Text Generation
Transformers
PyTorch
Safetensors
Finnish
llama
finnish
text-generation-inference
File size: 13,033 Bytes
a971b09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
edcd2f1
 
 
 
 
a971b09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
import os
import math
from typing import Any, Mapping, Text, Tuple, Union, NamedTuple
from functools import partial
import re
import dataclasses
import random
from ml_collections import ConfigDict
from ml_collections.config_dict.config_dict import placeholder

import flax
import jax
import jax.numpy as jnp
from jax.sharding import PartitionSpec as PS
from jax.sharding import Mesh
from jax.experimental import mesh_utils
from jax.experimental.pjit import with_sharding_constraint as _with_sharding_constraint
from jax.experimental.pjit import pjit
from jax.interpreters import pxla
import numpy as np
from transformers import FlaxLogitsWarper


class JaxRNG(object):
    """ A convenient stateful Jax RNG wrapper. Can be used to wrap RNG inside
        pure function.
    """

    @classmethod
    def from_seed(cls, seed):
        return cls(jax.random.PRNGKey(seed))

    def __init__(self, rng):
        self.rng = rng

    def __call__(self, keys=None):
        if keys is None:
            self.rng, split_rng = jax.random.split(self.rng)
            return split_rng
        elif isinstance(keys, int):
            split_rngs = jax.random.split(self.rng, num=keys + 1)
            self.rng = split_rngs[0]
            return tuple(split_rngs[1:])
        else:
            split_rngs = jax.random.split(self.rng, num=len(keys) + 1)
            self.rng = split_rngs[0]
            return {key: val for key, val in zip(keys, split_rngs[1:])}


class JaxDistributedConfig(object):
    """ Utility class for initializing JAX distributed. """

    @staticmethod
    def get_default_config(updates=None):
        config = ConfigDict()
        config.initialize_jax_distributed = False
        config.coordinator_address = placeholder(str)
        config.num_processes = placeholder(int)
        config.process_id = placeholder(int)
        config.local_device_ids = placeholder(str)

        if updates is not None:
            config.update(ConfigDict(updates).copy_and_resolve_references())
        return config

    @classmethod
    def initialize(cls, config):
        config = cls.get_default_config(config)
        if config.initialize_jax_distributed:
            if config.local_device_ids is not None:
                local_device_ids = [int(x) for x in config.local_device_ids.split(',')]
            else:
                local_device_ids = None

            jax.distributed.initialize(
                coordinator_address=config.coordinator_address,
                num_processes=config.num_processes,
                process_id=config.process_id,
                local_device_ids=local_device_ids,
            )


class FlaxTemperatureLogitsWarper(FlaxLogitsWarper):
    """ JIT traceable version of FlaxLogitsWarper that performs temperature scaling."""
    def __init__(self, temperature):
        self.temperature = temperature

    def __call__(self, input_ids, scores, cur_len):
        return scores / jnp.clip(self.temperature, a_min=1e-8)


def make_shard_and_gather_fns(partition_specs, dtype_specs=None):
    """ Create pytree of sharding and gathering functions from pytree of
        partition specs.
    """
    float_dtypes = (jnp.bfloat16, jnp.float16, jnp.float32, jnp.float64)

    def make_to_dtype_fn(dtype_spec):
        def to_dtype(tensor):
            if dtype_specs in float_dtypes and getattr(tensor, 'dtype', None) in float_dtypes:
                # Convert all float tensors to the same dtype
                return tensor.astype(dtype_specs)
            elif hasattr(dtype_spec, 'dtype') and hasattr(tensor, 'dtype'):
                return tensor.astype(dtype_spec.dtype)
            return tensor
        return to_dtype

    def make_shard_fn(partition_spec, dtype_spec=None):
        jax_shard_function = pjit(
            make_to_dtype_fn(dtype_spec),
            in_shardings=None,
            out_shardings=partition_spec
        )
        def shard_fn(tensor):
            return jax_shard_function(tensor).block_until_ready()
        return shard_fn

    def make_gather_fn(partition_spec, dtype_spec=None):
        jax_gather_fn = pjit(
            make_to_dtype_fn(dtype_spec),
            in_shardings=partition_spec,
            out_shardings=None
        )
        def gather_fn(tensor):
            return jax.device_get(jax_gather_fn(tensor))
        return gather_fn

