FlYkbkCUhpRSlGgVS/BoFkdAqkYhxtHhCXV9lChoBmgJaA9DCEPnNXZJhHBAlIaUUpRoFU0qAWgWR0CqRl/4IrvtdX2UKGgGaAloD0MIqDgOvNoGcECUhpRSlGgVS+9oFkdAqkbHTRYzSHV9lChoBmgJaA9DCKuSyD6I6XBAlIaUUpRoFUveaBZHQKpG2RlpXZJ1fZQoaAZoCWgPQwgTmbnAZRdyQJSGlFKUaBVL/mgWR0CqRyytNi6QdX2UKGgGaAloD0MI8Ief/15QcUCUhpRSlGgVS+BoFkdAqkcy+FlCkXV9lChoBmgJaA9DCGdjJeZZk3JAlIaUUpRoFUv0aBZHQKpHfPsRg7Z1fZQoaAZoCWgPQwjPu7GgsAByQJSGlFKUaBVL62gWR0CqSACMglnidX2UKGgGaAloD0MIR3Nk5ddFcECUhpRSlGgVS/RoFkdAqki2606YFHV9lChoBmgJaA9DCJMdG4H4am9AlIaUUpRoFUv8aBZHQKpJXpzLfUF1fZQoaAZoCWgPQwjhCb3+5CFxQJSGlFKUaBVL7WgWR0CqSYkuYhMbdX2UKGgGaAloD0MIx/DYz2KxcUCUhpRSlGgVS9doFkdAqkmlbaAWi3V9lChoBmgJaA9DCKa0/pbARHFAlIaUUpRoFUv5aBZHQKpJtTZxrBV1fZQoaAZoCWgPQwhmpN5TudZxQJSGlFKUaBVL32gWR0CqSdgLApKBdX2UKGgGaAloD0MIrWwf8tbUckCUhpRSlGgVS+ZoFkdAqknpCKJl8XV9lChoBmgJaA9DCDs42JsY/G5AlIaUUpRoFU0sAWgWR0CqSoKrq+rVdX2UKGgGaAloD0MIVP8gkiFhckCUhpRSlGgVS+JoFkdAqkq7FdcB2nV9lChoBmgJaA9DCOT09XyNiHJAlIaUUpRoFUvcaBZHQKpK94sVclh1fZQoaAZoCWgPQwhiZwqd17JyQJSGlFKUaBVNFAFoFkdAqksEPxx1gnV9lChoBmgJaA9DCOik940vX29AlIaUUpRoFUvoaBZHQKpLLaFEiMZ1fZQoaAZoCWgPQwjh8IKI1A1yQJSGlFKUaBVNDQFoFkdAqktVoBaLXXV9lChoBmgJaA9DCC0nofTFI3BAlIaUUpRoFUvvaBZHQKpLl0Gu9vl1fZQoaAZoCWgPQwi6h4TvvTFwQJSGlFKUaBVNCQFoFkdAqkyOv0RODnV9lChoBmgJaA9DCJ2ed2NBO3FAlIaUUpRoFUvraBZHQKpMv1M/QjV1fZQoaAZoCWgPQwiUMqmhjfJxQJSGlFKUaBVL6WgWR0CqTVlNDc/MdX2UKGgGaAloD0MIVwkWh3PtcECUhpRSlGgVS99oFkdAqk1vPu5SWXV9lChoBmgJaA9DCPrPmh8/8HBAlIaUUpRoFUvkaBZHQKpNlaaCtih1fZQoaAZoCWgPQwiMg0vHnBRwQJSGlFKUaBVL5GgWR0CqTbbOu7pWdX2UKGgGaAloD0MIr3d/vFc0cECUhpRSlGgVTQMBaBZHQKpN9o+Ofd11fZQoaAZoCWgPQwii0oiZPXJyQJSGlFKUaBVNBgFoFkdAqk5fpMYdhnV9lChoBmgJaA9DCJboLLOI6m5AlIaUUpRoFUvoaBZHQKpOdIYm9g51fZQoaAZoCWgPQwizKVd41yxxQJSGlFKUaBVNAwFoFkdAqk8mglF+eHV9lChoBmgJaA9DCA7cgTrlvG9AlIaUUpRoFUv/aBZHQKpPXMxGlRB1fZQoaAZoCWgPQwh2wHXFjPVsQJSGlFKUaBVL9GgWR0CqT2lC1JDmdX2UKGgGaAloD0MInPhqR3F+cECUhpRSlGgVS/VoFkdAqk+Z00WM0nV9lChoBmgJaA9DCHHGMCfoDHNAlIaUUpRoFU0QAWgWR0CqT7Z5AyEddWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 372, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2-test.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a42cb64468d4516c4949cc3b5da448658a8d742564be30c9490f362a644398eb
