header

πŸ“ƒ Paper β€’ 🌐 Demo β€’ πŸ“ƒ Github β€’ πŸ€— LongLLaVA-9B

efficiency

🌈 Update

Architecture

Click to view the architecture image

Architecture Image

Results

Click to view the Results
  • Main Results Main Results
  • Diagnostic Results Diagnostic Results
  • Video-NIAH Video-NIAH

Results reproduction

Evaluation

  • Preparation

Get the model inference code from Github.

git clone https://github.com/FreedomIntelligence/LongLLaVA.git
  • Environment Setup
pip install -r requirements.txt
  • Command Line Interface
python cli.py --model_dir path-to-longllava
  • Model Inference
query = 'What does the picture show?'
image_paths = ['image_path1'] # image or video path

from cli import Chatbot
bot = Chatbot(path-to-longllava)
output = bot.chat(query, image_paths)
print(output) # Prints the output of the model

Acknowledgement

  • LLaVA: Visual Instruction Tuning (LLaVA) built towards GPT-4V level capabilities and beyond.

Citation

@misc{wang2024longllavascalingmultimodalllms,
      title={LongLLaVA: Scaling Multi-modal LLMs to 1000 Images Efficiently via Hybrid Architecture}, 
      author={Xidong Wang and Dingjie Song and Shunian Chen and Chen Zhang and Benyou Wang},
      year={2024},
      eprint={2409.02889},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2409.02889}, 
}
Downloads last month
85
Safetensors
Model size
51.9B params
Tensor type
BF16
Β·
Inference API
Inference API (serverless) does not yet support transformers models for this pipeline type.

Collection including FreedomIntelligence/LongLLaVA-53B-A13B