    if dtype_specs is None or dtype_specs in float_dtypes:
        shard_fns = jax.tree_util.tree_map(make_shard_fn, partition_specs)
        gather_fns = jax.tree_util.tree_map(make_gather_fn, partition_specs)
    else:
        shard_fns = jax.tree_util.tree_map(
            make_shard_fn, partition_specs, dtype_specs
        )
        gather_fns = jax.tree_util.tree_map(
            make_gather_fn, partition_specs, dtype_specs
        )
    return shard_fns, gather_fns


def set_random_seed(seed):
    np.random.seed(seed)
    random.seed(seed)
    init_rng(seed)


def get_jax_mesh(axis_dims, names):
    if axis_dims.startswith('!'):
        # Allow splitting a physical mesh axis if needed
        mesh_axis_splitting = True
        axis_dims = axis_dims[1:]
    else:
        mesh_axis_splitting = False

    if ':' in axis_dims:
        dims = []
        dim_names = []
        for axis in axis_dims.split(','):
            name, dim = axis.split(':')
            assert name in names
            dims.append(int(dim))
            dim_names.append(name)
        assert(set(dim_names) == set(names))
    else:
        dims = [int(x) for x in axis_dims.split(',')]
        dim_names = names
    assert len(dims) == len(names)
    mesh_shape = np.arange(jax.device_count()).reshape(dims).shape
    if mesh_axis_splitting:
        physical_mesh = np.array(jax.devices()).reshape(mesh_shape)
    else:
        physical_mesh = mesh_utils.create_device_mesh(mesh_shape)
    return Mesh(physical_mesh, dim_names)


def names_in_current_mesh(*names):
    """ Check if current mesh axes contain these names. """
    mesh_axis_names = pxla.thread_resources.env.physical_mesh.axis_names
    return set(names) <= set(mesh_axis_names)


def get_names_from_parition_spec(partition_specs):
    """ Return axis names from partition specs. """
    names = set()
    if isinstance(partition_specs, dict):
        partition_specs = partition_specs.values()
    for item in partition_specs:
        if item is None:
            continue
        elif isinstance(item, str):
            names.add(item)
        else:
            names.update(get_names_from_parition_spec(item))

    return list(names)


def with_sharding_constraint(x, partition_specs):
    """ A smarter version of with_sharding_constraint that only applies the
        constraint if the current mesh contains the axes in the partition specs.
    """
    axis_names = get_names_from_parition_spec(partition_specs)
    if names_in_current_mesh(*axis_names):
        x = _with_sharding_constraint(x, partition_specs)
    return x


def wrap_function_with_rng(rng):
    """ To be used as decorator, automatically bookkeep a RNG for the wrapped function. """
    def wrap_function(function):
        def wrapped(*args, **kwargs):
            nonlocal rng
            rng, split_rng = jax.random.split(rng)
            return function(split_rng, *args, **kwargs)
        return wrapped
    return wrap_function


def init_rng(seed):
    global jax_utils_rng
    jax_utils_rng = JaxRNG.from_seed(seed)


def next_rng(*args, **kwargs):
    global jax_utils_rng
    return jax_utils_rng(*args, **kwargs)


def get_metrics(metrics, unreplicate=False, stack=False):
    if unreplicate:
        metrics = flax.jax_utils.unreplicate(metrics)
    metrics = jax.device_get(metrics)
    if stack:
        return jax.tree_map(lambda *args: np.stack(args), *metrics)
    else:
        return {key: float(val) for key, val in metrics.items()}


def mse_loss(val, target, valid=None):
    if valid is None:
        valid = jnp.ones((*target.shape[:2], 1))
    valid = valid.astype(jnp.float32)
    loss = jnp.mean(
        jnp.where(
            valid > 0.0,
            jnp.square(val - target),
            0.0
        )
    )
    return loss


def cross_entropy_loss_and_accuracy(logits, tokens, valid=None):
    if valid is None:
        valid = jnp.ones(tokens.shape[:2])
    valid = valid.astype(jnp.float32)
    valid_text_length = jnp.maximum(jnp.sum(valid, axis=-1), 1e-10)
    logits = logits.astype(jnp.float32) # for numerical stability
    token_log_prob = jnp.squeeze(
        jnp.take_along_axis(
            jax.nn.log_softmax(logits, axis=-1),
            jnp.expand_dims(tokens, -1),
            axis=-1,
        ),
        -1,
    )
    token_log_prob = jnp.where(valid > 0.0, token_log_prob, jnp.array(0.0))
    loss = -jnp.mean(jnp.sum(token_log_prob, axis=-1) / valid_text_length)
    correct = jnp.where(
        valid > 0.0,
        jnp.argmax(logits, axis=-1) == tokens,
        jnp.array(False)
    )
    accuracy = jnp.mean(jnp.sum(correct, axis=-1) / valid_text_length)
    return loss, accuracy


