Text Generation
Transformers
PyTorch
Safetensors
Finnish
llama
finnish
text-generation-inference
File size: 14,639 Bytes
a971b09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
import pprint
from functools import partial

import numpy as np
import mlxu

import jax
import jax.numpy as jnp
from jax.experimental.pjit import pjit
from jax.sharding import PartitionSpec as PS
import optax
from transformers import GenerationConfig, FlaxLogitsProcessorList

from EasyLM.checkpoint import StreamingCheckpointer
from EasyLM.serving import LMServer
from EasyLM.jax_utils import (
    JaxRNG, next_rng, match_partition_rules, tree_apply,
    set_random_seed, get_float_dtype_by_name, make_shard_and_gather_fns,
    with_sharding_constraint, FlaxTemperatureLogitsWarper
)
from EasyLM.models.llama.llama_model import LLaMAConfig, FlaxLLaMAForCausalLM


FLAGS, FLAGS_DEF = mlxu.define_flags_with_default(
    seed=42,
    initialize_jax_distributed=False,
    mesh_dim='1,-1,1',
    dtype='bf16',
    input_length=1024,
    seq_length=2048,
    top_k=50,
    top_p=1.0,
    do_sample=True,
    num_beams=1,
    add_bos_token=True,
    load_llama_config='',
    load_checkpoint='',
    tokenizer=LLaMAConfig.get_tokenizer_config(),
    lm_server=LMServer.get_default_config(),
)


def main(argv):
    if FLAGS.initialize_jax_distributed:
        jax.distributed.initialize()
    set_random_seed(FLAGS.seed)

    prefix_tokenizer = LLaMAConfig.get_tokenizer(
        FLAGS.tokenizer, truncation_side='left', padding_side='left'
    )
    tokenizer = LLaMAConfig.get_tokenizer(
        FLAGS.tokenizer, truncation_side='right', padding_side='right'
    )

    with jax.default_device(jax.devices("cpu")[0]):
        llama_config = LLaMAConfig.load_config(FLAGS.load_llama_config)
        _, params = StreamingCheckpointer.load_trainstate_checkpoint(
            FLAGS.load_checkpoint, disallow_trainstate=True
        )

        hf_model = FlaxLLaMAForCausalLM(
            llama_config,
            input_shape=(1, FLAGS.seq_length),
            seed=FLAGS.seed,
            _do_init=False
        )

    model_ps = match_partition_rules(
        LLaMAConfig.get_partition_rules(), params
    )
    shard_fns, _ = make_shard_and_gather_fns(
        model_ps, get_float_dtype_by_name(FLAGS.dtype)
    )

    @partial(
        pjit,
        in_shardings=(model_ps, PS(), PS()),
        out_shardings=(PS(), PS(), PS())
    )
    def forward_loglikelihood(params, rng, batch):
        batch = with_sharding_constraint(batch, PS(('dp', 'fsdp')))
        rng_generator = JaxRNG(rng)
        input_tokens = batch['input_tokens']
        output_tokens = batch['output_tokens']
        input_mask = batch['input_mask']
        output_mask = batch['output_mask']

        logits = hf_model.module.apply(
            params, input_tokens, attention_mask=input_mask,
            deterministic=True, rngs=rng_generator(llama_config.rng_keys()),
        ).logits
        # if llama_config.n_real_tokens is not None:
        #   logits = logits.at[:, :, llama_config.n_real_tokens:].set(-1e8)
        loglikelihood = -optax.softmax_cross_entropy_with_integer_labels(
            logits, output_tokens
        )
        loglikelihood = jnp.sum(loglikelihood * output_mask, axis=-1)
        match_count = jnp.sum(
            (jnp.argmax(logits, axis=-1) == output_tokens) * output_mask,
            axis=-1
        )
        total = jnp.sum(output_mask, axis=-1)
        is_greedy = match_count == total
        return loglikelihood, is_greedy, rng_generator()


    @partial(
        pjit,
        in_shardings=(model_ps, PS(), PS(), PS()),
        out_shardings=(PS(), PS())
    )
    def forward_generate(params, rng, batch, temperature):
        batch = with_sharding_constraint(batch, PS(('dp', 'fsdp')))
        rng_generator = JaxRNG(rng)
        output = hf_model.generate(
            batch['input_tokens'],
            attention_mask=batch['attention_mask'],
            params=params['params'],
            prng_key=rng_generator(),
            logits_processor=FlaxLogitsProcessorList(
                [FlaxTemperatureLogitsWarper(temperature)]
            ),
            generation_config=GenerationConfig(
                max_new_tokens=FLAGS.seq_length - FLAGS.input_length,
                pad_token_id=tokenizer.eos_token_id,
                bos_token_id=tokenizer.bos_token_id,
                eos_token_id=tokenizer.eos_token_id,
                do_sample=FLAGS.do_sample,
                num_beams=FLAGS.num_beams,
                top_k=FLAGS.top_k,
                top_p=FLAGS.top_p,
            )
        ).sequences[:, batch['input_tokens'].shape[1]:]
        return output, rng_generator()

