FabioDataGeek
commited on
Commit
·
4effb74
1
Parent(s):
994d0b9
Initial commit
Browse files- README.md +1 -1
- a2c-PandaReachDense-v2.zip +2 -2
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -1
- a2c-PandaReachDense-v2/data +35 -34
- a2c-PandaReachDense-v2/policy.optimizer.pth +1 -1
- a2c-PandaReachDense-v2/policy.pth +1 -1
- a2c-PandaReachDense-v2/system_info.txt +4 -4
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
- vec_normalize.pkl +2 -2
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -4.90 +/- 1.49
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-PandaReachDense-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b6448b0d74bc0d90c283393952b07535b6e6a33aaedb3950d2e12114a7a8ae30
|
3 |
+
size 108075
|
a2c-PandaReachDense-v2/_stable_baselines3_version
CHANGED
@@ -1 +1 @@
|
|
1 |
-
1.
|
|
|
1 |
+
1.8.0
|
a2c-PandaReachDense-v2/data
CHANGED
@@ -4,9 +4,9 @@
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function MultiInputActorCriticPolicy.__init__ at
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
-
"_abc_impl": "<_abc_data object at
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
@@ -19,46 +19,24 @@
|
|
19 |
"weight_decay": 0
|
20 |
}
|
21 |
},
|
22 |
-
"observation_space": {
|
23 |
-
":type:": "<class 'gym.spaces.dict.Dict'>",
|
24 |
-
":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
|
25 |
-
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
26 |
-
"_shape": null,
|
27 |
-
"dtype": null,
|
28 |
-
"_np_random": null
|
29 |
-
},
|
30 |
-
"action_space": {
|
31 |
-
":type:": "<class 'gym.spaces.box.Box'>",
|
32 |
-
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
33 |
-
"dtype": "float32",
|
34 |
-
"_shape": [
|
35 |
-
3
|
36 |
-
],
|
37 |
-
"low": "[-1. -1. -1.]",
|
38 |
-
"high": "[1. 1. 1.]",
|
39 |
-
"bounded_below": "[ True True True]",
|
40 |
-
"bounded_above": "[ True True True]",
|
41 |
-
"_np_random": null
|
42 |
-
},
|
43 |
-
"n_envs": 4,
|
44 |
"num_timesteps": 1000000,
|
45 |
"_total_timesteps": 1000000,
|
46 |
"_num_timesteps_at_start": 0,
|
47 |
"seed": null,
|
48 |
"action_noise": null,
|
49 |
-
"start_time":
|
50 |
"learning_rate": 0.0007,
|
51 |
"tensorboard_log": null,
|
52 |
"lr_schedule": {
|
53 |
":type:": "<class 'function'>",
|
54 |
-
":serialized:": "
|
55 |
},
|
56 |
"_last_obs": {
|
57 |
":type:": "<class 'collections.OrderedDict'>",
|
58 |
-
":serialized:": "
|
59 |
-
"achieved_goal": "[[ 0.
|
60 |
-
"desired_goal": "[[ 0.
|
61 |
-
"observation": "[[ 0.
|
62 |
},
|
63 |
"_last_episode_starts": {
|
64 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -66,18 +44,19 @@
|
|
66 |
},
|
67 |
"_last_original_obs": {
|
68 |
":type:": "<class 'collections.OrderedDict'>",
|
69 |
-
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
70 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
-
"desired_goal": "[[
|
72 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
},
|
74 |
"_episode_num": 0,
|
75 |
"use_sde": false,
|
76 |
"sde_sample_freq": -1,
|
77 |
"_current_progress_remaining": 0.0,
|
|
|
78 |
"ep_info_buffer": {
|
79 |
":type:": "<class 'collections.deque'>",
|
80 |
-
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
81 |
},
|
82 |
"ep_success_buffer": {
|
83 |
":type:": "<class 'collections.deque'>",
|
@@ -90,5 +69,27 @@
|
|
90 |
"ent_coef": 0.0,
|
91 |
"vf_coef": 0.5,
|
92 |
"max_grad_norm": 0.5,
|
93 |
-
"normalize_advantage": false
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
}
|