|
3 |
+
size 144014
|
ppo-LunarLander-v2-test/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2-test/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f5d14348c20>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5d14348cb0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5d14348d40>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5d14348dd0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f5d14348e60>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f5d14348ef0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5d14348f80>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f5d14351050>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5d143510e0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5d14351170>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5d14351200>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f5d14325180>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 1015808,
|
46 |
+
"_total_timesteps": 1000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1651788180.4019284,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAPO6hD05YsA+tQVZPj3j576kP4A+M2u/vQAAAAAAAAAAgDEqvshvrj+UhQi/wXugviartr6NBua+AAAAAAAAAAAzj+k8Dzr1PgLTAT7f4dK+M339PaOLJj0AAAAAAAAAAM0sDrzcDjW8lr5LvkFjHj2o67g9+iP9vQAAgD8AAIA/s8kNPaTooz8OLVQ+8oTsvhSs8DzHc0A9AAAAAAAAAACAv3W9XI98uspoSTqmGk62CFR9u30+arkAAAAAAAAAACYPmT0A4IA/u+xUPbMN3r7ViI887A0qvAAAAAAAAAAADWy/vbh2irkAMLc7VidfOOGuRLtx2Yy4AAAAAAAAgD8mGv49GGy4PQAM3b1xbZ6+o+S8PU3UVT0AAAAAAAAAAOan1z1vBgc+cDl1viL4eL4p8wi9/87CPAAAAAAAAAAAWnHlPWSHdz7qeJ2+YSyWvplSXb16wsi9AAAAAAAAAACGgnM+P959P3q23T77CiC/y/TYPk02uj0AAAAAAAAAAJqWCD1xTme7MrafvL4kgjyPxaa8KrhgPQAAgD8AAIA/jXWHPu+AWz+f2wG97yrpvilaNz5O0Bi+AAAAAAAAAADmfKS9oUiYP4aBKL666+G+E6isvv1cVb4AAAAAAAAAAJqJmzpQzrI/ptOrPLcyL778uYm7JiEHvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVNhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBHKJIw/qcUCUhpRSlIwBbJRNAAGMAXSUR0CqKJfZM+NcdX2UKGgGaAloD0