    @partial(
        pjit,
        in_shardings=(model_ps, PS(), PS()),
        out_shardings=(PS(), PS())
    )
    def forward_greedy_generate(params, rng, batch):
        batch = with_sharding_constraint(batch, PS(('dp', 'fsdp')))
        rng_generator = JaxRNG(rng)
        output = hf_model.generate(
            batch['input_tokens'],
            attention_mask=batch['attention_mask'],
            params=params['params'],
            prng_key=rng_generator(),
            generation_config=GenerationConfig(
                max_new_tokens=FLAGS.seq_length - FLAGS.input_length,
                pad_token_id=tokenizer.eos_token_id,
                bos_token_id=tokenizer.bos_token_id,
                eos_token_id=tokenizer.eos_token_id,
                do_sample=False,
                num_beams=1,
            )
        ).sequences[:, batch['input_tokens'].shape[1]:]
        return output, rng_generator()

    mesh = LLaMAConfig.get_jax_mesh(FLAGS.mesh_dim)
    with mesh:
        params = tree_apply(shard_fns, params)
        sharded_rng = next_rng()

    class ModelServer(LMServer):

        @staticmethod
        def loglikelihood(prefix_text, text):
            nonlocal sharded_rng
            prefix = prefix_tokenizer(
                prefix_text,
                padding='max_length',
                truncation=True,
                max_length=FLAGS.input_length,
                return_tensors='np',
            )
            inputs = tokenizer(
                text,
                padding='max_length',
                truncation=True,
                max_length=FLAGS.seq_length - FLAGS.input_length,
                return_tensors='np',
            )
            output_tokens = np.concatenate([prefix.input_ids, inputs.input_ids], axis=1)
            bos_tokens = np.full(
                (output_tokens.shape[0], 1), tokenizer.bos_token_id, dtype=np.int32
            )
            input_tokens = np.concatenate([bos_tokens, output_tokens[:, :-1]], axis=-1)
            input_mask = np.concatenate(
                [prefix.attention_mask, inputs.attention_mask], axis=1
            )
            if FLAGS.add_bos_token:
                bos_mask = np.ones_like(input_mask[:, :1])
            else:
                bos_mask = np.zeros_like(input_mask[:, :1])

            input_mask = np.concatenate([bos_mask, input_mask[:, :-1]], axis=1)
            output_mask = np.concatenate(
                [np.zeros_like(prefix.attention_mask), inputs.attention_mask], axis=1
            )
            batch = dict(
                input_tokens=input_tokens,
                output_tokens=output_tokens,
                input_mask=input_mask,
                output_mask=output_mask,
            )
            with mesh:
                loglikelihood, is_greedy, sharded_rng = forward_loglikelihood(
                    params, sharded_rng, batch
                )
                loglikelihood, is_greedy = jax.device_get((loglikelihood, is_greedy))
            return loglikelihood, is_greedy

        @staticmethod
        def loglikelihood_rolling(text):
            nonlocal sharded_rng
            inputs = tokenizer(
                text,
                padding='longest',
                truncation=False,
                max_length=np.iinfo(np.int32).max,
                return_tensors='np',
            )
            batch_size = inputs.input_ids.shape[0]
            output_tokens = inputs.input_ids
            attention_mask = inputs.attention_mask

            if output_tokens.shape[1] < FLAGS.seq_length:
                padding_length = FLAGS.seq_length - output_tokens.shape[1]
                pad_tokens = np.full(
                    (batch_size, padding_length), tokenizer.pad_token_id, dtype=np.int32
                )
                output_tokens = np.concatenate([output_tokens, pad_tokens], axis=-1)
                pad_mask = np.zeros(
                    (batch_size, padding_length), dtype=inputs.attention_mask.dtype
                )
                attention_mask = np.concatenate([attention_mask, pad_mask], axis=-1)

            bos_tokens = np.full(
                (batch_size, 1), tokenizer.bos_token_id, dtype=np.int32
            )
            input_tokens = np.concatenate([bos_tokens, output_tokens[:, :-1]], axis=-1)
            bos_mask = np.ones((batch_size, 1), dtype=inputs.attention_mask.dtype)
            total_seq_length = output_tokens.shape[1]

            total_loglikelihood = 0.0
            total_is_greedy = True
            # Sliding window
            for i in range(0, total_seq_length, FLAGS.seq_length):
                # Last window
                if i + FLAGS.seq_length > total_seq_length:
                    last_output_mask = np.copy(attention_mask[:, -FLAGS.seq_length:])
                    last_output_mask[:, :i - total_seq_length] = 0.0

                    batch = dict(
                        input_tokens=input_tokens[:, -FLAGS.seq_length:],
                        output_tokens=output_tokens[:, -FLAGS.seq_length:],
                        input_mask=attention_mask[:, -FLAGS.seq_length:],
                        output_mask=last_output_mask,
                    )