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fd5a712bc70>",
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fd5a7126280>"
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
|
|
19 |
"weight_decay": 0
|
20 |
}
|
21 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
"num_timesteps": 1000000,
|
23 |
"_total_timesteps": 1000000,
|
24 |
"_num_timesteps_at_start": 0,
|
25 |
"seed": null,
|
26 |
"action_noise": null,
|
27 |
+
"start_time": 1683474338607892872,
|
28 |
"learning_rate": 0.0007,
|
29 |
"tensorboard_log": null,
|
30 |
"lr_schedule": {
|
31 |
":type:": "<class 'function'>",
|
32 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
33 |
},
|
34 |
"_last_obs": {
|
35 |
":type:": "<class 'collections.OrderedDict'>",
|
36 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAHY7WPr96XLqZFzM/HY7WPr96XLqZFzM/HY7WPr96XLqZFzM/HY7WPr96XLqZFzM/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAZHqZP/5tCr8YSCi/ocJ5vxDIPD/WJ88/jvQuPyq6Zr984re9PHeOP/T9bb9UCgQ/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAdjtY+v3pcupkXMz8YEvE7UTO2O4o8fTwdjtY+v3pcupkXMz8YEvE7UTO2O4o8fTwdjtY+v3pcupkXMz8YEvE7UTO2O4o8fTwdjtY+v3pcupkXMz8YEvE7UTO2O4o8fTyUaA5LBEsGhpRoEnSUUpR1Lg==",
|
37 |
+
"achieved_goal": "[[ 0.419053 -0.00084106 0.6995788 ]\n [ 0.419053 -0.00084106 0.6995788 ]\n [ 0.419053 -0.00084106 0.6995788 ]\n [ 0.419053 -0.00084106 0.6995788 ]]",
|
38 |
+
"desired_goal": "[[ 1.1990476 -0.54074085 -0.65735006]\n [-0.97562605 0.7374277 1.6184032 ]\n [ 0.6834191 -0.90127814 -0.08978745]\n [ 1.1130137 -0.92965627 0.5157826 ]]",
|
39 |
+
"observation": "[[ 0.419053 -0.00084106 0.6995788 0.00735689 0.00556032 0.01545633]\n [ 0.419053 -0.00084106 0.6995788 0.00735689 0.00556032 0.01545633]\n [ 0.419053 -0.00084106 0.6995788 0.00735689 0.00556032 0.01545633]\n [ 0.419053 -0.00084106 0.6995788 0.00735689 0.00556032 0.01545633]]"
|
40 |
},
|
41 |
"_last_episode_starts": {
|
42 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
44 |
},
|
45 |
"_last_original_obs": {
|
46 |
":type:": "<class 'collections.OrderedDict'>",
|
47 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAoHqNPRWPxb3/HYg+waQKPi7HQb0GfU0+2t0dva6ncj2rfcA9k/gOPk6ntLww1qw9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
48 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
+
"desired_goal": "[[ 0.06908154 -0.09646431 0.26585385]\n [ 0.13539411 -0.04730909 0.20067224]\n [-0.03854165 0.05924194 0.09398969]\n [ 0.13962011 -0.02205243 0.08439291]]",
|
50 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
},
|
52 |
"_episode_num": 0,
|
53 |
"use_sde": false,
|
54 |
"sde_sample_freq": -1,
|
55 |
"_current_progress_remaining": 0.0,
|
56 |
+
"_stats_window_size": 100,
|
57 |
"ep_info_buffer": {
|
58 |
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIYsCSq1iMFsCUhpRSlIwBbJRLMowBdJRHQKR9PcoH9m91fZQoaAZoCWgPQwgRxHk4gekRwJSGlFKUaBVLMmgWR0CkfP9deIEbdX2UKGgGaAloD0MIxNLAj2r4DMCUhpRSlGgVSzJoFkdApHzEm6XjVHV9lChoBmgJaA9DCIS3ByEgDxDAlIaUUpRoFUsyaBZHQKR8iCSRr8B1fZQoaAZoCWgPQwjg10gShOsVwJSGlFKUaBVLMmgWR0Ckfp4Ajps5dX2UKGgGaAloD0MIT5Za7ze6FMCUhpRSlGgVSzJoFkdApH5fr6ciGHV9lChoBmgJaA9DCLsqUIvBoxLAlIaUUpRoFUsyaBZHQKR+JL6k6911fZQoaAZoCWgPQwjqswOuKxYSwJSGlFKUaBVLMmgWR0CkfehWxQizdX2UKGgGaAloD0MIklhS7j5HDMCUhpRSlGgVSzJoFkdApH/5xgiNbXV9lChoBmgJaA9DCL76eOi7exTAlIaUUpRoFUsyaBZHQKR/u150KZ51fZQoaAZoCWgPQwg4oKUr2IYTwJSGlFKUaBVLMmgWR0Ckf4CDEm6YdX2UKGgGaAloD0MIAB+8dmkTEcCUhpRSlGgVSzJoFkdApH9EDyOJcnV9lChoBmgJaA9DCCU/4lesYQnAlIaUUpRoFUsyaBZHQKSA3Gff4yp1fZQoaAZoCWgPQwjnVDIAVHEYwJSGlFKUaBVLMmgWR0CkgJ1/lQuVdX2UKGgGaAloD0MIxjTTvU5aF8CUhpRSlGgVSzJoFkdApIBh6+nIhnV9lChoBmgJaA9DCBwG81fI/BLAlIaUUpRoFUsyaBZHQKSAJSLIgeR1fZQoaAZoCWgPQwj18jtNZpwQwJSGlFKUaBVLMmgWR0CkgbSGSIP9dX2UKGgGaAloD0MIkuo7vyjxEsCUhpRSlGgVSzJoFkdApIF1twaR6nV9lChoBmgJaA9DCOJ30y071BjAlIaUUpRoFUsyaBZHQKSBOjZ+QU51fZQoaAZoCWgPQwj6YYTwaNMXwJSGlFKUaBVLMmgWR0CkgP0elsP8dX2UKGgGaAloD0MI3rBtUWZDD8CUhpRSlGgVSzJoFkdApIKL6pHZsnV9lChoBmgJaA9DCO3xQjo8pA7AlIaUUpRoFUsyaBZHQKSCTtgKF7F1fZQoaAZoCWgPQwiGdk6zQLsSwJSGlFKUaBVLMmgWR0CkghO0TlDGdX2UKGgGaAloD0MIHsTOFDrvEcCUhpRSlGgVSzJoFkdApIHXNke6qnV9lChoBmgJaA9DCHP3OT5aHA7AlIaUUpRoFUsyaBZHQKSDY7OE/Sp1fZQoaAZoCWgPQwhC6Qsh5wUgwJSGlFKUaBVLMmgWR0CkgyTQE6kqdX2UKGgGaAloD0MIRML3/ga9FsCUhpRSlGgVSzJoFkdApILpUHY6GXV9lChoBmgJaA9DCB0Dste7HxPAlIaUUpRoFUsyaBZHQKSCrEjxCpp1fZQoaAZoCWgPQwiKOQg6WvUawJSGlFKUaBVLMmgWR0CkhC6khzNmdX2UKGgGaAloD0MImiLA6V28DcCUhpRSlGgVSzJoFkdApIPvvUjLS3V9lChoBmgJaA9DCIB9dOrKhxLAlIaUUpRoFUsyaBZHQKSDtCzkZJl1fZQoaAZoCWgPQwiwyK8fYoMOwJSGlFKUaBVLMmgWR0Ckg3cX3xnWdX2UKGgGaAloD0MIv9L58CyRE8CUhpRSlGgVSzJoFkdApIT7cXWOInV9lChoBmgJaA9DCGuZDMfzeRPAlIaUUpRoFUsyaBZHQKSEvJPIn0F1fZQoaAZoCWgPQwjg88MI4fESwJSGlFKUaBVLMmgWR0CkhIEEcKgJdX2UKGgGaAloD0MIi1QYWwiCFMCUhpRSlGgVSzJoFkdApIRD5ylvZXV9lChoBmgJaA9DCJ5F71TAHRXAlIaUUpRoFUsyaBZHQKSF0ePJaJR1fZQoaAZoCWgPQwhoQL0ZNZ8NwJSGlFKUaBVLMmgWR0CkhZL7GecydX2UKGgGaAloD0MIHomXp3MlEMCUhpRSlGgVSzJoFkdApIVXWe6I33V9lChoBmgJaA9DCGlznNuEqxDAlIaUUpRoFUsyaBZHQKSFGla8pTd1fZQoaAZoCWgPQwi3RgTj4NITwJSGlFKUaBVLMmgWR0Ckhp4ekpI+dX2UKGgGaAloD0MICqAYWTJHDcCUhpRSlGgVSzJoFkdApIZfMjeKsXV9lChoBmgJaA9DCFrxDYXPZhHAlIaUUpRoFUsyaBZHQKSGI7UXpGF1fZQoaAZoCWgPQwi5N79hokEYwJSGlFKUaBVLMmgWR0CkheafJ3gUdX2UKGgGaAloD0MIu7a3W5IjC8CUhpRSlGgVSzJoFkdApId1mBe5WnV9lChoBmgJaA9DCHR63o0FNRfAlIaUUpRoFUsyaBZHQKSHNqbBoEl1fZQoaAZoCWgPQwhssdtnlekVwJSGlFKUaBVLMmgWR0CkhvsasIVudX2UKGgGaAloD0MIbTzYYrfvEMCUhpRSlGgVSzJoFkdApIa+AoXsPnV9lChoBmgJaA9DCC5weawZuRDAlIaUUpRoFUsyaBZHQKSIRYJ3PiV1fZQoaAZoCWgPQwgUCaaaWVsSwJSGlFKUaBVLMmgWR0CkiAabONYKdX2UKGgGaAloD0MIguMybmpQFMCUhpRSlGgVSzJoFkdApIfLDwYtQXV9lChoBmgJaA9DCGOYE7TJQQjAlIaUUpRoFUsyaBZHQKSHjf6XSjR1fZQoaAZoCWgPQwjlKavpegIfwJSGlFKUaBVLMmgWR0CkiRUNayKOdX2UKGgGaAloD0MIgjtQpzz6BsCUhpRSlGgVSzJoFkdApIjWFi8WbnV9lChoBmgJaA9DCDHtm/urRw7AlIaUUpRoFUsyaBZHQKSImqmTC+F1fZQoaAZoCWgPQwgGf7+YLekRwJSGlFKUaBVLMmgWR0CkiF2UKRdQdX2UKGgGaAloD0MIRbx1/u0CE8CUhpRSlGgVSzJoFkdApInopWmxdXV9lChoBmgJaA9DCIuH9xxYbg7AlIaUUpRoFUsyaBZHQKSJqbedkJ91fZQoaAZoCWgPQwizBu+rckEQwJSGlFKUaBVLMmgWR0CkiW4Z2pyZdX2UKGgGaAloD0MImdnnMcqzCMCUhpRSlGgVSzJoFkdApIkw/7iyZHV9lChoBmgJaA9DCJc3h2u1hxDAlIaUUpRoFUsyaBZHQKSKvP2wmmd1fZQoaAZoCWgPQwjovpzZrnAKwJSGlFKUaBVLMmgWR0Ckin4UFjd6dX2UKGgGaAloD0MIgVt381SnD8CUhpRSlGgVSzJoFkdApIpCjBVMmHV9lChoBmgJaA9DCC6M9KJ2rxLAlIaUUpRoFUsyaBZHQKSKBWluWKN1fZQoaAZoCWgPQwgSMLq8OfwIwJSGlFKUaBVLMmgWR0Cki48yFfzCdX2UKGgGaAloD0MInwJgPIMWGcCUhpRSlGgVSzJoFkdApItQR9PUKHV9lChoBmgJaA9DCOs6VFOS9QrAlIaUUpRoFUsyaBZHQKSLFLQHAyp1fZQoaAZoCWgPQwh3oblOIy0VwJSGlFKUaBVLMmgWR0Ckitej/MnrdX2UKGgGaAloD0MIjNmSVRHOE8CUhpRSlGgVSzJoFkdApIxhMURFqnV9lChoBmgJaA9DCKbQeY1dUhLAlIaUUpRoFUsyaBZHQKSMIlHBk7R1fZQoaAZoCWgPQwglB+xq8vQRwJSGlFKUaBVLMmgWR0Cki+a1kUbldX2UKGgGaAloD0MImpfD7jsmEsCUhpRSlGgVSzJoFkdApIupoZhrnHV9lChoBmgJaA9DCHSzP1BuCyLAlIaUUpRoFUsyaBZHQKSNKnpB5X51fZQoaAZoCWgPQwjR6A5iZ0oQwJSGlFKUaBVLMmgWR0CkjOuBDohZdX2UKGgGaAloD0MIMq8jDtmwEsCUhpRSlGgVSzJoFkdApIyv779AHHV9lChoBmgJaA9DCFjk1w+xIQ7AlIaUUpRoFUsyaBZHQKSMctthuwZ1fZQoaAZoCWgPQwjYDdsWZbYSwJSGlFKUaBVLMmgWR0CkjgMI/qxDdX2UKGgGaAloD0MIFYxK6gS0EsCUhpRSlGgVSzJoFkdApI3EFY+0PnV9lChoBmgJaA9DCJeQD3o2