FredZhang7 commited on
Commit
0de77cb
·
1 Parent(s): 65d0d41

Create modeling_efficientnetv25.py

Browse files
Files changed (1) hide show
  1. modeling_efficientnetv25.py +38 -0
modeling_efficientnetv25.py ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import PreTrainedModel
2
+ from .configuration_efficientnetv25 import EfficientNetV25Config
3
+ import torch, sys, os
4
+ from huggingface_hub import hf_hub_download
5
+
6
+ class EfficientNetV25ForImageClassification(PreTrainedModel):
7
+ config_class = EfficientNetV25Config
8
+
9
+ def __init__(self, config):
10
+ super().__init__(config)
11
+
12
+ repo_id = '/'.join(config.url.split('/')[3:5])
13
+ file_name = config.url.split('/')[-1]
14
+ path = f"./models/{file_name}"
15
+ if not os.path.exists(path):
16
+ hf_hub_download(repo_id=repo_id, filename=file_name, local_dir="./models")
17
+
18
+ self.model = torch.load(path)
19
+ self.input_size = config.input_size
20
+ shape = [2] + self.input_size
21
+ example_inputs = torch.randn(shape)
22
+ example_inputs = (example_inputs - example_inputs.min()) / (example_inputs.max() - example_inputs.min())
23
+
24
+ self.num_classes = config.num_classes
25
+ if self.num_classes != 1000:
26
+ self.model.classifier = torch.nn.Linear(in_features=1984, out_features=self.num_classes, bias=True)
27
+
28
+ traced_model = torch.jit.trace(self.model, example_inputs)
29
+ traced_model.save(file_name)
30
+
31
+ self.model = torch.jit.load(file_name)
32
+
33
+ def forward(self, tensor, labels=None):
34
+ logits = self.model(tensor)
35
+ if labels is not None:
36
+ loss = torch.nn.cross_entropy(logits, labels)
37
+ return {"loss": loss, "logits": logits}
38
+ return {"logits": logits}