Ferocious0xide
commited on
Learning Deep RL
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -165.02 +/- 40.95
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7d46bf8235b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d46bf823640>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d46bf8236d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d46bf823760>", "_build": "<function ActorCriticPolicy._build at 0x7d46bf8237f0>", "forward": "<function ActorCriticPolicy.forward at 0x7d46bf823880>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7d46bf823910>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d46bf8239a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7d46bf823a30>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d46bf823ac0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d46bf823b50>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7d46bf823be0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d46bf7c9040>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 114688, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1714493810301115052, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAPPHwD1kkTE+A0fjPYSrFb/08+I8ww6rPQAAAAAAAAAArmPYvs36PT8Pyg+/KoYMv+VtkL7ukFa+AAAAAAAAAABa7+W9KUybPyVRsb5gsuy+BAwBPdGtM74AAAAAAAAAAAAa9ry7iV4/SBFhvqW4D79YIY8+MlSLvAAAAAAAAAAAGqArP6X9/70Wt7e706TvPIa+Kj4GAyg+AACAPwAAgD9W2lG+mN3pPqpRNTyssiq/CBWGvW8ySj4AAAAAAAAAAA1pUD6EiZ0+qyp1vmPsVb8fXzA/c8ITPQAAAAAAAAAAc+ydPX92nj8ia4k+v1oEv619kDzfFcO9AAAAAAAAAABg8mQ+CziFPQbt1j5mchW/Nu5PPWL5dD4AAAAAAAAAAICxxb34SK0/sLAdv6G/cr5YuLG8uIgsvgAAAAAAAAAAgOygPebpqz8nIsY+C2iavodxIj00his+AAAAAAAAAABNw8Y+snRZPwdJJT8FRS6/GgNLPFpyGrwAAAAAAAAAAOCKPr76Law/Wq0Svz40u76rIBY+BDeyPAAAAAAAAAAAyhS7Pq16lD64eMM+zMM1vytDVz4QRo09AAAAAAAAAAAAfP+9IHKTP7mkB78e3Pq+ISEOvNYk6b0AAAAAAAAAAGam8zoAUrE/mhQuPcuPk76goeY7NsGPPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.1468799999999999, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQCOS0D2alUKMAWyUS3CMAXSUR0Blmm2mYSg5dX2UKGgGR0BA6H3+MqBmaAdLY2gIR0BlnFn9NvfkdX2UKGgGR8AzjjxCpm29aAdLimgIR0BlpV+XqqwRdX2UKGgGR0AGZZOi35N5aAdLnGgIR0BlqDr7fpEAdX2UKGgGR8BRDZD