GxPAlIaUUpRoFUsyaBZHQKSNiKsMiKR1fZQoaAZoCWgPQwjTMlLvqawTwJSGlFKUaBVLMmgWR0CkjUujh1kldX2UKGgGaAloD0MI7IUCtoNxEsCUhpRSlGgVSzJoFkdApI7PmJWNm3V9lChoBmgJaA9DCGe3lslw/BDAlIaUUpRoFUsyaBZHQKSOkJtzjm11fZQoaAZoCWgPQwi+FYkJamgUwJSGlFKUaBVLMmgWR0CkjlUhmoR7dX2UKGgGaAloD0MItf8B1qpdEsCUhpRSlGgVSzJoFkdApI4YDaGpM3V9lChoBmgJaA9DCOXRjbCoSBTAlIaUUpRoFUsyaBZHQKSPnq59Vm11fZQoaAZoCWgPQwis/Z3t0fsTwJSGlFKUaBVLMmgWR0Ckj1+4kNWmdX2UKGgGaAloD0MIXFSLiGIiEMCUhpRSlGgVSzJoFkdApI8kMw1zhnV9lChoBmgJaA9DCNe/6zNnnQ7AlIaUUpRoFUsyaBZHQKSO52TPjXF1fZQoaAZoCWgPQwhMp3Ub1G4SwJSGlFKUaBVLMmgWR0CkkG7BGhEjdX2UKGgGaAloD0MIYJFfP8QmDsCUhpRSlGgVSzJoFkdApJAv4TK1X3V9lChoBmgJaA9DCCefHtsyABHAlIaUUpRoFUsyaBZHQKSP9FYMfA91fZQoaAZoCWgPQwjKVMGopE4SwJSGlFKUaBVLMmgWR0Ckj7c6mwaBdX2UKGgGaAloD0MI9l0R/G/lEMCUhpRSlGgVSzJoFkdApJE9Z1V5r3V9lChoBmgJaA9DCESmfAiqRgzAlIaUUpRoFUsyaBZHQKSQ/nSOR1Z1fZQoaAZoCWgPQwjV6UDWUwsOwJSGlFKUaBVLMmgWR0CkkMLc0tROdX2UKGgGaAloD0MIfIDuy5mNDcCUhpRSlGgVSzJoFkdApJCFxwQ18HV9lChoBmgJaA9DCL72zJIAZRPAlIaUUpRoFUsyaBZHQKSSGKLsKLN1fZQoaAZoCWgPQwjp7c9FQ5YQwJSGlFKUaBVLMmgWR0CkkdokAxSHdX2UKGgGaAloD0MIhXtl3qrLEsCUhpRSlGgVSzJoFkdApJGeh24d63V9lChoBmgJaA9DCMzuycNCTRDAlIaUUpRoFUsyaBZHQKSRYXZ5AyF1ZS4="
|
60 |
},
|
61 |
"ep_success_buffer": {
|
62 |
":type:": "<class 'collections.deque'>",
|
|
|
69 |
"ent_coef": 0.0,
|
70 |
"vf_coef": 0.5,
|
71 |
"max_grad_norm": 0.5,
|
72 |
+
"normalize_advantage": false,
|
73 |
+
"observation_space": {
|
74 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
75 |
+
":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu",
|
76 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
77 |
+
"_shape": null,
|
78 |
+
"dtype": null,
|
79 |
+
"_np_random": null
|
80 |
+
},
|
81 |
+
"action_space": {
|
82 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
83 |
+
":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
84 |
+
"dtype": "float32",
|
85 |
+
"_shape": [
|
86 |
+
3
|
87 |
+
],
|
88 |
+
"low": "[-1. -1. -1.]",
|
89 |
+
"high": "[1. 1. 1.]",
|
90 |
+
"bounded_below": "[ True True True]",
|
91 |
+
"bounded_above": "[ True True True]",
|
92 |
+
"_np_random": null
|
93 |
+
},
|
94 |
+
"n_envs": 4
|
95 |
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 44734
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0a112485f73aedb81fedb9ef90a160f11a49adbc8489f5b04d7e33786ca0cb1a
|
3 |
size 44734
|
a2c-PandaReachDense-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 46014
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7cabd832a2d030d754299bbd06b2f133734bf456d7b8ebc3eac014be5545bd00
|
3 |
size 46014
|
a2c-PandaReachDense-v2/system_info.txt
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
-
- OS: Linux-5.10.147+-x86_64-with-glibc2.
|
2 |
-
- Python: 3.
|
3 |
-
- Stable-Baselines3: 1.
|
4 |
-
- PyTorch:
|
5 |
- GPU Enabled: True
|
6 |
- Numpy: 1.22.4
|
7 |
- Gym: 0.21.0
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.10.11
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.0+cu118
|
5 |
- GPU Enabled: True
|
6 |
- Numpy: 1.22.4
|
7 |
- Gym: 0.21.0