                # Normal window
                else:
                    batch = dict(
                        input_tokens=input_tokens[:, i:i + FLAGS.seq_length],
                        output_tokens=output_tokens[:, i:i + FLAGS.seq_length],
                        input_mask=attention_mask[:, i:i + FLAGS.seq_length],
                        output_mask=attention_mask[:, i:i + FLAGS.seq_length],
                    )

                with mesh:
                    loglikelihood, is_greedy, sharded_rng = forward_loglikelihood(
                        params, sharded_rng, batch
                    )
                    loglikelihood, is_greedy = jax.device_get((loglikelihood, is_greedy))

                total_loglikelihood += loglikelihood
                total_is_greedy = np.logical_and(is_greedy, total_is_greedy)

            return total_loglikelihood, total_is_greedy

        @staticmethod
        def generate(text, temperature):
            nonlocal sharded_rng
            inputs = prefix_tokenizer(
                text,
                padding='max_length',
                truncation=True,
                max_length=FLAGS.input_length,
                return_tensors='np',
            )
            input_tokens = inputs.input_ids
            input_mask = inputs.attention_mask
            if FLAGS.add_bos_token:
                input_tokens[:, 0] = tokenizer.bos_token_id
                input_mask[:, 0] = 1
            batch = dict(
                input_tokens=input_tokens,
                attention_mask=input_mask,
            )
            with mesh:
                output, sharded_rng = forward_generate(
                    params, sharded_rng, batch, temperature
                )
                output = jax.device_get(output)
            output_text = []
            for text in list(tokenizer.batch_decode(output)):
                if tokenizer.eos_token in text:
                    text = text.split(tokenizer.eos_token, maxsplit=1)[0]
                output_text.append(text)

            return output_text

        @staticmethod
        def greedy_until(prefix_text, until, max_length):
            nonlocal sharded_rng
            all_outputs = []
            for pf, ut in zip(prefix_text, until):
                if isinstance(ut, str):
                    ut = [ut]
                total_length = 0
                total_generated = ''

                while total_length < max_length:
                    pf_tokens = tokenizer(
                        pf,
                        padding=False,
                        truncation=False,
                        max_length=np.iinfo(np.int32).max,
                        return_tensors='np',
                    )
                    input_tokens = pf_tokens.input_ids
                    attention_mask = pf_tokens.attention_mask

                    if input_tokens.shape[1] < FLAGS.input_length:
                        extra = FLAGS.input_length - input_tokens.shape[1]
                        pad_tokens = np.full(
                            (1, extra), tokenizer.pad_token_id, dtype=np.int32
                        )
                        input_tokens = np.concatenate(
                            [pad_tokens, input_tokens], axis=1
                        )
                        pad_attention = np.zeros((1, extra), dtype=attention_mask.dtype)
                        attention_mask = np.concatenate(
                            [pad_attention, attention_mask], axis=1
                        )
                    elif input_tokens.shape[1] > FLAGS.input_length:
                        input_tokens = input_tokens[:, -FLAGS.input_length:]
                        attention_mask = attention_mask[:, -FLAGS.input_length:]

                    if FLAGS.add_bos_token:
                        input_tokens[:, 0] = tokenizer.bos_token_id
                        attention_mask[:, 0] = 1

                    batch = dict(input_tokens=input_tokens, attention_mask=attention_mask)

                    with mesh:
                        output, sharded_rng = forward_greedy_generate(
                            params, sharded_rng, batch
                        )
                        output = jax.device_get(output)

                    total_length += output.shape[1]
                    output_text = tokenizer.batch_decode(output)[0]
                    total_generated = total_generated + output_text
                    pf = pf + output_text

                    done = False
                    for s in ut:
                        if s in total_generated:
                            total_generated = total_generated.split(s, maxsplit=1)[0]
                            done = True
                    if done:
                        break

                all_outputs.append(total_generated)

            return all_outputs


    server = ModelServer(FLAGS.lm_server)
    server.run()


if __name__ == "__main__":
    mlxu.run(main)