Text Generation
Transformers
PyTorch
Safetensors
Finnish
llama
finnish
text-generation-inference
File size: 9,609 Bytes
a971b09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
import pprint
from functools import partial

from tqdm import tqdm, trange
import numpy as np
import mlxu

import jax
import jax.numpy as jnp
from jax.experimental.pjit import pjit
from jax.sharding import PartitionSpec as PS
from flax.training.train_state import TrainState

from EasyLM.data import DatasetFactory
from EasyLM.checkpoint import StreamingCheckpointer
from EasyLM.optimizers import OptimizerFactory
from EasyLM.jax_utils import (
    JaxRNG, next_rng, match_partition_rules,
    cross_entropy_loss_and_accuracy, global_norm, get_float_dtype_by_name,
    set_random_seed, average_metrics, get_weight_decay_mask,
    make_shard_and_gather_fns, with_sharding_constraint,
)
from EasyLM.models.llama.llama_model import (
    LLaMAConfig, FlaxLLaMAForCausalLMModule
)


FLAGS, FLAGS_DEF = mlxu.define_flags_with_default(
    seed=42,
    initialize_jax_distributed=False,
    mesh_dim='1,-1,1',
    dtype='fp32',
    param_dtype='fp32',
    total_steps=10000,
    load_llama_config='',
    update_llama_config='',
    load_checkpoint='',
    load_dataset_state='',
    log_freq=50,
    save_model_freq=0,
    save_milestone_freq=0,
    eval_freq=0,
    tokenizer=LLaMAConfig.get_tokenizer_config(),
    train_dataset=DatasetFactory.get_default_config(),
    eval_dataset=DatasetFactory.get_default_config(),
    optimizer=OptimizerFactory.get_default_config(),
    checkpointer=StreamingCheckpointer.get_default_config(),
    llama=LLaMAConfig.get_default_config(),
    logger=mlxu.WandBLogger.get_default_config(),
    log_all_worker=False,
)


def main(argv):
    if FLAGS.initialize_jax_distributed:
        jax.distributed.initialize()

    variant = mlxu.get_user_flags(FLAGS, FLAGS_DEF)
    flags_config_dict = mlxu.user_flags_to_config_dict(FLAGS, FLAGS_DEF)
    logger = mlxu.WandBLogger(
        config=FLAGS.logger,
        variant=variant,
        enable=FLAGS.log_all_worker or (jax.process_index() == 0),
    )
    set_random_seed(FLAGS.seed)

    tokenizer = LLaMAConfig.get_tokenizer(FLAGS.tokenizer)
    dataset = DatasetFactory.load_dataset(FLAGS.train_dataset, tokenizer)

    if FLAGS.load_dataset_state != '':
        dataset.load_state_dict(mlxu.load_pickle(FLAGS.load_dataset_state))

    if FLAGS.eval_freq > 0:
        eval_dataset = DatasetFactory.load_dataset(
            FLAGS.eval_dataset, dataset.tokenizer, eval_dataset=True
        )

    seq_length = dataset.seq_length

    if FLAGS.load_llama_config != '':
        llama_config = LLaMAConfig.load_config(FLAGS.load_llama_config)
    else:
        llama_config = LLaMAConfig(**FLAGS.llama)

    if FLAGS.update_llama_config != '':
        llama_config.update(dict(eval(FLAGS.update_llama_config)))

    llama_config.update(dict(
        bos_token_id=dataset.tokenizer.bos_token_id,
        eos_token_id=dataset.tokenizer.eos_token_id,
    ))
    if llama_config.vocab_size < dataset.vocab_size:
        llama_config.update(dict(vocab_size=dataset.vocab_size))

    model = FlaxLLaMAForCausalLMModule(
        llama_config, dtype=get_float_dtype_by_name(FLAGS.dtype), param_dtype=get_float_dtype_by_name(FLAGS.param_dtype)
    )

    optimizer, optimizer_info = OptimizerFactory.get_optimizer(
        FLAGS.optimizer,
        get_weight_decay_mask(LLaMAConfig.get_weight_decay_exclusions())
    )

    def create_trainstate_from_params(params):
        return TrainState.create(params=params, tx=optimizer, apply_fn=None)

    def init_fn(rng):
        rng_generator = JaxRNG(rng)
        params = model.init(
            input_ids=jnp.zeros((4, seq_length), dtype=jnp.int32),
            position_ids=jnp.zeros((4, seq_length), dtype=jnp.int32),
            attention_mask=jnp.ones((4, seq_length), dtype=jnp.int32),
            rngs=rng_generator(llama_config.rng_keys()),
        )
        return TrainState.create(params=params, tx=optimizer, apply_fn=None)

