Fizzarolli
commited on
Commit
•
5b6f34c
1
Parent(s):
5df3bc6
Update README.md
Browse files
README.md
CHANGED
@@ -3,203 +3,23 @@ license: apache-2.0
|
|
3 |
base_model: h2oai/h2o-danube3-500m-base
|
4 |
tags:
|
5 |
- axolotl
|
6 |
-
- generated_from_trainer
|
7 |
-
model-index:
|
8 |
-
- name: clite7-500m-test-ckpts
|
9 |
-
results: []
|
10 |
-
---
|
11 |
-
|
12 |
-
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
-
should probably proofread and complete it, then remove this comment. -->
|
14 |
-
|
15 |
-
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
|
16 |
-
<details><summary>See axolotl config</summary>
|
17 |
-
|
18 |
-
axolotl version: `0.4.1`
|
19 |
-
```yaml
|
20 |
-
# Weights and Biases logging config
|
21 |
-
wandb_project: clite
|
22 |
-
wandb_entity:
|
23 |
-
wandb_watch:
|
24 |
-
wandb_name: v7
|
25 |
-
wandb_log_model:
|
26 |
-
|
27 |
-
# Model architecture config
|
28 |
-
base_model: h2oai/h2o-danube3-500m-base
|
29 |
-
model_type: AutoModelForCausalLM
|
30 |
-
tokenizer_type: AutoTokenizer
|
31 |
-
chat_template: anthropic
|
32 |
-
|
33 |
-
# Hugging Face saving config
|
34 |
-
hub_model_id:
|
35 |
-
hub_strategy:
|
36 |
-
push_dataset_to_hub:
|
37 |
-
hf_use_auth_token:
|
38 |
-
|
39 |
-
# Model checkpointing config
|
40 |
-
output_dir: ./lora-out
|
41 |
-
resume_from_checkpoint:
|
42 |
-
save_steps:
|
43 |
-
saves_per_epoch: 5
|
44 |
-
save_safetensors: true
|
45 |
-
save_total_limit: 2
|
46 |
-
|
47 |
-
# Mixed precision training config
|
48 |
-
bf16: true
|
49 |
-
fp16: false
|
50 |
-
tf32: false
|
51 |
-
|
52 |
-
# Model loading config
|
53 |
-
load_in_8bit: false
|
54 |
-
load_in_4bit: false
|
55 |
-
strict: false
|
56 |
-
|
57 |
-
# Sequence config
|
58 |
-
sequence_len: 8192
|
59 |
-
s2_attention: false
|
60 |
-
sample_packing: true
|
61 |
-
eval_sample_packing: true
|
62 |
-
pad_to_sequence_len: true
|
63 |
-
train_on_inputs: true
|
64 |
-
group_by_length: false
|
65 |
-
|
66 |
-
# Dataset config
|
67 |
datasets:
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
eval_steps:
|
73 |
-
evals_per_epoch: 10
|
74 |
-
test_datasets:
|
75 |
-
dataset_prepared_path: ./last-preped-dataset
|
76 |
-
shuffle_merged_datasets: true
|
77 |
-
|
78 |
-
# Training hyperparameters
|
79 |
-
num_epochs: 3
|
80 |
-
gradient_accumulation_steps: 2
|
81 |
-
micro_batch_size: 8
|
82 |
-
eval_batch_size: 8
|
83 |
-
warmup_steps: 10
|
84 |
-
optimizer: paged_adamw_8bit
|
85 |
-
lr_scheduler: cosine
|
86 |
-
learning_rate: 0.00004
|
87 |
-
cosine_min_lr_ratio: 0.1
|
88 |
-
weight_decay: 0.1
|
89 |
-
max_grad_norm: 1
|
90 |
-
logging_steps: 1
|
91 |
-
|
92 |
-
# Model optimization
|
93 |
-
gradient_checkpointing: unsloth
|
94 |
-
xformers_attention: false
|
95 |
-
flash_attention: true
|
96 |
-
sdp_attention: false
|
97 |
-
unsloth_cross_entropy_loss: false
|
98 |
-
unsloth_lora_mlp: false
|
99 |
-
unsloth_lora_qkv: false
|
100 |
-
unsloth_lora_o: false
|
101 |
-
|
102 |
-
# Loss monitoring config
|
103 |
-
early_stopping_patience: false
|
104 |
-
loss_watchdog_threshold: 100.0
|
105 |
-
loss_watchdog_patience: 3
|
106 |
-
|
107 |
-
# Debug config
|
108 |
-
debug: true
|
109 |
-
seed: 02496
|
110 |
-
|
111 |
-
# DeepSpeed and FSDP config
|
112 |
-
deepspeed:
|
113 |
-
fsdp:
|
114 |
-
fsdp_config:
|
115 |
-
|
116 |
-
# Token config
|
117 |
-
special_tokens:
|
118 |
-
tokens: # these are delimiters
|
119 |
-
- "<EOT>"
|
120 |
|
121 |
-
#
|
122 |
-
|
123 |
-
hub_strategy: all_checkpoints
|
124 |
|
|
|
125 |
```
|
|
|
126 |
|
127 |
-
|
128 |
-
|
129 |
-
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/ruthenic/clite/runs/diil6zl9)
|
130 |
-
# clite7-500m-test-ckpts
|
131 |
-
|
132 |
-
This model is a fine-tuned version of [h2oai/h2o-danube3-500m-base](https://huggingface.co/h2oai/h2o-danube3-500m-base) on the None dataset.
