File size: 2,640 Bytes
acb96f1
 
c776d18
 
 
9ceae57
 
 
 
 
 
 
c776d18
 
 
 
 
acb96f1
c776d18
d4945a6
b027a2c
c776d18
6ab84be
c776d18
6ab84be
5b515e8
7c227ba
c776d18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18ab019
c776d18
 
 
 
 
 
18ab019
c776d18
b61e4ef
c776d18
18ab019
c776d18
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
---
license: creativeml-openrail-m
tags:
- stable-diffusion
- prompt-generator
widget:
- text: "amazing"
- text: "a photo of"
- text: "a sci-fi"
- text: "a portrait of"
- text: "a person standing"
- text: "a boy watching"
datasets:
- poloclub/diffusiondb
- Gustavosta/Stable-Diffusion-Prompts
- bartman081523/stable-diffusion-discord-prompts
- FredZhang7/krea-ai-prompts
---
# DistilGPT2 Stable Diffusion V2 Model Card
This model was trained on 2,470,000 descriptive stable diffusion prompts on the [FredZhang7/distilgpt2-stable-diffusion](https://huggingface.co/FredZhang7/distilgpt2-stable-diffusion) checkpoint for another 4,270,000 steps.

Compared to other prompt generation models using GPT2, this one runs with 50% faster forwardpropagation and 40% less disk space & RAM.

Major improvements from v1 are:
- 25% more variations
- faster and more fluent prompt generation
- cleaned training data
  * removed prompts that generate images with nsfw scores > 0.5
  * removed duplicates, including prompts that differ by capitalization and punctuations
  * removed punctuations at random places
  * removed prompts shorter than 15 characters


### PyTorch

```bash
pip install --upgrade transformers
```

```python
from transformers import GPT2Tokenizer, GPT2LMHeadModel
tokenizer = GPT2Tokenizer.from_pretrained('distilgpt2')
tokenizer.add_special_tokens({'pad_token': '[PAD]'})
model = GPT2LMHeadModel.from_pretrained('FredZhang7/distilgpt2-stable-diffusion-v2')

prompt = r'a cat sitting'     # the beginning of the prompt
temperature = 0.9             # a higher temperature will produce more diverse results, but with a higher risk of less coherent text.
top_k = 8                     # the number of tokens to sample from at each step
max_length = 80               # the maximum number of tokens for the output of the model
repitition_penalty = 1.2      # the penalty value for each repetition of a token
num_return_sequences=5        # the number of results to generate

# generate the result with contrastive search
input_ids = tokenizer(prompt, return_tensors='pt').input_ids
output = model.generate(input_ids, do_sample=True, temperature=temperature, top_k=top_k, max_length=max_length, num_return_sequences=num_return_sequences, repetition_penalty=repitition_penalty, penalty_alpha=0.6, no_repeat_ngram_size=1, early_stopping=True)

print('\nInput:\n' + 100 * '-')
print('\033[96m' + prompt + '\033[0m')
print('\nOutput:\n' + 100 * '-')
for i in range(len(output)):
    print('\033[92m' + tokenizer.decode(output[i], skip_special_tokens=True) + '\033[0m\n')
```

Example output:
![constrastive search](./constrastive_search.png)