3M6ikaAdLmmgIR0Blquz6ab4KdX2UKGgGR0A3Zp4rz5GjaAdLm2gIR0Blq4LmZE2HdX2UKGgGR0BBKZrpJPIoaAdLeWgIR0BlrLWsijcmdX2UKGgGR8BCY13dKujiaAdLfWgIR0BlrS9TP0I1dX2UKGgGR0A5/2jfvWpZaAdLjWgIR0BlrpLsa86FdX2UKGgGR8A1eB5HEuQIaAdLaWgIR0BlrspG4I8hdX2UKGgGR8BT8aJl8PWhaAdLdGgIR0Blr/ZK3/gjdX2UKGgGR8BE0zh5xBE8aAdLjmgIR0Blr9J6IFeOdX2UKGgGR8A1tqHXVbzLaAdLgGgIR0BlsL6FdszmdX2UKGgGR8BIEJeu3c59aAdLY2gIR0Blsed3B55adX2UKGgGR0Ai/GLk0aZQaAdLdmgIR0Bls/446wMZdX2UKGgGRz/yCTUy57PZaAdLkmgIR0BltaBI4EOidX2UKGgGR8BBYrFXJYDDaAdLvmgIR0Bltk5lvqC6dX2UKGgGR8BMq11fVqetaAdLwWgIR0BlvVbPhQ3xdX2UKGgGR8AjLu0CzTnaaAdLgmgIR0BlwFgnc+JQdX2UKGgGR8BT9ZUYKpkxaAdLWmgIR0BlwE5lvqC6dX2UKGgGR0AqqDIzWPLgaAdLb2gIR0Blwk8kleF+dX2UKGgGR0A4SYFJQLuyaAdLe2gIR0Blws4cWCVbdX2UKGgGR0AD5YcNpdrwaAdLbmgIR0Blw1lCkXUIdX2UKGgGR8BCUmzByjpLaAdLhGgIR0BlyBGlQ/HHdX2UKGgGR8AXaNo8IRh+aAdLiGgIR0Blx/9aUzKtdX2UKGgGR0BDTfuLJjlQaAdLrGgIR0BlyK0hNdqtdX2UKGgGRz/s/echC+lCaAdLcGgIR0BlyKfQKKHgdX2UKGgGRz+wEt/WlMyraAdLnmgIR0BlyKrilzltdX2UKGgGR0Ah2k8A7xNJaAdLkGgIR0BlyXwkPczqdX2UKGgGR8A3AYv38GcGaAdLimgIR0BlyfRiPQv6dX2UKGgGR0AgrMaCL/CJaAdLfWgIR0Blyt9H+ZPVdX2UKGgGR8A7iQw9JSR9aAdLk2gIR0BlzFTgl4TsdX2UKGgGR8AgJQ2uPmxMaAdLe2gIR0Blzw2ZRbbDdX2UKGgGR8AqTgF5fMOgaAdLdGgIR0Bl0RsXSBsidX2UKGgGR8BBsJKSPluFaAdLbWgIR0Bl0w5imVJMdX2UKGgGRz/xsLv1DjR2aAdLeGgIR0Bl07hFVktmdX2UKGgGRz/VkH2RJVbSaAdLemgIR0Bl1JAnlXA/dX2UKGgGR0A3aDAaef7KaAdLpGgIR0Bl2Rhz/6wddX2UKGgGR8BHqPzOHFglaAdLdGgIR0Bl2iyv9tMxdX2UKGgGR8BFF28RL9MsaAdLdGgIR0Bl2jCHh0hedX2UKGgGR0A5lHWz4UN8aAdLeGgIR0Bl27vCuU2UdX2UKGgGR0AdGOWBz3h5aAdLhWgIR0Bl3G9Ba9sadX2UKGgGR8Ak8Z62OQyRaAdLgmgIR0Bl3HjKgZjydX2UKGgGR8A8fXRgJC0GaAdLiGgIR0Bl3tNet0V8dX2UKGgGR8BSMEOd5IH1aAdLhWgIR0Bl34DLbHp9dX2UKGgGR0A54YjSofjkaAdLmmgIR0Bl36PfbblBdX2UKGgGR8BRclE7W/ahaAdLdmgIR0Bl4giNbTttdX2UKGgGR8BBf0QbuMMraAdLbGgIR0Bl4qxu89OidX2UKGgGR8ApJhw2l2vCaAdLk2gIR0Bl45P/JeVtdX2UKGgGR0ArrMLWqcVhaAdLZGgIR0Bl5D0lJHy3dX2UKGgGR0Axf8XenAIqaAdLh2gIR0Bl6RI8QqZudX2UKGgGR0AwOYKIBRyfaAdLf2gIR0Bl6VxdY4hmdX2UKGgGR8AbKzE74i5eaAdLVWgIR0Bl7HlbNbC8dX2UKGgGRz/0486mwaBJaAdLh2gIR0Bl7vkcS5AhdX2UKGgGR8BNGq5byH2zaAdLdmgIR0Bl736O5rgwdX2UKGgGR0Ac+bYsd1dPaAdLhmgIR0Bl7+WD6FdtdX2UKGgGR8A24c1fmcOLaAdLgGgIR0Bl8G4Cp3otdX2UKGgGR0AY4