MIJEil2BGxcUCUhpRSlGgVS/FoFkdAqiis0k4WDnV9lChoBmgJaA9DCE57Ss5JLXFAlIaUUpRoFUvxaBZHQKoouKWszVN1fZQoaAZoCWgPQwhKtU/H4xFwQJSGlFKUaBVL+GgWR0CqKLx9gF5fdX2UKGgGaAloD0MIPwJ/+Lktc0CUhpRSlGgVS+5oFkdAqij3xSYPXnV9lChoBmgJaA9DCNECtK3miXFAlIaUUpRoFUvgaBZHQKopUAPNFBp1fZQoaAZoCWgPQwhq+YGrfAFyQJSGlFKUaBVL+GgWR0CqKftGd7OWdX2UKGgGaAloD0MIPE7RkdxNc0CUhpRSlGgVTUsBaBZHQKoqH8zAN5N1fZQoaAZoCWgPQwi+FYkJqu1yQJSGlFKUaBVL72gWR0CqKl/+KjzqdX2UKGgGaAloD0MIMgVrnA1HcECUhpRSlGgVS9loFkdAqiqQHHFPznV9lChoBmgJaA9DCH/2I0Xk8nFAlIaUUpRoFUvraBZHQKoq22Ifr8l1fZQoaAZoCWgPQwgbn8n++a1xQJSGlFKUaBVL72gWR0CqK0sPSUkfdX2UKGgGaAloD0MIknTN5FsRckCUhpRSlGgVTRABaBZHQKorzq33HrB1fZQoaAZoCWgPQwi+bDttzX1wQJSGlFKUaBVL+GgWR0CqLDGViWmhdX2UKGgGaAloD0MIp+Zyg2F1cECUhpRSlGgVS+BoFkdAqix3LidauHV9lChoBmgJaA9DCKMh41HqCXJAlIaUUpRoFUvnaBZHQKoso4TbnHN1fZQoaAZoCWgPQwjrdCDraaByQJSGlFKUaBVL+mgWR0CqLOGCqZMMdX2UKGgGaAloD0MIk3Ahj+BCb0CUhpRSlGgVTRgBaBZHQKos++5e7cx1fZQoaAZoCWgPQwgpCB7fHoZzQJSGlFKUaBVL12gWR0CqLROTaCcxdX2UKGgGaAloD0MI3KD2W7s1cECUhpRSlGgVTSMBaBZHQKotwVSGahJ1fZQoaAZoCWgPQwidf7vsl1NyQJSGlFKUaBVL1mgWR0CqLdI7eVLSdX2UKGgGaAloD0MIylTBqORJcUCUhpRSlGgVS91oFkdAqi5rlFMIvHV9lChoBmgJaA9DCKddTDMdPnBAlIaUUpRoFU1RAWgWR0CqLugymALBdX2UKGgGaAloD0MIKcx7nOmTb0CUhpRSlGgVTQgBaBZHQKou7qNZNfx1fZQoaAZoCWgPQwi28pL/ya5vQJSGlFKUaBVL4mgWR0CqLwjWkJrtdX2UKGgGaAloD0MI1xNdF36Vc0CUhpRSlGgVS9NoFkdAqi82vhZQpHV9lChoBmgJaA9DCB6KAn2iNnFAlIaUUpRoFU0aAWgWR0CqL7Q0fozOdX2UKGgGaAloD0MIOdBDbRvqcUCUhpRSlGgVS+FoFkdAqjCPxQSBb3V9lChoBmgJaA9DCKThlLn5p3FAlIaUUpRoFU0GAWgWR0CqMJuO801qdX2UKGgGaAloD0MIePATBxDccECUhpRSlGgVS/JoFkdAqjCgToMa0nV9lChoBmgJaA9DCIxqEVGMxHJAlIaUUpRoFUvgaBZHQKow8hmoR7J1fZQoaAZoCWgPQwgTZARU+CBwQJSGlFKUaBVL8WgWR0CqMQZyuIRAdX2UKGgGaAloD0MI1ouhnCiycECUhpRSlGgVS/NoFkdAqjFyvV3EAHV9lChoBmgJaA9DCJ63sdlRUnNAlIaUUpRoFUv6aBZHQKoxfBHkLhJ1fZQoaAZoCWgPQwg8M8FwrqZVQJSGlFKUaBVN6ANoFkdAqj8k7U5MlHV9lChoBmgJaA9DCNDx0eKMiXFAlIaUUpRoFUv6aBZHQKo/S4Ajps51fZQoaAZoCWgPQwggnE8d619wQJSGlFKUaBVL/WgWR0CqP0ttIkJKdX2UKGgGaAloD0MIhetRuB4EcECUhpRSlGgVS9loFkdAqj+x+QU5/HV9lChoBmgJaA9DCEwao3VUf3FAlIaUUpRoFUvkaBZHQKo/2be/Ho51fZQoaAZoCWgPQwhr1