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fc7da30aa60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fc7da3078a0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677669249568505420, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAWd7IPi5cF7txUgg/Wd7IPi5cF7txUgg/Wd7IPi5cF7txUgg/Wd7IPi5cF7txUgg/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAUJaaPnKnw77SE1M9/XgVPXeTuD+UCZ6/Lu5yP5rlEb/V1Ys/0abXv1dxlj89iKS8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABZ3sg+LlwXu3FSCD/7wkU8palSupQ9bDxZ3sg+LlwXu3FSCD/7wkU8palSupQ9bDxZ3sg+LlwXu3FSCD/7wkU8palSupQ9bDxZ3sg+LlwXu3FSCD/7wkU8palSupQ9bDyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.39232138 -0.00230957 0.53250796]\n [ 0.39232138 -0.00230957 0.53250796]\n [ 0.39232138 -0.00230957 0.53250796]\n [ 0.39232138 -0.00230957 0.53250796]]", "desired_goal": "[[ 0.30192804 -0.38213688 0.05153257]\n [ 0.03649234 1.4420003 -1.2346673 ]\n [ 0.94894683 -0.5699097 1.0924631 ]\n [-1.6847783 1.1753339 -0.02008449]]", "observation": "[[ 0.39232138 -0.00230957 0.53250796 0.01207041 -0.00080361 0.01441898]\n [ 0.39232138 -0.00230957 0.53250796 0.01207041 -0.00080361 0.01441898]\n [ 0.39232138 -0.00230957 0.53250796 0.01207041 -0.00080361 0.01441898]\n [ 0.39232138 -0.00230957 0.53250796 0.01207041 -0.00080361 0.01441898]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAm8kvvc848D096Ec+ai6/vVT5E77E0P896A9NvPNhb73/a/Y7j3VTus/tBb6LzYk+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.04291688 0.11729585 0.19522186]\n [-0.09335025 -0.1445058 0.12490991]\n [-0.012516 -0.05844302 0.0075202 ]\n [-0.00080665 -0.13078998 0.2691463 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIWOVC5V8bHcCUhpRSlIwBbJRLMowBdJRHQKfc/HCoCMh1fZQoaAZoCWgPQwg3UUtzK6QWwJSGlFKUaBVLMmgWR0Cn3MGNJe3QdX2UKGgGaAloD0MI0JuKVBi7F8CUhpRSlGgVSzJoFkdAp9yGvECNj3V9lChoBmgJaA9DCNSdJ56zVRjAlIaUUpRoFUsyaBZHQKfcShdt2s91fZQoaAZoCWgPQwjdRZiiXKobwJSGlFKUaBVLMmgWR0Cn3oTt1IRRdX2UKGgGaAloD0MIW5avy/D/GMCUhpRSlGgVSzJoFkdAp95JXEIgNnV9lChoBmgJaA9DCFLuPsdHMyHAlIaUUpRoFUsyaBZHQKfeDt+Csfd1fZQoaAZoCWgPQwgyVTAqqSMZwJSGlFKUaBVLMmgWR0Cn3dHwG4ZudX2UKGgGaAloD0MIb5upEI/UHsCUhpRSlGgVSzJoFkdAp+AzGT9sJ3V9lChoBmgJaA9DCCZtqu6RzRTAlIaUUpRoFUsyaBZHQKff94fwI+p1fZQoaAZoCWgPQwiYhuEjYtoWwJSGlFKUaBVLMmgWR0Cn37yauwHJdX2UKGgGaAloD0MIlGqfjsfMCMCUhpRSlGgVSzJoFkdAp9+A2ZRbbHV9lChoBmgJaA9DCJBLHHkg8hTAlIaUUpRoFUsyaBZHQKfh6TL4etF1fZQoaAZoCWgPQwjW4H1VLjQQwJSGlFKUaBVLMmgWR0Cn4a3NLUTddX2UKGgGaAloD0MI/cHAc+/hGMCUhpRSlGgVSzJoFkdAp+FzLlmvn3V9lChoBmgJaA9DCLNCke7nVAvAlIaUUpRoFUsyaBZHQKfhNtVJcxF1fZQoaAZoCWgPQwh+x/DYz7ISwJSGlFKUaBVLMmgWR0Cn45f/3nIRdX2UKGgGaAloD0MIJ2iTwycNE8CUhpRSlGgVSzJoFkdAp+NcnAqNInV9lChoBmgJaA9DCKcIcHoX7xLAlIaUUpRoFUsyaBZHQKfjIZBsyi51fZQoaAZoCWgPQwj92CQ/4scXwJSGlFKUaBVLMmgWR0Cn4uTFERapdX2UKGgGaAloD0MI/tKiPsmNGcCUhpRSlGgVSzJoFkdAp+U/1OCXhXV9lChoBmgJaA9DCI5AvK5f0A/AlIaUUpRoFUsyaBZHQKflBhegL7Z1fZQoaAZoCWgPQwi28pL/yY8ZwJSGlFKUaBVLMmgWR0Cn5Muoo/iYdX2UKGgGaAloD0MIz0nvG1/LGsCUhpRSlGgVSzJoFkdAp+SQJ3PiUHV9lChoBmgJaA9DCJFHcCNlyxfAlIaUUpRoFUsyaBZHQKfmWQbuMMt1fZQoaAZoCWgPQwic/YFy234TwJSGlFKUaBVLMmgWR0Cn5h0kGA09dX2UKGgGaAloD0MIbRyxFp8yEsCUhpRSlGgVSzJoFkdAp+XhokAxSHV9lChoBmgJaA9DCPqYDwh0NhjAlIaUUpRoFUsyaBZHQKflpH6Mzdl1fZQoaAZoCWgPQwim0eRiDLwWwJSGlFKUaBVLMmgWR0Cn51+40/GEdX2UKGgGaAloD0MI2v6VlSY1FMCUhpRSlGgVSzJoFkdAp+cj8cdYGXV9lChoBmgJaA9DCPUrnQ/PwhPAlIaUUpRoFUsyaBZHQKfm6LR8c+91fZQoaAZoCWgPQwgCZr6Dn2gVwJSGlFKUaBVLMmgWR0Cn5qt2ki2VdX2UKGgGaAloD0MI+G2I8ZrXGsCUhpRSlGgVSzJoFkdAp+h11MdtEXV9lChoBmgJaA9DCONV1jbFkxXAlIaUUpRoFUsyaBZHQKfoOdCE6DJ1fZQoaAZoCWgPQwjIluXrMlwUwJSGlFKUaBVLMmgWR0Cn5/6LOzIFdX2UKGgGaAloD0MISrIOR1fZFMCUhpRSlGgVSzJoFkdAp+fCMefZmXV9lChoBmgJaA9DCPW8GwsKkxLAlIaUUpRoFUsyaBZHQKfpcmtQsPJ1fZQoaAZoCWgPQwjdzVMdclMXwJSGlFKUaBVLMmgWR0Cn6TZBkZrIdX2UKGgGaAloD0MIQwQcQpXaFsCUhpRSlGgVSzJoFkdAp+j63Td+HHV9lChoBmgJaA9DCCjWqfI9oxXAlIaUUpRoFUsyaBZHQKfovXYDklx1fZQoaAZoCWgPQwiS66aU14obwJSGlFKUaBVLMmgWR0Cn6mJeE7GOdX2UKGgGaAloD0MIB+v/HOabGsCUhpRSlGgVSzJoFkdAp+ommLtNSXV9lChoBmgJaA9DCNyg9ls7MQnAlIaUUpRoFUsyaBZHQKfp6vVVghN1fZQoaAZoCWgPQwgQkgVM4AYfwJSGlFKUaBVLMmgWR0Cn6a2OQyRCdX2UKGgGaAloD0MI5urHJvnhG8CUhpRSlGgVSzJoFkdAp+thOxjawnV9lChoBmgJaA9DCMucLouJ7QjAlIaUUpRoFUsyaBZHQKfrJR3NcGF1fZQoaAZoCWgPQwjmlICYhEsRwJSGlFKUaBVLMmgWR0Cn6uqTr3TNdX2UKGgGaAloD0MI71UrE345E8CUhpRSlGgVSzJoFkdAp+qtQCSzPnV9lChoBmgJaA9DCAD9vn/zEhPAlIaUUpRoFUsyaBZHQKfsTwOOKfp1fZQoaAZoCWgPQwjvjSEAOPYSwJSGlFKUaBVLMmgWR0Cn7BMRHww1dX2UKGgGaAloD0MIIcztXu4zAsCUhpRSlGgVSzJoFkdAp+vXevZAZHV9lChoBmgJaA9DCJkSSfQyWhHAlIaUUpRoFUsyaBZHQKfrmh11W811fZQoaAZoCWgPQwgkRWRYxQsVwJSGlFKUaBVLMmgWR0Cn7To5ggHNdX2UKGgGaAloD0MIHhoWo661FcCUhpRSlGgVSzJoFkdAp+z+T7l7t3V9lChoBmgJaA9DCKMDkrBvZwXAlIaUUpRoFUsyaBZHQKfsws6JZW91fZQoaAZoCWgPQwgEVDiCVOoUwJSGlFKUaBVLMmgWR0Cn7IVp9JBgdX2UKGgGaAloD0MI9iSwOQfPEcCUhpRSlGgVSzJoFkdAp+5GhK15SnV9lChoBmgJaA9DCDzB/uvcJBDAlIaUUpRoFUsyaBZHQKfuCo0ALiN1fZQoaAZoCWgPQwjZJD/iV0wEwJSGlFKUaBVLMmgWR0Cn7c8KgIyCdX2UKGgGaAloD0MIO6jEdYzLGMCUhpRSlGgVSzJoFkdAp+2SsCDEnHV9lChoBmgJaA9DCKWFyypsdhjAlIaUUpRoFUsyaBZHQKfvPvy9VWF1fZQoaAZoCWgPQwg7G/LPDOIRwJSGlFKUaBVLMmgWR0Cn7wLx7RfGdX2UKGgGaAloD0MI0etP4nNnDcCUhpRSlGgVSzJoFkdAp+7HZ5AyEnV9lChoBmgJaA9DCD7L8+DurBLAlIaUUpRoFUsyaBZHQKfuikfs/pt1fZQoaAZoCWgPQwgKoYMu4YATwJSGlFKUaBVLMmgWR0Cn8CsF+uvEdX2UKGgGaAloD0MIXi9NEeAUEMCUhpRSlGgVSzJoFkdAp+/u45Lh73V9lChoBmgJaA9DCP+xEB0CZxbAlIaUUpRoFUsyaBZHQKfvs16Vt411fZQoaAZoCWgPQwhqMXiY9t0TwJSGlFKUaBVLMmgWR0Cn73YIjW07dX2UKGgGaAloD0MINxd/2xMUGcCUhpRSlGgVSzJoFkdAp/FSSowVTXV9lChoBmgJaA9DCDF5A8x8JxDAlIaUUpRoFUsyaBZHQKfxFjoZAIJ1fZQoaAZoCWgPQwhhGRu62V8YwJSGlFKUaBVLMmgWR0Cn8Ntvfj0ddX2UKGgGaAloD0MIDcSymUPiGsCUhpRSlGgVSzJoFkdAp/CetQsPKHV9lChoBmgJaA9DCMakv5fCYxzAlIaUUpRoFUsyaBZHQKfyRRtP5591fZQoaAZoCWgPQwidnQyOkvcSwJSGlFKUaBVLMmgWR0Cn8gknkT6BdX2UKGgGaAloD0MI29styQGbD8CUhpRSlGgVSzJoFkdAp/HN4Z/CqXV9lChoBmgJaA9DCLcMOEvJYhPAlIaUUpRoFUsyaBZHQKfxkIyj59F1fZQoaAZoCWgPQwjNdK+T+kIdwJSGlFKUaBVLMmgWR0Cn8ymCI1tPdX2UKGgGaAloD0MINs6mI4B7EsCUhpRSlGgVSzJoFkdAp/Ltc+qzaHV9lChoBmgJaA9DCIYEjC5vThLAlIaUUpRoFUsyaBZHQKfyse4kNWl1fZQoaAZoCWgPQwiUTiSYahYSwJSGlFKUaBVLMmgWR0Cn8nTkIX0odX2UKGgGaAloD0MI7Sk5J/bgE8CUhpRSlGgVSzJoFkdAp/Qd1ZDArXV9lChoBmgJaA9DCCkIHt/e1QzAlIaUUpRoFUsyaBZHQKfz4cCHRCx1fZQoaAZoCWgPQwhK0cq9wOwSwJSGlFKUaBVLMmgWR0Cn86ZDRc/udX2UKGgGaAloD0MINlmjHqJxFMCUhpRSlGgVSzJoFkdAp/No+lj3EnV9lChoBmgJaA9DCGQ6dHreDRLAlIaUUpRoFUsyaBZHQKf1Cy3Td+J1fZQoaAZoCWgPQwjwFkhQ/PgcwJSGlFKUaBVLMmgWR0Cn9M9b5dnkdX2UKGgGaAloD0MIWB050hmYE8CUhpRSlGgVSzJoFkdAp/ST0nPVu3V9lChoBmgJaA9DCObJNQUyyxPAlIaUUpRoFUsyaBZHQKf0VqN6w+t1fZQoaAZoCWgPQwhbJVgczlwNwJSGlFKUaBVLMmgWR0Cn9f3Zwn6VdX2UKGgGaAloD0MI32sIjsuYEMCUhpRSlGgVSzJoFkdAp/XBzxPO6nV9lChoBmgJaA9DCGt/Z3v0JhLAlIaUUpRoFUsyaBZHQKf1hokAxSJ1fZQoaAZoCWgPQwjWHYttUtESwJSGlFKUaBVLMmgWR0Cn9UlEqlP8dX2UKGgGaAloD0MIRUjdzr4SFcCUhpRSlGgVSzJoFkdAp/bzo2XLNnV9lChoBmgJaA9DCNAlHHqL1xrAlIaUUpRoFUsyaBZHQKf2t5C4SYh1fZQoaAZoCWgPQwhYqDXNO84TwJSGlFKUaBVLMmgWR0Cn9nyaNMoMdX2UKGgGaAloD0MIVYfcDDcwFcCUhpRSlGgVSzJoFkdAp/Y/czqKQHV9lChoBmgJaA9DCC1gArfuRg3AlIaUUpRoFUsyaBZHQKf32r3Cbc51fZQoaAZoCWgPQwhvDAHAsbcQwJSGlFKUaBVLMmgWR0Cn956zNUwSdX2UKGgGaAloD0MIh1EQPL59D8CUhpRSlGgVSzJoFkdAp/djD8+A3HV9lChoBmgJaA9DCFnABG7dzRPAlIaUUpRoFUsyaBZHQKf3JcqvvBt1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fd5a712bc70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fd5a7126280>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1683474338607892872, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAHY7WPr96XLqZFzM/HY7WPr96XLqZFzM/HY7WPr96XLqZFzM/HY7WPr96XLqZFzM/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAZHqZP/5tCr8YSCi/ocJ5vxDIPD/WJ88/jvQuPyq6Zr984re9PHeOP/T9bb9UCgQ/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAdjtY+v3pcupkXMz8YEvE7UTO2O4o8fTwdjtY+v3pcupkXMz8YEvE7UTO2O4o8fTwdjtY+v3pcupkXMz8YEvE7UTO2O4o8fTwdjtY+v3pcupkXMz8YEvE7UTO2O4o8fTyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.419053 -0.00084106 0.6995788 ]\n [ 0.419053 -0.00084106 0.6995788 ]\n [ 0.419053 -0.00084106 0.6995788 ]\n [ 0.419053 -0.00084106 0.6995788 ]]", "desired_goal": "[[ 1.1990476 -0.54074085 -0.65735006]\n [-0.97562605 0.7374277 1.6184032 ]\n [ 0.6834191 -0.90127814 -0.08978745]\n [ 1.1130137 -0.92965627 0.5157826 ]]", "observation": "[[ 0.419053 -0.00084106 0.6995788 0.00735689 0.00556032 0.01545633]\n [ 0.419053 -0.00084106 0.6995788 0.00735689 0.00556032 0.01545633]\n [ 0.419053 -0.00084106 0.6995788 0.00735689 0.00556032 0.01545633]\n [ 0.419053 -0.00084106 0.6995788 0.00735689 0.00556032 0.01545633]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAoHqNPRWPxb3/HYg+waQKPi7HQb0GfU0+2t0dva6ncj2rfcA9k/gOPk6ntLww1qw9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.06908154 -0.09646431 0.26585385]\n [ 0.13539411 -0.04730909 0.20067224]\n [-0.03854165 0.05924194 0.09398969]\n [ 0.13962011 -0.02205243 0.08439291]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIYsCSq1iMFsCUhpRSlIwBbJRLMowBdJRHQKR9PcoH9m91fZQoaAZoCWgPQwgRxHk4gekRwJSGlFKUaBVLMmgWR0CkfP9deIEbdX2UKGgGaAloD0MIxNLAj2r4DMCUhpRSlGgVSzJoFkdApHzEm6XjVHV9lChoBmgJaA9DCIS3ByEgDxDAlIaUUpRoFUsyaBZHQKR8iCSRr8B1fZQoaAZoCWgPQwjg10gShOsVwJSGlFKUaBVLMmgWR0Ckfp4Ajps5dX2UKGgGaAloD0MIT5Za7ze6FMCUhpRSlGgVSzJoFkdApH5fr6ciGHV9lChoBmgJaA9DCLsqUIvBoxLAlIaUUpRoFUsyaBZHQKR+JL6k6911fZQoaAZoCWgPQwjqswOuKxYSwJSGlFKUaBVLMmgWR0CkfehWxQizdX2UKGgGaAloD0MIklhS7j5HDMCUhpRSlGgVSzJoFkdApH/5xgiNbXV9lChoBmgJaA9DCL76eOi7exTAlIaUUpRoFUsyaBZHQKR/u150KZ51fZQoaAZoCWgPQwg4oKUr2IYTwJSGlFKUaBVLMmgWR0Ckf4CDEm6YdX2UKGgGaAloD0MIAB+8dmkTEcCUhpRSlGgVSzJoFkdApH9EDyOJcnV9lChoBmgJaA9DCCU/4lesYQnAlIaUUpRoFUsyaBZHQKSA3Gff4yp1fZQoaAZoCWgPQwjnVDIAVHEYwJSGlFKUaBVLMmgWR0CkgJ1/lQuVdX2UKGgGaAloD0MIxjTTvU5aF8CUhpRSlGgVSzJoFkdApIBh6+nIhnV9lChoBmgJaA9DCBwG81fI/BLAlIaUUpRoFUsyaBZHQKSAJSLIgeR1fZQoaAZoCWgPQwj18jtNZpwQwJSGlFKUaBVLMmgWR0CkgbSGSIP9dX2UKGgGaAloD0MIkuo7vyjxEsCUhpRSlGgVSzJoFkdApIF1twaR6nV9lChoBmgJaA9DCOJ30y071BjAlIaUUpRoFUsyaBZHQKSBOjZ+QU51fZQoaAZoCWgPQwj6YYTwaNMXwJSGlFKUaBVLMmgWR0CkgP0elsP8dX2UKGgGaAloD0MI3rBtUWZDD8CUhpRSlGgVSzJoFkdApIKL6pHZsnV9lChoBmgJaA9DCO3xQjo8pA7AlIaUUpRoFUsyaBZHQKSCTtgKF7F1fZQoaAZoCWgPQwiGdk6zQLsSwJSGlFKUaBVLMmgWR0CkghO0TlDGdX2UKGgGaAloD0MIHsTOFDrvEcCUhpRSlGgVSzJoFkdApIHXNke6qnV9lChoBmgJaA9DCHP3OT5aHA7AlIaUUpRoFUsyaBZHQKSDY7OE/Sp1fZQoaAZoCWgPQwhC6Qsh5wUgwJSGlFKUaBVLMmgWR0CkgyTQE6kqdX2UKGgGaAloD0MIRML3/ga9FsCUhpRSlGgVSzJoFkdApILpUHY6GXV9lChoBmgJaA9DCB0Dste7HxPAlIaUUpRoFUsyaBZHQKSCrEjxCpp1fZQoaAZoCWgPQwiKOQg6WvUawJSGlFKUaBVLMmgWR0CkhC6khzNmdX2UKGgGaAloD0MImiLA6V28DcCUhpRSlGgVSzJoFkdApIPvvUjLS3V9lChoBmgJaA9DCIB9dOrKhxLAlIaUUpRoFUsyaBZHQKSDtCzkZJl1fZQoaAZoCWgPQwiwyK8fYoMOwJSGlFKUaBVLMmgWR0Ckg3cX3xnWdX2UKGgGaAloD0MIv9L58CyRE8CUhpRSlGgVSzJoFkdApIT7cXWOInV9lChoBmgJaA9DCGuZDMfzeRPAlIaUUpRoFUsyaBZHQKSEvJPIn0F1fZQoaAZoCWgPQwjg88MI4fESwJSGlFKUaBVLMmgWR0CkhIEEcKgJdX2UKGgGaAloD0MIi1QYWwiCFMCUhpRSlGgVSzJoFkdApIRD5ylvZXV9lChoBmgJaA9DCJ5F71TAHRXAlIaUUpRoFUsyaBZHQKSF0ePJaJR1fZQoaAZoCWgPQwhoQL0ZNZ8NwJSGlFKUaBVLMmgWR0CkhZL7GecydX2UKGgGaAloD0MIHomXp3MlEMCUhpRSlGgVSzJoFkdApIVXWe6I33V9lChoBmgJaA9DCGlznNuEqxDAlIaUUpRoFUsyaBZHQKSFGla8pTd1fZQoaAZoCWgPQwi3RgTj4NITwJSGlFKUaBVLMmgWR0Ckhp4ekpI+dX2UKGgGaAloD0MICqAYWTJHDcCUhpRSlGgVSzJoFkdApIZfMjeKsXV9lChoBmgJaA9DCFrxDYXPZhHAlIaUUpRoFUsyaBZHQKSGI7UXpGF1fZQoaAZoCWgPQwi5N79hokEYwJSGlFKUaBVLMmgWR0CkheafJ3gUdX2UKGgGaAloD0MIu7a3W5IjC8CUhpRSlGgVSzJoFkdApId1mBe5WnV9lChoBmgJaA9DCHR63o0FNRfAlIaUUpRoFUsyaBZHQKSHNqbBoEl1fZQoaAZoCWgPQwhssdtnlekVwJSGlFKUaBVLMmgWR0CkhvsasIVudX2UKGgGaAloD0MIbTzYYrfvEMCUhpRSlGgVSzJoFkdApIa+AoXsPnV9lChoBmgJaA9DCC5weawZuRDAlIaUUpRoFUsyaBZHQKSIRYJ3PiV1fZQoaAZoCWgPQwgUCaaaWVsSwJSGlFKUaBVLMmgWR0CkiAabONYKdX2UKGgGaAloD0MIguMybmpQFMCUhpRSlGgVSzJoFkdApIfLDwYtQXV9lChoBmgJaA9DCGOYE7TJQQjAlIaUUpRoFUsyaBZHQKSHjf6XSjR1fZQoaAZoCWgPQwjlKavpegIfwJSGlFKUaBVLMmgWR0CkiRUNayKOdX2UKGgGaAloD0MIgjtQpzz6BsCUhpRSlGgVSzJoFkdApIjWFi8WbnV9lChoBmgJaA9DCDHtm/urRw7AlIaUUpRoFUsyaBZHQKSImqmTC+F1fZQoaAZoCWgPQwgGf7+YLekRwJSGlFKUaBVLMmgWR0CkiF2UKRdQdX2UKGgGaAloD0MIRbx1/u0CE8CUhpRSlGgVSzJoFkdApInopWmxdXV9lChoBmgJaA9DCIuH9xxYbg7AlIaUUpRoFUsyaBZHQKSJqbedkJ91fZQoaAZoCWgPQwizBu+rckEQwJSGlFKUaBVLMmgWR0CkiW4Z2pyZdX2UKGgGaAloD0MImdnnMcqzCMCUhpRSlGgVSzJoFkdApIkw/7iyZHV9lChoBmgJaA9DCJc3h2u1hxDAlIaUUpRoFUsyaBZHQKSKvP2wmmd1fZQoaAZoCWgPQwjovpzZrnAKwJSGlFKUaBVLMmgWR0Ckin4UFjd6dX2UKGgGaAloD0MIgVt381SnD8CUhpRSlGgVSzJoFkdApIpCjBVMmHV9lChoBmgJaA9DCC6M9KJ2rxLAlIaUUpRoFUsyaBZHQKSKBWluWKN1fZQoaAZoCWgPQwgSMLq8OfwIwJSGlFKUaBVLMmgWR0Cki48yFfzCdX2UKGgGaAloD0MInwJgPIMWGcCUhpRSlGgVSzJoFkdApItQR9PUKHV9lChoBmgJaA9DCOs6VFOS9QrAlIaUUpRoFUsyaBZHQKSLFLQHAyp1fZQoaAZoCWgPQwh3oblOIy0VwJSGlFKUaBVLMmgWR0Ckitej/MnrdX2UKGgGaAloD0MIjNmSVRHOE8CUhpRSlGgVSzJoFkdApIxhMURFqnV9lChoBmgJaA9DCKbQeY1dUhLAlIaUUpRoFUsyaBZHQKSMIlHBk7R1fZQoaAZoCWgPQwglB+xq8vQRwJSGlFKUaBVLMmgWR0Cki+a1kUbldX2UKGgGaAloD0MImpfD7jsmEsCUhpRSlGgVSzJoFkdApIupoZhrnHV9lChoBmgJaA9DCHSzP1BuCyLAlIaUUpRoFUsyaBZHQKSNKnpB5X51fZQoaAZoCWgPQwjR6A5iZ0oQwJSGlFKUaBVLMmgWR0CkjOuBDohZdX2UKGgGaAloD0MIMq8jDtmwEsCUhpRSlGgVSzJoFkdApIyv779AHHV9lChoBmgJaA9DCFjk1w+xIQ7AlIaUUpRoFUsyaBZHQKSMctthuwZ1fZQoaAZoCWgPQwjYDdsWZbYSwJSGlFKUaBVLMmgWR0CkjgMI/qxDdX2UKGgGaAloD0MIFYxK6gS0EsCUhpRSlGgVSzJoFkdApI3EFY+0PnV9lChoBmgJaA9DCJeQD3o2GxPAlIaUUpRoFUsyaBZHQKSNiKsMiKR1fZQoaAZoCWgPQwjTMlLvqawTwJSGlFKUaBVLMmgWR0CkjUujh1kldX2UKGgGaAloD0MI7IUCtoNxEsCUhpRSlGgVSzJoFkdApI7PmJWNm3V9lChoBmgJaA9DCGe3lslw/BDAlIaUUpRoFUsyaBZHQKSOkJtzjm11fZQoaAZoCWgPQwi+FYkJamgUwJSGlFKUaBVLMmgWR0CkjlUhmoR7dX2UKGgGaAloD0MItf8B1qpdEsCUhpRSlGgVSzJoFkdApI4YDaGpM3V9lChoBmgJaA9DCOXRjbCoSBTAlIaUUpRoFUsyaBZHQKSPnq59Vm11fZQoaAZoCWgPQwis/Z3t0fsTwJSGlFKUaBVLMmgWR0Ckj1+4kNWmdX2UKGgGaAloD0MIXFSLiGIiEMCUhpRSlGgVSzJoFkdApI8kMw1zhnV9lChoBmgJaA9DCNe/6zNnnQ7AlIaUUpRoFUsyaBZHQKSO52TPjXF1fZQoaAZoCWgPQwhMp3Ub1G4SwJSGlFKUaBVLMmgWR0CkkG7BGhEjdX2UKGgGaAloD0MIYJFfP8QmDsCUhpRSlGgVSzJoFkdApJAv4TK1X3V9lChoBmgJaA9DCCefHtsyABHAlIaUUpRoFUsyaBZHQKSP9FYMfA91fZQoaAZoCWgPQwjKVMGopE4SwJSGlFKUaBVLMmgWR0Ckj7c6mwaBdX2UKGgGaAloD0MI9l0R/G/lEMCUhpRSlGgVSzJoFkdApJE9Z1V5r3V9lChoBmgJaA9DCESmfAiqRgzAlIaUUpRoFUsyaBZHQKSQ/nSOR1Z1fZQoaAZoCWgPQwjV6UDWUwsOwJSGlFKUaBVLMmgWR0CkkMLc0tROdX2UKGgGaAloD0MIfIDuy5mNDcCUhpRSlGgVSzJoFkdApJCFxwQ18HV9lChoBmgJaA9DCL72zJIAZRPAlIaUUpRoFUsyaBZHQKSSGKLsKLN1fZQoaAZoCWgPQwjp7c9FQ5YQwJSGlFKUaBVLMmgWR0CkkdokAxSHdX2UKGgGaAloD0MIhXtl3qrLEsCUhpRSlGgVSzJoFkdApJGeh24d63V9lChoBmgJaA9DCMzuycNCTRDAlIaUUpRoFUsyaBZHQKSRYXZ5AyF1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -
|
|
|
1 |
+
{"mean_reward": -4.897127328254283, "std_reward": 1.493502469897661, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-07T16:29:27.559987"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e8e23eda7ed084d080020820a5944978a485e3dd683b1f6cdc967122c3d0b61c
|
3 |
+
size 2387
|