UtZmqYJaAdLa2gIR0Bl8RSJj2BbdX2UKGgGR8ARd+tr9EThaAdLbWgIR0Bl8Ual1r6+dX2UKGgGR0A4QZUDMeOoaAdLg2gIR0Bl8av7m+0xdX2UKGgGR0A12iV0Lc9GaAdLm2gIR0Bl8yuEEkjYdX2UKGgGR8A/kdM0xdpqaAdLa2gIR0Bl9XY4ACGOdX2UKGgGR0AZ6WgOBlMAaAdLaWgIR0BmA8MNMGordX2UKGgGR0A+QHryDqW1aAdLlWgIR0BmBCgwoLG8dX2UKGgGR0A0JdQfp2U0aAdLlGgIR0BmBOjGkvbodX2UKGgGR8ACDDuSfUWmaAdLoWgIR0BmBZnjABT5dX2UKGgGR0AUzw5NoJzDaAdLemgIR0BmBn29L6DXdX2UKGgGR8AqxUn5SFXaaAdLVGgIR0BmCMsMAmzCdX2UKGgGR8AtEj7hvR7aaAdLZWgIR0BmCXyXlbNbdX2UKGgGR8A6AzN2TxG2aAdLiWgIR0BmDKshgVoIdX2UKGgGR8BTGqPCEYfoaAdLdmgIR0BmDWWjXWe6dX2UKGgGRz//oacZtNzsaAdLfWgIR0BmD1Tm4iHJdX2UKGgGR8AA3IbOu7pWaAdLgmgIR0BmEGVNYbKidX2UKGgGR0A1kYywfQruaAdLnGgIR0BmEotHxz7udX2UKGgGR8BMfNZvDP4VaAdLnGgIR0BmE3XGwRoRdX2UKGgGR8BDgz8pCrtFaAdLimgIR0BmE/531SOzdX2UKGgGR0AgmSBbwBo3aAdLUWgIR0BmFMlsxfv4dX2UKGgGR8BQPcTJyQxOaAdLYWgIR0BmFUY64lQedX2UKGgGR8AUPQ6ZH/cWaAdLX2gIR0BmFaIP9UCJdX2UKGgGR8BTjHXVbzK+aAdLh2gIR0BmFjkGRmsedX2UKGgGR8A4mN7SiM5waAdLaWgIR0BmFlG/etSydX2UKGgGR8AVdK9PDYRNaAdLWWgIR0BmGJQizLOidX2UKGgGR8AsKS8rZrYXaAdLimgIR0BmHcAaNuLrdX2UKGgGR8A++EUTL4etaAdLamgIR0BmHz79AHE/dX2UKGgGR8AB+KZUkv9MaAdLZWgIR0BmIjpHI6sAdX2UKGgGR8A7m+RYA80UaAdLa2gIR0BmIjkKeCkHdX2UKGgGR8A+wl7MPjGUaAdLkmgIR0BmIy/7BO58dX2UKGgGR8AxGx9XtBv8aAdLZmgIR0BmJsLx7RfGdX2UKGgGR8AOJeXzDn/2aAdLk2gIR0BmJ1JxvNu+dX2UKGgGR8A2lxZdOZb7aAdLbWgIR0BmKITmGM4tdX2UKGgGR8BI2EhaC+URaAdLi2gIR0BmKzxqfvnbdX2UKGgGR0AkjechC+lCaAdLg2gIR0BmK1EZzgdfdX2UKGgGR8AsSweNkvsaaAdLiWgIR0BmK9fzBhx6dX2UKGgGR0A1noQWepXIaAdLj2gIR0BmL6CaqjrSdX2UKGgGR8A9Ne+23KB/aAdLhWgIR0BmMBylvZRLdX2UKGgGR8AR5L0z0pVkaAdLlWgIR0BmMKX+l0o0dX2UKGgGR0AFbM/yGzrvaAdLnmgIR0BmMbLr5ZbIdX2UKGgGR0AXA1Gb1AZ9aAdLa2gIR0BmMm8brC3xdX2UKGgGR0AU7enAIppfaAdLX2gIR0BmMx4Y77sOdX2UKGgGR0Ah+6uGKyfMaAdLgmgIR0BmNN5le4TcdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 40, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:26b0a6705711e00b3176184c90ea2fcad643506fe02d2616d9521c38b0d5d7af
|
3 |
+
size 147947