hnfVxxyQJSGlFKUaBVL8GgWR0CqQCQhfShKdX2UKGgGaAloD0MInbgcr4C1cECUhpRSlGgVTQoBaBZHQKpAw5z5oGp1fZQoaAZoCWgPQwjO3a6XJj1yQJSGlFKUaBVL82gWR0CqQNqO1fE5dX2UKGgGaAloD0MIfT1fs1y2cUCUhpRSlGgVS9NoFkdAqkEsO/cnE3V9lChoBmgJaA9DCDvfT43XY3FAlIaUUpRoFUvlaBZHQKpBfA2ycCp1fZQoaAZoCWgPQwjVlc/y/PxwQJSGlFKUaBVL8GgWR0CqQZ70e2d/dX2UKGgGaAloD0MIHjLlQ1CsckCUhpRSlGgVTWsBaBZHQKpBrBNVR1p1fZQoaAZoCWgPQwiZ1qaxvZxxQJSGlFKUaBVL42gWR0CqQc5tm+TNdX2UKGgGaAloD0MI7Uj1nV8uc0CUhpRSlGgVS/ZoFkdAqkIFitq59XV9lChoBmgJaA9DCMjPRq4b2m1AlIaUUpRoFUvoaBZHQKpCRdoFmnR1fZQoaAZoCWgPQwjT+fAsgT1zQJSGlFKUaBVL52gWR0CqQkp4rz5HdX2UKGgGaAloD0MIdqVlpF4ncECUhpRSlGgVS+1oFkdAqkLtTtLL6nV9lChoBmgJaA9DCP7tsl/3wW1AlIaUUpRoFUvvaBZHQKpDF/pdKNB1fZQoaAZoCWgPQwgqyM9GrhhyQJSGlFKUaBVL1mgWR0CqQ0EuHvc8dX2UKGgGaAloD0MIIO9VK5OkcECUhpRSlGgVS/RoFkdAqkOPoicG1XV9lChoBmgJaA9DCM40YftJhnBAlIaUUpRoFU0OAWgWR0CqQ49i2DxtdX2UKGgGaAloD0MIh9uhYXGGckCUhpRSlGgVS9xoFkdAqkQwqLCN0nV9lChoBmgJaA9DCNrnMcqzSm5AlIaUUpRoFU0hAWgWR0CqRMByCFsYdX2UKGgGaAloD0MIXfxtTxARcUCUhpRSlGgVS/9oFkdAqkU7L0SRKnV9lChoBmgJaA9DCNB7YwgAu25AlIaUUpRoFUvhaBZHQKpFYSVW0Z51fZQoaAZoCWgPQwi0y7c+7PxwQJSGlFKUaBVNIQFoFkdAqkWCLMs6JnV9lChoBmgJaA9DCCh9IeS8QHFAlIaUUpRoFU0CAWgWR0CqRZekpI+XdX2UKGgGaAloD0MIHQHcLB4Mc0CUhpRSlGgVS/loFkdAqkWjImw7knV9lChoBmgJaA9DCJPlJJQ+LHBAlIaUUpRoFUv9aBZHQKpGFPszEaV1fZQoaAZoCWgPQwh/FkuRfLdtQJSGlFKUaBVL7mgWR0CqRhVRLsa9dX2UKGgGaAloD0MICmr4FlYkbkCUhpRSlGgVS/BoFkdAqkYhxtHhCXV9lChoBmgJaA9DCEPnNXZJhHBAlIaUUpRoFU0qAWgWR0CqRl/4IrvtdX2UKGgGaAloD0MIqDgOvNoGcECUhpRSlGgVS+9oFkdAqkbHTRYzSHV9lChoBmgJaA9DCKuSyD6I6XBAlIaUUpRoFUveaBZHQKpG2RlpXZJ1fZQoaAZoCWgPQwgTmbnAZRdyQJSGlFKUaBVL/mgWR0CqRyytNi6QdX2UKGgGaAloD0MI8Ief/15QcUCUhpRSlGgVS+BoFkdAqkcy+FlCkXV9lChoBmgJaA9DCGdjJeZZk3JAlIaUUpRoFUv0aBZHQKpHfPsRg7Z1fZQoaAZoCWgPQwjPu7GgsAByQJSGlFKUaBVL62gWR0CqSACMglnidX2UKGgGaAloD0MIR3Nk5ddFcECUhpRSlGgVS/RoFkdAqki2606YFHV9lChoBmgJaA9DCJMdG4H4am9AlIaUUpRoFUv8aBZHQKpJXpzLfUF1fZQoaAZoCWgPQwjhCb3+5CFxQJSGlFKUaBVL7WgWR0CqSYkuYhMbdX2UKGgGaAloD0MIx/DYz2KxcUCUhpRSlGgVS9doFkdAqkmlbaAWi3V9lChoBmgJaA9DCKa0/pbARHFAlIaUUpRoFUv5aBZHQKpJtTZxrBV1fZQoaAZoCWgPQwhmpN5TudZxQJSGlFKUaBVL32gWR0CqSdgLApKBdX2UKGgGaAloD0MIrWwf8tbUckCUhpRSlGgVS+ZoFkdAqknpCKJl8XV9lChoBmgJaA9DCDs42JsY/G5AlIaUUpRoFU0sAWgWR0CqSoKrq+rVdX2UKGgGaAloD0MIVP8gkiFhckCUhpRSlGgVS+JoFkdAqkq7FdcB2nV9lChoBmgJaA9DCOT09XyNiHJAlIaUUpRoFUvcaBZHQKpK94sVclh1fZQoaAZoCWgPQwhiZwqd17JyQJSGlFKUaBVNFAFoFkdAqksEPxx1gnV9lChoBmgJaA9DCOik940vX29AlIaUUpRoFUvoaBZHQKpLLaFEiMZ1fZQoaAZoCWgPQwjh8IKI1A1yQJSGlFKUaBVNDQFoFkdAqktVoBaLXXV9lChoBmgJaA9DCC0nofTFI3BAlIaUUpRoFUvvaBZHQKpLl0Gu9vl1fZQoaAZoCWgPQwi6h4TvvTFwQJSGlFKUaBVNCQFoFkdAqkyOv0RODnV9lChoBmgJaA9DCJ2ed2NBO3FAlIaUUpRoFUvraBZHQKpMv1M/QjV1fZQoaAZoCWgPQwiUMqmhjfJxQJSGlFKUaBVL6WgWR0CqTVlNDc/MdX2UKGgGaAloD0MIVwkWh3PtcECUhpRSlGgVS99oFkdAqk1vPu5SWXV9lChoBmgJaA9DCPrPmh8/8HBAlIaUUpRoFUvkaBZHQKpNlaaCtih1fZQoaAZoCWgPQwiMg0vHnBRwQJSGlFKUaBVL5GgWR0CqTbbOu7pWdX2UKGgGaAloD0MIr3d/vFc0cECUhpRSlGgVTQMBaBZHQKpN9o+Ofd11fZQoaAZoCWgPQwii0oiZPXJyQJSGlFKUaBVNBgFoFkdAqk5fpMYdhnV9lChoBmgJaA9DCJboLLOI6m5AlIaUUpRoFUvoaBZHQKpOdIYm9g51fZQoaAZoCWgPQwizKVd41yxxQJSGlFKUaBVNAwFoFkdAqk8mglF+eHV9lChoBmgJaA9DCA7cgTrlvG9AlIaUUpRoFUv/aBZHQKpPXMxGlRB1fZQoaAZoCWgPQwh2wHXFjPVsQJSGlFKUaBVL9GgWR0CqT2lC1JDmdX2UKGgGaAloD0MInPhqR3F+cECUhpRSlGgVS/VoFkdAqk+Z00WM0nV9lChoBmgJaA9DCHHGMCfoDHNAlIaUUpRoFU0QAWgWR0CqT7Z5AyEddWUu"
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 372,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2-test/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f8003ff33946d94ecd888bdeb6495458c3a7dd2a0ac0c3da90104c030245f21b
|
3 |
+
size 84893
|
ppo-LunarLander-v2-test/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c0d4d571fc95604ccdd9327dc646d4dd25876fbe2e9d1295a612c7b4fc10b181
|
3 |
+
size 43201
|
ppo-LunarLander-v2-test/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2-test/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:773d022412abab33a703b3c294f83bea084983d4eea9860d6231b64b85e7792e
|
3 |
+
size 222317
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 267.9907311249085, "std_reward": 15.875814074452139, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-05T22:28:49.354062"}
|