def global_norm(tree):
    """ Return the global L2 norm of a pytree. """
    squared = jax.tree_util.tree_map(lambda x: jnp.sum(jnp.square(x)), tree)
    flattened, _ = jax.flatten_util.ravel_pytree(squared)
    return jnp.sqrt(jnp.sum(flattened))


def average_metrics(metrics):
    with jax.spmd_mode("allow_all"):
        return jax.tree_map(
            lambda *args: jnp.mean(jnp.stack(args)),
            *metrics
        )


def get_float_dtype_by_name(dtype):
    return {
        'bf16': jnp.bfloat16,
        'bfloat16': jnp.bfloat16,
        'fp16': jnp.float16,
        'float16': jnp.float16,
        'fp32': jnp.float32,
        'float32': jnp.float32,
        'fp64': jnp.float64,
        'float64': jnp.float64,
    }[dtype]


def float_tensor_to_dtype(tensor, dtype):
    if dtype is None or dtype == '':
        return tensor
    if isinstance(dtype, str):
        dtype = get_float_dtype_by_name(dtype)
    float_dtypes = (jnp.bfloat16, jnp.float16, jnp.float32, jnp.float64)
    if getattr(tensor, 'dtype', None) in float_dtypes:
        tensor = tensor.astype(dtype)
    return tensor


def float_to_dtype(tree, dtype):
    return jax.tree_util.tree_map(
        partial(float_tensor_to_dtype, dtype=dtype), tree
    )


def get_gradient_checkpoint_policy(name):
    return {
        'everything_saveable': jax.checkpoint_policies.everything_saveable,
        'nothing_saveable': jax.checkpoint_policies.nothing_saveable,
        'checkpoint_dots': jax.checkpoint_policies.checkpoint_dots,
        'checkpoint_dots_with_no_batch_dims': jax.checkpoint_policies.checkpoint_dots_with_no_batch_dims,
    }[name]


def tree_path_to_string(path, sep=None):
    keys = []
    for key in path:
        if isinstance(key, jax.tree_util.SequenceKey):
            keys.append(str(key.idx))
        elif isinstance(key, jax.tree_util.DictKey):
            keys.append(str(key.key))
        elif isinstance(key, jax.tree_util.GetAttrKey):
            keys.append(str(key.name))
        elif isinstance(key, jax.tree_util.FlattenedIndexKey):
            keys.append(str(key.key))
        else:
            keys.append(str(key))
    if sep is None:
        return tuple(keys)
    return sep.join(keys)


def flatten_tree(xs, is_leaf=None, sep=None):
    flattened, _ = jax.tree_util.tree_flatten_with_path(xs, is_leaf=is_leaf)
    output = {}
    for key, val in flattened:
        output[tree_path_to_string(key, sep=sep)] = val
    return output


def named_tree_map(f, tree, *rest, is_leaf=None, sep=None):
    """ An extended version of jax.tree_util.tree_map, where the mapped function
        f takes both the name (path) and the tree leaf as input.
    """
    return jax.tree_util.tree_map_with_path(
        lambda path, x, *r: f(tree_path_to_string(path, sep=sep), x, *r),
        tree, *rest,
        is_leaf=is_leaf
    )


def match_partition_rules(rules, params):
    """ Returns a pytree of PartitionSpec according to rules. Supports handling
        Flax TrainState and Optax optimizer state.
    """
    def get_partition_spec(name, leaf):
        if len(leaf.shape) == 0 or np.prod(leaf.shape) == 1:
            """ Don't partition scalar values. """
            return PS()
        for rule, ps in rules:
            if re.search(rule, name) is not None:
                return ps
        raise ValueError(f'Partition rule not found for param: {name}')
    return named_tree_map(get_partition_spec, params, sep='/')


def get_weight_decay_mask(exclusions):
    """ Return a weight decay mask function that computes the pytree masks
        according to the given exclusion rules.
    """
    def decay(name, _):
        for rule in exclusions:
            if re.search(rule, name) is not None:
                return False
        return True

    def weight_decay_mask(params):
        return named_tree_map(decay, params, sep='/')

    return weight_decay_mask


def tree_apply(fns, tree):
    """ Apply a pytree of functions to the pytree. """
    return jax.tree_util.tree_map(lambda fn, x: fn(x), fns, tree)