|
133 |
-
It achieves the following results on the evaluation set:
|
134 |
-
- Loss: 1.3765
|
135 |
-
|
136 |
-
## Model description
|
137 |
-
|
138 |
-
More information needed
|
139 |
-
|
140 |
-
## Intended uses & limitations
|
141 |
-
|
142 |
-
More information needed
|
143 |
-
|
144 |
-
## Training and evaluation data
|
145 |
|
146 |
-
|
147 |
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
The following hyperparameters were used during training:
|
153 |
-
- learning_rate: 4e-05
|
154 |
-
- train_batch_size: 8
|
155 |
-
- eval_batch_size: 8
|
156 |
-
- seed: 2496
|
157 |
-
- gradient_accumulation_steps: 2
|
158 |
-
- total_train_batch_size: 16
|
159 |
-
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
160 |
-
- lr_scheduler_type: cosine
|
161 |
-
- lr_scheduler_warmup_steps: 10
|
162 |
-
- num_epochs: 3
|
163 |
-
|
164 |
-
### Training results
|
165 |
-
|
166 |
-
| Training Loss | Epoch | Step | Validation Loss |
|
167 |
-
|:-------------:|:------:|:----:|:---------------:|
|
168 |
-
| 2.9517 | 0.0952 | 1 | 3.7616 |
|
169 |
-
| 2.9796 | 0.1905 | 2 | 3.6462 |
|
170 |
-
| 2.9632 | 0.2857 | 3 | 3.3357 |
|
171 |
-
| 2.6639 | 0.3810 | 4 | 3.0408 |
|
172 |
-
| 2.5048 | 0.4762 | 5 | 2.7322 |
|
173 |
-
| 2.4911 | 0.5714 | 6 | 2.5094 |
|
174 |
-
| 2.1291 | 0.6667 | 7 | 2.3554 |
|
175 |
-
| 4.8452 | 0.7619 | 8 | 1.6418 |
|
176 |
-
| 1.6902 | 0.8571 | 9 | 1.6067 |
|
177 |
-
| 1.6166 | 0.9524 | 10 | 1.5581 |
|
178 |
-
| 1.5985 | 1.0476 | 11 | 1.5162 |
|
179 |
-
| 1.5001 | 1.0476 | 12 | 1.4847 |
|
180 |
-
| 1.4679 | 1.1429 | 13 | 1.4601 |
|
181 |
-
| 1.4981 | 1.2381 | 14 | 1.4440 |
|
182 |
-
| 1.4864 | 1.3333 | 15 | 1.4293 |
|
183 |
-
| 1.4895 | 1.4286 | 16 | 1.4174 |
|
184 |
-
| 1.4653 | 1.5238 | 17 | 1.4061 |
|
185 |
-
| 1.4447 | 1.6190 | 18 | 1.3988 |
|
186 |
-
| 1.4492 | 1.7143 | 19 | 1.3937 |
|
187 |
-
| 1.4244 | 1.8095 | 20 | 1.3896 |
|
188 |
-
| 1.4319 | 1.9048 | 21 | 1.3858 |
|
189 |
-
| 1.4238 | 2.0 | 22 | 1.3830 |
|
190 |
-
| 1.4725 | 2.0952 | 23 | 1.3810 |
|
191 |
-
| 1.3862 | 2.0952 | 24 | 1.3794 |
|
192 |
-
| 1.3526 | 2.1905 | 25 | 1.3783 |
|
193 |
-
| 1.4134 | 2.2857 | 26 | 1.3776 |
|
194 |
-
| 1.3909 | 2.3810 | 27 | 1.3771 |
|
195 |
-
| 1.4016 | 2.4762 | 28 | 1.3769 |
|
196 |
-
| 1.3494 | 2.5714 | 29 | 1.3766 |
|
197 |
-
| 1.3783 | 2.6667 | 30 | 1.3765 |
|
198 |
-
|
199 |
-
|
200 |
-
### Framework versions
|
201 |
-
|
202 |
-
- Transformers 4.42.4
|
203 |
-
- Pytorch 2.1.2+cu118
|
204 |
-
- Datasets 2.19.1
|
205 |
-
- Tokenizers 0.19.1
|
|
|
3 |
base_model: h2oai/h2o-danube3-500m-base
|
4 |
tags:
|
5 |
- axolotl
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
datasets:
|
7 |
+
- kalomaze/Opus_Instruct_3k
|
8 |
+
language:
|
9 |
+
- en
|
10 |
+
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
+
# Clite
|
13 |
+
claude lite. for sure not a euphemism
|
|
|
14 |
|
15 |
+
## Prompting
|
16 |
```
|
17 |
+
You are an AI assistant named Claude created by Anthropic to be helpful, harmless, and honest.
|
18 |
|
19 |
+
Human: [Query]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
+
Assistant: [Response]<EOT>
|
22 |
|
23 |
+
Human: ...
|
24 |
+
```
|
25 |
+
HOWEVER. the model is a bit stupid, so you should probably stop on `\n\nHuman:` instead of just `<EOT>`, as it'll be more reliable
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|