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7d46bf8235b0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d46bf823640>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d46bf8236d0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d46bf823760>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7d46bf8237f0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7d46bf823880>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7d46bf823910>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d46bf8239a0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7d46bf823a30>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d46bf823ac0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d46bf823b50>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7d46bf823be0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7d46bf7c9040>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 114688,
|
25 |
+
"_total_timesteps": 100000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1714493810301115052,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAPPHwD1kkTE+A0fjPYSrFb/08+I8ww6rPQAAAAAAAAAArmPYvs36PT8Pyg+/KoYMv+VtkL7ukFa+AAAAAAAAAABa7+W9KUybPyVRsb5gsuy+BAwBPdGtM74AAAAAAAAAAAAa9ry7iV4/SBFhvqW4D79YIY8+MlSLvAAAAAAAAAAAGqArP6X9/70Wt7e706TvPIa+Kj4GAyg+AACAPwAAgD9W2lG+mN3pPqpRNTyssiq/CBWGvW8ySj4AAAAAAAAAAA1pUD6EiZ0+qyp1vmPsVb8fXzA/c8ITPQAAAAAAAAAAc+ydPX92nj8ia4k+v1oEv619kDzfFcO9AAAAAAAAAABg8mQ+CziFPQbt1j5mchW/Nu5PPWL5dD4AAAAAAAAAAICxxb34SK0/sLAdv6G/cr5YuLG8uIgsvgAAAAAAAAAAgOygPebpqz8nIsY+C2iavodxIj00his+AAAAAAAAAABNw8Y+snRZPwdJJT8FRS6/GgNLPFpyGrwAAAAAAAAAAOCKPr76Law/Wq0Svz40u76rIBY+BDeyPAAAAAAAAAAAyhS7Pq16lD64eMM+zMM1vytDVz4QRo09AAAAAAAAAAAAfP+9IHKTP7mkB78e3Pq+ISEOvNYk6b0AAAAAAAAAAGam8zoAUrE/mhQuPcuPk76goeY7NsGPPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.1468799999999999,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQCOS0D2alUKMAWyUS3CMAXSUR0Blmm2mYSg5dX2UKGgGR0BA6H3+MqBmaAdLY2gIR0BlnFn9NvfkdX2UKGgGR8AzjjxCpm29aAdLimgIR0BlpV+XqqwRdX2UKGgGR0AGZZOi35N5aAdLnGgIR0BlqDr7fpEAdX2UKGgGR8BRDZD3M6ikaAdLmmgIR0Blquz6ab4KdX2UKGgGR0A3Zp4rz5GjaAdLm2gIR0Blq4LmZE2HdX2UKGgGR0BBKZrpJPIoaAdLeWgIR0BlrLWsijcmdX2UKGgGR8BCY13dKujiaAdLfWgIR0BlrS9TP0I1dX2UKGgGR0A5/2jfvWpZaAdLjWgIR0BlrpLsa86FdX2UKGgGR8A1eB5HEuQIaAdLaWgIR0BlrspG4I8hdX2UKGgGR8BT8aJl8PWhaAdLdGgIR0Blr/ZK3/gjdX2UKGgGR8BE0zh5xBE8aAdLjmgIR0Blr9J6IFeOdX2UKGgGR8A1tqHXVbzLaAdLgGgIR0BlsL6FdszmdX2UKGgGR8BIEJeu3c59aAdLY2gIR0Blsed3B55adX2UKGgGR0Ai/GLk0aZQaAdLdmgIR0Bls/446wMZdX2UKGgGRz/yCTUy57PZaAdLkmgIR0BltaBI4EOidX2UKGgGR8BBYrFXJYDDaAdLvmgIR0Bltk5lvqC6dX2UKGgGR8BMq11fVqetaAdLwWgIR0BlvVbPhQ3xdX2UKGgGR8AjLu0CzTnaaAdLgmgIR0BlwFgnc+JQdX2UKGgGR8BT9ZUYKpkxaAdLWmgIR0BlwE5lvqC6dX2UKGgGR0AqqDIzWPLgaAdLb2gIR0Blwk8kleF+dX2UKGgGR0A4SYFJQLuyaAdLe2gIR0Blws4cWCVbdX2UKGgGR0AD5YcNpdrwaAdLbmgIR0Blw1lCkXUIdX2UKGgGR8BCUmzByjpLaAdLhGgIR0BlyBGlQ/HHdX2UKGgGR8AXaNo8IRh+aAdLiGgIR0Blx/9aUzKtdX2UKGgGR0BDTfuLJjlQaAdLrGgIR0BlyK0hNdqtdX2UKGgGRz/s/echC+lCaAdLcGgIR0BlyKfQKKHgdX2UKGgGRz+wEt/WlMyraAdLnmgIR0BlyKrilzltdX2UKGgGR0Ah2k8A7xNJaAdLkGgIR0BlyXwkPczqdX2UKGgGR8A3AYv38GcGaAdLimgIR0BlyfRiPQv6dX2UKGgGR0AgrMaCL/CJaAdLfWgIR0Blyt9H+ZPVdX2UKGgGR8A7iQw9JSR9aAdLk2gIR0BlzFTgl4TsdX2UKGgGR8AgJQ2uPmxMaAdLe2gIR0Blzw2ZRbbDdX2UKGgGR8AqTgF5fMOgaAdLdGgIR0Bl0RsXSBsidX2UKGgGR8BBsJKSPluFaAdLbWgIR0Bl0w5imVJMdX2UKGgGRz/xsLv1DjR2aAdLeGgIR0Bl07hFVktmdX2UKGgGRz/VkH2RJVbSaAdLemgIR0Bl1JAnlXA/dX2UKGgGR0A3aDAaef7KaAdLpGgIR0Bl2Rhz/6wddX2UKGgGR8BHqPzOHFglaAdLdGgIR0Bl2iyv9tMxdX2UKGgGR8BFF28RL9MsaAdLdGgIR0Bl2jCHh0hedX2UKGgGR0A5lHWz4UN8aAdLeGgIR0Bl27vCuU2UdX2UKGgGR0AdGOWBz3h5aAdLhWgIR0Bl3G9Ba9sadX2UKGgGR8Ak8Z62OQyRaAdLgmgIR0Bl3HjKgZjydX2UKGgGR8A8fXRgJC0GaAdLiGgIR0Bl3tNet0V8dX2UKGgGR8BSMEOd5IH1aAdLhWgIR0Bl34DLbHp9dX2UKGgGR0A54YjSofjkaAdLmmgIR0Bl36PfbblBdX2UKGgGR8BRclE7W/ahaAdLdmgIR0Bl4giNbTttdX2UKGgGR8BBf0QbuMMraAdLbGgIR0Bl4qxu89OidX2UKGgGR8ApJhw2l2vCaAdLk2gIR0Bl45P/JeVtdX2UKGgGR0ArrMLWqcVhaAdLZGgIR0Bl5D0lJHy3dX2UKGgGR0Axf8XenAIqaAdLh2gIR0Bl6RI8QqZudX2UKGgGR0AwOYKIBRyfaAdLf2gIR0Bl6VxdY4hmdX2UKGgGR8AbKzE74i5eaAdLVWgIR0Bl7HlbNbC8dX2UKGgGRz/0486mwaBJaAdLh2gIR0Bl7vkcS5AhdX2UKGgGR8BNGq5byH2zaAdLdmgIR0Bl736O5rgwdX2UKGgGR0Ac+bYsd1dPaAdLhmgIR0Bl7+WD6FdtdX2UKGgGR8A24c1fmcOLaAdLgGgIR0Bl8G4Cp3otdX2UKGgGR0AY4UtZmqYJaAdLa2gIR0Bl8RSJj2BbdX2UKGgGR8ARd+tr9EThaAdLbWgIR0Bl8Ual1r6+dX2UKGgGR0A4QZUDMeOoaAdLg2gIR0Bl8av7m+0xdX2UKGgGR0A12iV0Lc9GaAdLm2gIR0Bl8yuEEkjYdX2UKGgGR8A/kdM0xdpqaAdLa2gIR0Bl9XY4ACGOdX2UKGgGR0AZ6WgOBlMAaAdLaWgIR0BmA8MNMGordX2UKGgGR0A+QHryDqW1aAdLlWgIR0BmBCgwoLG8dX2UKGgGR0A0JdQfp2U0aAdLlGgIR0BmBOjGkvbodX2UKGgGR8ACDDuSfUWmaAdLoWgIR0BmBZnjABT5dX2UKGgGR0AUzw5NoJzDaAdLemgIR0BmBn29L6DXdX2UKGgGR8AqxUn5SFXaaAdLVGgIR0BmCMsMAmzCdX2UKGgGR8AtEj7hvR7aaAdLZWgIR0BmCXyXlbNbdX2UKGgGR8A6AzN2TxG2aAdLiWgIR0BmDKshgVoIdX2UKGgGR8BTGqPCEYfoaAdLdmgIR0BmDWWjXWe6dX2UKGgGRz//oacZtNzsaAdLfWgIR0BmD1Tm4iHJdX2UKGgGR8AA3IbOu7pWaAdLgmgIR0BmEGVNYbKidX2UKGgGR0A1kYywfQruaAdLnGgIR0BmEotHxz7udX2UKGgGR8BMfNZvDP4VaAdLnGgIR0BmE3XGwRoRdX2UKGgGR8BDgz8pCrtFaAdLimgIR0BmE/531SOzdX2UKGgGR0AgmSBbwBo3aAdLUWgIR0BmFMlsxfv4dX2UKGgGR8BQPcTJyQxOaAdLYWgIR0BmFUY64lQedX2UKGgGR8AUPQ6ZH/cWaAdLX2gIR0BmFaIP9UCJdX2UKGgGR8BTjHXVbzK+aAdLh2gIR0BmFjkGRmsedX2UKGgGR8A4mN7SiM5waAdLaWgIR0BmFlG/etSydX2UKGgGR8AVdK9PDYRNaAdLWWgIR0BmGJQizLOidX2UKGgGR8AsKS8rZrYXaAdLimgIR0BmHcAaNuLrdX2UKGgGR8A++EUTL4etaAdLamgIR0BmHz79AHE/dX2UKGgGR8AB+KZUkv9MaAdLZWgIR0BmIjpHI6sAdX2UKGgGR8A7m+RYA80UaAdLa2gIR0BmIjkKeCkHdX2UKGgGR8A+wl7MPjGUaAdLkmgIR0BmIy/7BO58dX2UKGgGR8AxGx9XtBv8aAdLZmgIR0BmJsLx7RfGdX2UKGgGR8AOJeXzDn/2aAdLk2gIR0BmJ1JxvNu+dX2UKGgGR8A2lxZdOZb7aAdLbWgIR0BmKITmGM4tdX2UKGgGR8BI2EhaC+URaAdLi2gIR0BmKzxqfvnbdX2UKGgGR0AkjechC+lCaAdLg2gIR0BmK1EZzgdfdX2UKGgGR8AsSweNkvsaaAdLiWgIR0BmK9fzBhx6dX2UKGgGR0A1noQWepXIaAdLj2gIR0BmL6CaqjrSdX2UKGgGR8A9Ne+23KB/aAdLhWgIR0BmMBylvZRLdX2UKGgGR8AR5L0z0pVkaAdLlWgIR0BmMKX+l0o0dX2UKGgGR0AFbM/yGzrvaAdLnmgIR0BmMbLr5ZbIdX2UKGgGR0AXA1Gb1AZ9aAdLa2gIR0BmMm8brC3xdX2UKGgGR0AU7enAIppfaAdLX2gIR0BmMx4Y77sOdX2UKGgGR0Ah+6uGKyfMaAdLgmgIR0BmNN5le4TcdWUu"
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 40,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2748d0f580f68606c1b2dc4b13559995b7c9fdb678347cae21bc64d527dea315
|
3 |
+
size 88362
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d339c76aa7016dd944fa3dc019a6bb434ab6c0ecc24800f0f9802bbf28234a7e
|
3 |
+
size 43762
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.2.1+cu121
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.25.2
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (215 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -165.02380069999998, "std_reward": 40.94581381682204, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-04-30T16:32:45.693800"}
|