    def train_step(train_state, rng, batch):
        rng_generator = JaxRNG(rng)
        batch = with_sharding_constraint(batch, PS(('dp', 'fsdp')))
        def loss_and_accuracy(params):
            logits = model.apply(
                params, batch['input_tokens'], deterministic=False,
                rngs=rng_generator(llama_config.rng_keys()),
            ).logits
            return cross_entropy_loss_and_accuracy(
                logits, batch['target_tokens'], batch['loss_masks']
            )
        grad_fn = jax.value_and_grad(loss_and_accuracy, has_aux=True)
        (loss, accuracy), grads = grad_fn(train_state.params)
        train_state = train_state.apply_gradients(grads=grads)
        metrics = dict(
            loss=loss,
            accuracy=accuracy,
            learning_rate=optimizer_info['learning_rate_schedule'](train_state.step),
            gradient_norm=global_norm(grads),
            param_norm=global_norm(train_state.params),
        )
        return train_state, rng_generator(), metrics

    def eval_step(train_state, rng, batch):
        rng_generator = JaxRNG(rng)
        batch = with_sharding_constraint(batch, PS(('dp', 'fsdp')))
        logits = model.apply(
            train_state.params, batch['input_tokens'], deterministic=True,
            rngs=rng_generator(llama_config.rng_keys()),
        ).logits
        loss, accuracy = cross_entropy_loss_and_accuracy(
            logits, batch['target_tokens'], batch['loss_masks']
        )
        metrics = dict(
            eval_loss=loss,
            eval_accuracy=accuracy,
        )
        return rng_generator(), metrics

    train_state_shapes = jax.eval_shape(init_fn, next_rng())
    train_state_partition = match_partition_rules(
        LLaMAConfig.get_partition_rules(), train_state_shapes
    )

    shard_fns, gather_fns = make_shard_and_gather_fns(
        train_state_partition, train_state_shapes
    )
    checkpointer = StreamingCheckpointer(
        FLAGS.checkpointer, logger.output_dir,
        enable=jax.process_index() == 0,
    )

    sharded_init_fn = pjit(
        init_fn,
        in_shardings=PS(),
        out_shardings=train_state_partition
    )

    sharded_create_trainstate_from_params = pjit(
        create_trainstate_from_params,
        in_shardings=(train_state_partition.params, ),
        out_shardings=train_state_partition,
        donate_argnums=(0, ),
    )

    sharded_train_step = pjit(
        train_step,
        in_shardings=(train_state_partition, PS(), PS()),
        out_shardings=(train_state_partition, PS(), PS()),
        donate_argnums=(0, 1),
    )

    sharded_eval_step = pjit(
        eval_step,
        in_shardings=(train_state_partition, PS(), PS()),
        out_shardings=(PS(), PS()),
        donate_argnums=(1,),
    )

    def save_checkpoint(train_state, milestone=False):
        step = int(jax.device_get(train_state.step))
        metadata = dict(
            step=step,
            variant=variant,
            flags=flags_config_dict,
            llama_config=llama_config.to_dict(),
        )
        checkpointer.save_all(
            train_state=train_state,
            gather_fns=gather_fns,
            metadata=metadata,
            dataset=dataset.get_state_dict(),
            milestone=milestone,
        )

    mesh = LLaMAConfig.get_jax_mesh(FLAGS.mesh_dim)
    with mesh:
        train_state, restored_params = None, None
        if FLAGS.load_checkpoint != '':
            train_state, restored_params = checkpointer.load_trainstate_checkpoint(
                FLAGS.load_checkpoint, train_state_shapes, shard_fns
            )

        if train_state is None and restored_params is None:
            # Initialize from scratch
            train_state = sharded_init_fn(next_rng())
        elif train_state is None and restored_params is not None:
            # Restore from params but initialize train_state
            train_state = sharded_create_trainstate_from_params(restored_params)
            del restored_params

        start_step = int(jax.device_get(train_state.step))

        if FLAGS.save_model_freq > 0:
            save_checkpoint(train_state)

        sharded_rng = next_rng()

        step_counter = trange(start_step, FLAGS.total_steps, ncols=0)

        for step, (batch, dataset_metrics) in zip(step_counter, dataset):
            train_state, sharded_rng, metrics = sharded_train_step(
                train_state, sharded_rng, batch
            )

            if FLAGS.eval_freq > 0 and (step + 1) % FLAGS.eval_freq == 0:
                eval_metric_list = []
                eval_iterator = iter(eval_dataset)
                for eval_batch, _ in eval_iterator:
                    sharded_rng, eval_metrics = sharded_eval_step(
                        train_state, sharded_rng, eval_batch
                    )
                    eval_metric_list.append(eval_metrics)
                metrics.update(average_metrics(eval_metric_list))

            if FLAGS.log_freq > 0 and (step + 1) % FLAGS.log_freq == 0:
                log_metrics = {"step": step}
                log_metrics.update(metrics)
                log_metrics.update(dataset_metrics)
                log_metrics = jax.device_get(log_metrics)
                logger.log(log_metrics)
                tqdm.write("\n" + pprint.pformat(log_metrics) + "\n")

            if FLAGS.save_milestone_freq > 0 and (step + 1) % FLAGS.save_milestone_freq == 0:
                save_checkpoint(train_state, milestone=True)
            elif FLAGS.save_model_freq > 0 and (step + 1) % FLAGS.save_model_freq == 0:
                save_checkpoint(train_state)

        if FLAGS.save_model_freq > 0:
            save_checkpoint(train_state)


if __name__ == "__main__":
    mlxu.run(main)